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Abstract. In this paper we consider the stationary solutions of the
Schrödinger-Poisson equation:

iψt + ∆ψ − (|x|−1 ∗ |ψ|2)ψ + |ψ|p−2ψ = 0 in R3.

We are interested in the existence of standing waves, that is solutions
of type ψ(x, t) = u(x)e−iωt, where ω ∈ R, with fixed L2 − norm.
Then we are reduced to a constrained minimization problem. The
main difficulty is the compactness of the minimizing sequences since the
related functional is invariant by translations. By using some abstract
results, we give a positive answer, showing that the minimum of the
functional is achieved on small L2 − spheres in the case 2 < p < 3 and
large L2 − spheres in the case 3 < p < 10/3. The results exposed here
can be found with more details in [6] and [7].

1. Introduction

We consider the following Schrödinger-Poisson type equation

iψt + ∆ψ − (|x|−1 ∗ |ψ|2)ψ + |ψ|p−2ψ = 0 in R3, (1.1)

where ψ(x, t) : R3 × [0, T ) → C is the wave function, ∗ denotes the convo-
lution and 2 < p < 10/3. Equation (1.1), known in the case p = 8/3 as
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Schrödinger-Poisson-Slater equation, has been used to analyze a wide vari-
ety of physical phenomena in Quantum-Chemistry and Solid State Physics.
We refer to [11] and [13] for a detailed study of equations which model phys-
ical phenomena with nonlocal terms.

We are interested to the existence of particular class of solutions of the
Schrödinger-Poisson equation: the solitary waves. By a solitary wave we
mean a solution of (1.1) whose energy travels as a localized packet; if a
solitary wave exhibits orbital stability it is called soliton. Actually we
restrict to the standing waves, that is solutions of type

ψ(x, t) = e−iωtu(x) , ω ∈ R, u(x) ∈ C . (1.2)

So we are reduced to study the following semilinear elliptic equation with
a non local nonlinearity

−∆u+ φuu− |u|p−2u = ωu in R3, (1.3)

where we have set

φu(x) =
∫

R3

|u(y)|2

|x− y|
dy .

In the literature the Schrödinger-Poisson equation has been extensively
studied. However many authors consider the case in which the frequency
ω is a parameter (that is, a priori given) and not an unknown; then the
energy functional they study is

F (u) =
1
2

∫
R3

|∇u|2dx− ω

2

∫
R3

|u|2dx+
1
4

∫
R3

φu|u|2dx−
1
p

∫
R3

|u|pdx

whose critical points are exactly the solutions of (1.3) with that given ω.
See e.g. [1, 9, 10, 15, 16, 17, 18] and the references therein.

We recall that the energy and the charge associated to the wave function
ψ(x, t) evolving according to (1.1) are constants of motion and are given
by

E(ψ(x, t)) : =
1
2

∫
R3

|∇ψ|2dx+
1
4

∫
R3

(|x|−1 ∗ |ψ|2)|ψ|2dx− 1
p

∫
R3

|ψ|pdx

= E(ψ(x, 0))

and

Q(ψ(x, t)) :=
1
2

∫
R3

|ψ|2dx = Q(ψ(x, 0)).

So it is physically relevant to study the critical points of E restricted on
the manifold Q = constant. By using the ansatz (1.2), the natural way
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to attack this problem is to look for the constrained critical points of the
functional

I(u) =
1
2

∫
R3

|∇u|2dx+
1
4

∫
R3

φu|u|2dx−
1
p

∫
R3

|u|pdx (1.4)

on the L2-spheres in H1(R3; C)

Bρ = {u ∈ H1(R3; C) : ‖u‖2 = ρ} ρ > 0.

In this case ω is not a priori given but it is an unknown of the problem:
so, now by a solution of (1.3) we mean a couple (ωρ, uρ) ∈ R×H1(R3; C),
where ωρ is the Lagrange multiplier associated to the critical point uρ on
Bρ. Once uρ is found, ωρ is given explicitly by

ωρ =
1
ρ2

(
‖∇uρ‖2

2 +
∫

R3

φuρ |uρ|2dx−
∫

R3

|uρ|pdx
)
.

Note that this approach is more natural since the wave function ψ is an
unknown, so u and ω has to be considered both as unknowns of the problem.

However, due to stability properties, we are interested in finding the
critical points of I on Bρ which are minima for the energy I. Therefore we
study the minimization problem

Iρ2 := inf
Bρ

I(u) (1.5)

which makes sense for 2 < p < 10/3 (see Proposition 2.1). Note that
problem (1.5) is invariant by the action of noncompact group of translations
in R3.

In a recent paper by Benci and Fortunato [4] the relevance of the en-
ergy/charge ratio for the existence of standing waves in field theories has
been discussed under a general framework. In our context, the analogous
is the function s 7→ Is2

s2 that will appear in Section 4.
There are only few papers concerning the minimization problem of the

Schrödinger-Poisson functional I on the constraint Bρ. There is just a result
by Sanchez and Soler [19] in the case p = 8/3 and by Catto and Lions in the
case of nonhomogeneous nonlinearity of type ‖u‖10/3

10/3 − ‖u‖8/3
8/3, see [8]. For

p = 8/3, the so called Schrödinger-Poisson-Slater equation, the existence
of minimizers is proved in [19] only for ρ small, that is for small values of
the charge. The difficulty, in considering all ρ > 0, concerns the possibility
of dichotomy for an arbitrary minimizing sequence.

We quote also [4] and [14] where the analogous problem in a bounded
domain has been considered. In [4] the authors prove, by means of the
Ljusternik-Schnirelmann theory, the existence of infinitely many solutions
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with Dirichelet boundary conditions on u and φ. In [14] a nonhomogeneous
Neumann boundary condition on φ is considered.

The results we are going to prove here are the following.

Theorem 1.1. Let p ∈ (3, 10/3). Then there exists ρ2 > 0 (depending
on p) such that all the minimizing sequences for (1.5) are precompact in
H1(R3; C), up to translations, provided that

ρ2 < ρ < +∞.

In particular, there exists a couple (ωρ, uρ) ∈ R×H1(R3; R) solution of
(1.3).

We note explicitly that the solution uρ is real valued. The importance of
the existence of the minimum of the functional I is related to its stability
properties.

Theorem 1.2. Let p ∈ (3, 10/3). Then the set

Sρ = {eiθu(x) : θ ∈ [0, 2π), ‖u‖2 = ρ, I(u) = Iρ2} for ρ > ρ2

(with ρ2 provided by Theorem 1.1) is orbitally stable.

The definition of orbital stability will be recalled in Subsection 3.1.
With a slightly different approach, we are able also to treat the case

2 < p < 3.

Theorem 1.3. Let p ∈ (2, 3). Then there exists ρ1 > 0 (depending
on p) such that all the minimizing sequences for (1.5) are precompact in
H1(R3; C), up to translations, provided that

0 < ρ < ρ1.

In particular, there exists a couple (ωρ, uρ) ∈ R × H1(R3; R) solution of
(1.3).

Moreover we have

Theorem 1.4. Let p ∈ (2, 3). Then the set

Sρ = {eiθu(x) : θ ∈ [0, 2π), ‖u‖2 = ρ, I(u) = Iρ2} for ρ < ρ1

(with ρ2 provided by Theorem 1.3) is orbitally stable.
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1.1. Notations. As a matter of notations, in the paper it is understood
that all the functions, unless otherwise stated, are complex-valued, but
for simplicity we will write Ls(RN ),H1(RN )...., where N ≥ 3 and for any
1 ≤ s < +∞, Ls(RN ) is the usual Lebesgue space endowed with the norm

‖u‖s
s :=

∫
RN

|u|sdx,

and H1(RN ) the usual Sobolev space endowed with the norm

‖u‖2
H1 :=

∫
RN

|∇u|2dx+
∫

RN

|u|2dx.

For our application, let us define the space D1,2(RN ). It is the completion
of C∞

0 (RN ) with respect to the norm

‖u‖2
D1,2 :=

∫
RN

|∇u|2dx.

Moreover the letter c will be used to denote a suitable positive constant,
whose value may change also in the same line, and the symbol o(1) to
denote a quantity which goes to zero. We also use O(1) to denote a bounded
sequence.

The paper is organized as follows. In the next section we give some
general remarks and comments about the problems we are going to study.
In Section 3 is considered the case p ∈ (3, 10/3). Section 4 is devoted to
the case p ∈ (2, 3) which is more involved.

2. Preliminaries

First of all, the study of the minimization problem (1.5) is justified by
the following

Proposition 2.1. For every ρ > 0 and p ∈ (2, 10/3) the functional I is
bounded from below and coercive on Bρ.

Proof. We apply the following Sobolev inequality

‖u‖q ≤ bq‖u‖
1−N

2
+N

q

2 ‖∇u‖
N
2
−N

q

2

that holds for 2 ≤ q ≤ 2∗ when N ≥ 3. Therefore if ‖u‖2 = ρ it follows

‖u‖p
p ≤ bpρ

6−p
2 ‖∇u‖

3p
2
−3

2

and

I(u) ≥
∫

R3

(
1
2
|∇u|2 − 1

p
|u|p
)
dx ≥ 1

2
‖∇u‖2

2 − bpρ
6−p
2 ‖∇u‖

3p
2
−3

2 . (2.1)
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Since p < 10/3, it results 3p
2 − 3 < 2 and

I(u) ≥ 1
2
‖∇u‖2

2 +O(‖∇u‖2
2).

which concludes the proof. �

As a consequence of this proposition, whenever ρ is fixed and {un} is a
minimizing sequence for Iρ2 , we implicitly assume that {un} is bounded in
H1(R3), so weakly convergent up to subsequences.

Note that, evidently, φu which appears in (1.3) satisfies −∆φu = 4π|u|2
and is usually interpreted as the scalar potential of the electrostatic field
generated by the charge density |u|2. Furthermore, it is useful to observe
that, if we set

uλ(·) = λαu(λβ(·)) α, β ∈ R, λ > 0,
then

φuλ
(x) =

∫
R3

λ2α+β |u(λβy)|2

|λβx− λβy|
dy = λ2(α−β)

∫
R3

|u(y)|2

|λβx− y|
dy

= λ2(α−β)φu(λβx).

To prove the theorems stated, we will make use of some abstract results.
They concern the compactness condition in order to conclude that the
minimizing sequences are (strongly) convergent. The main contribution
to constrained minimization problems has been given by the celebrated
concentration-compactness principle of Lions, see [12]. It is clear that the
relative compactness of the minimizing sequences would give the existence
of a minimizer for (1.5). However, for translation invariant functionals the
minimizing sequence {un} could run off to spatial infinity and/or spread
uniformly in space. So even up to translations two possible bad scenarios
are possible:

• (vanishing) un ⇀ 0;
• (dichotomy) un ⇀ ū 6= 0 and 0 < ‖ū‖2 < ρ.

The general strategy in the applications is to prove that any minimizing
sequence weakly converges, up to translation, to a function ū which is
different from zero, excluding the vanishing case. Then one has to show that
‖ū‖2 = ρ, which proves that dichotomy does not occur. As a consequence of
the Lions’ principle, the minimizing sequence converges, up to subsequence,
to a minimizer which gives a solution of the problem.

In [12], Lions proved that the invariance by translations of the problem
implies in many cases (as for our problem (1.5)) an inequality that the
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infima Iρ2 have to satisfy and read as follows (weak subadditivity inequality)

Iρ2 ≤ Iµ2 + Iρ2−µ2 for all 0 < µ < ρ. (2.2)

However the necessary and sufficient condition in order that any minimizing
sequence on Bρ is relatively compact is a stronger version of (2.2), that is

Iρ2 < Iµ2 + Iρ2−µ2 for all 0 < µ < ρ. (2.3)

In the literature it is referred as the strong subadditivity inequality. Our
main affort concerns with the verification of (2.3).

Actually, Theorem 1.1 and Theorem 1.3 are consequence of general re-
sults (Lemma 3.1 and Theorem 4.1) which are applicable also in other
situations. In contrast, Theorem 1.2 and Theorem 1.4 are quite expected;
indeed their proofs are standard and based on two general facts

• the convergence of all the minimizing sequences,
• the conservation of energy and the L2−norm.

During the proof of Theorems 1.1-1.3 we will use general results concern-
ing the minimization of functionals of type

J(u) =
1
2

∫
R3

|∇u|2dx+ T (u)

on Bρ, for some C1 functional T on H1(R3). Clearly, our functional (1.4)
is in this form.

3. The case 3 < p < 10/3

To prove that the minimum in this case is achieved, we make use of some
results contained in [6]. Here is crucial the condition

Jρ2 < Jµ2 + Jρ2−µ2 for any 0 < µ < ρ . (3.1)

The next two lemma (the first of which is quite general and the second
one is for our functional I) stated without proofs, will be used to prove
Theorem 1.1.

Lemma 3.1. Let T a C1 functional defined on H1(RN ) and

J(u) =
1
2

∫
R3

|∇u|2dx+ T (u).

Let {un} ⊂ Bρ be a minimizing sequence for Jρ2 such that un ⇀ ū 6= 0 and
let us set µ = ‖ū‖2 ∈ (0, ρ].

Assume (3.1) and also that

T (un − ū) + T (ū) = T (un) + o(1); (3.2)
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T (αn(un − ū))− T (un − ū) = o(1), (3.3)

where αn = ρ2−µ2

‖un−ū‖2 . Then ū ∈ Bρ.

Moreover if, as n,m→ +∞〈
T ′(un)− T ′(um), un − um

〉
= o(1) (3.4)〈

T ′(un), un

〉
= O(1) (3.5)

then ‖un − ū‖H1(RN ) → 0.

Proof. See [6]. �

By a straightforward computation, condition (3.1) can be proved for our
functional I when 3 < p < 10/3, indeed we have

Lemma 3.2. If 3 < p < 10/3, then there exists ρ2 > 0 such that Iµ2 defined
in (1.5) satisfies:

a) Iµ2 < 0 for all µ > ρ2,
b) Iρ2 < Iµ2 + Iρ2−µ2 for all ρ > ρ2 and 0 < µ < ρ.

The verification of these two conditions is based on suitable rescaling
properties of the functional defined in (1.4); it is technical and straightfor-
ward, hence omitted here; the interested reader is refereed to [6]. Let us
see the consequences of this last lemma.

The condition Iµ2 < 0 is important to show that the weak limit of the
minimizing sequences is not trivial (as required to apply the general Lemma
3.1). Indeed, fix µ ∈ (ρ2,+∞). Let {un} be a minimizing sequence in Bµ.
Notice that for any sequence {yn} ⊂ R3 we have that un(. + yn) is still a
minimizing sequence for Iµ2 . Now, if

lim
n→∞

(
sup
y∈R3

∫
B(y,1)

|un|2dx

)
= 0

then, by the Lions’ Lemma (see [12]), un → 0 in Lq(R3) for any q ∈ (2, 2∗),
where B(a, r) = {x ∈ R3 : |x − a| ≤ r}. Since Iµ2 < 0, this would address
to a contradiction. Then it has to be

sup
y∈R3

∫
B(y,1)

|un|2dx ≥ δ > 0

and we can choose {yn} ⊂ R3 such that∫
B(0,1)

|un(.+ yn)|2dx ≥ δ > 0.
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Consequently, due to the compactness of the embedding H1(B(0, 1)) ⊂
L2(B(0, 1)), we deduce that the weak limit of the sequence un(.+yn) is not
the trivial function, so un ⇀ ū 6= 0.

By setting now

T (u) :=
1
4
B(u) +

1
p
C(u),

where

B(u) =
∫

R3

φu|u|2dx, C(u) = −
∫

R3

|u|pdx,

our Schrödinger-Poisson functional can be written as

I(u) =
1
2

∫
R3

|∇u|2dx+ T (u)

and satisfies the hypothesis of the abstract Lemma 3.1. Indeed, we have just
seen that the minimizing sequences have a non trivial weak limit. Moreover
condition (3.2) is satisfied by B and C as shown in Lemma 2.2 of [20].
Furthermore by the convolution and Sobolev inequalities we get

B(un) =
∫

R3

φun |un|2dx ≤ c‖un‖4
12/5 ≤ c‖un‖3

2‖∇un‖2 (3.6)

and than the relation (3.3) follows from the homogeneity of B and C:

B(αn(un − ū))−B(un − u) = (α4
n − 1)B(un − ū) = o(1)

C(αn(un − ū))− C(un − u) = (αp
n − 1)C(un − ū) = o(1)

since αn → 1.
Notice that thanks to the classical interpolation inequality we have

‖un − um‖p ≤ ‖un − um‖α
2 ‖∇un −∇um‖1−α

2 where
α

2
+

(1− α)
2∗

=
1
p

and then on the minimizing sequence we get ‖un − um‖p = o(1).
We obtain, for q = p/(p− 1)∫
R3

|un|p−1|un − u|dx ≤
(∫

R3

|un|q dx
)1/q (∫

R3

|un − u|p dx
)1/p

= o(1)

and so∣∣∣∣∫
R3

(|un|p−1 − |um|p−1)(un − um) dx
∣∣∣∣ ≤ c ‖un − um‖p = o(1).
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This proves (3.4) for C. The verification of (3.4) for B follows from∫
R3

φunun(un − um)dx ≤ ‖φun‖6‖un‖2‖un − um‖3

≤ c‖un‖2
H1‖un‖2‖un − um‖3 = o(1).

Finally, condition (3.5) is trivial since, if un ⇀ ū, then〈
T ′(un), un

〉
=
∫

R3

φn|un|2dx−
∫

R3

|un|pdx

is bounded by (3.6) and the continuous inclusion of H1(R3) in Lp(R3).
Then, applying Lemma 3.1 we deduce that the weak limit ū of a minimizing
sequence {un} is in Bρ. In accordance with the statement of Theorem 1.1,
ū is renamed uρ.

Remark 3.1. We remark here explicitly that the verification of (3.2)-(3.5)
does not depend on the range in which p varies.

To conclude the proof of Theorem 1.1 we need to show that uρ is real
valued. Notice that, in general, if z is a complex function written as
z(x, t) = |z(x, t)|eiS(x,t) then

I(z(x, t)) = I(|z(x, t)|) +
∫

R3

|z(x, t)|2|∇S(x, t)|2dx,

so we easily deduce that the minimizer uρ has to be real valued.

3.1. The orbital stability. We first recall the definition of orbital stabil-
ity. Let us define

Sρ = {eiθu(x) : θ ∈ [0, 2π), ‖u‖2 = ρ, I(u) = Iρ2}.
We say that Sρ is orbitally stable if for every ε > 0 there exists δ > 0 such
that for any ψ0 ∈ H1(R3) with infv∈Sρ ‖v − ψ0‖H1(R3) < δ we have

∀ t > 0 inf
v∈Sρ

‖ψ(t, .)− v‖H1(R3) < ε,

where ψ(t, .) is the solution of (1.1) with initial datum ψ0. We notice
explicitly that Sρ is invariant by translations, i.e. if v ∈ Sρ then also
v(.− y) ∈ Sρ for any y ∈ R3.
Since the energy and the charge associated to ψ(x, t) evolving according to
(1.1) are

E(ψ(x, t)) =
1
2

∫
R3

|∇ψ|2dx+
1
4

∫
R3

(|x|−1 ∗ |ψ|2)|ψ|2dx− 1
p

∫
R3

|ψ|pdx

= E(ψ(x, 0))
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and

Q(ψ(x, t)) =
1
2

∫
R3

|ψ|2dx = Q(ψ(x, 0)),

our action functional I is exactly the energy and Q is the L2−norm.
In order to prove Theorem 1.2 we argue by contradiction assuming that

there exists a ρ such that Sρ is not orbitally stable. This means that
there exists ε > 0 and a sequence of initial data {ψn,0} ⊂ H1(R3) and
{tn} ⊂ R such that the maximal solution ψn, which is global in time and
ψn(0, .) = ψn,0, satisfies

lim
n→+∞

inf
v∈Sρ

‖ψn,0 − v‖H1(R3) = 0 and inf
v∈Sρ

‖ψn(tn, .)− v‖H1(R3) ≥ ε

Then there exists uρ ∈ H1(R3) minimizer of Iρ and θ ∈ R such that v =
eiθuρ and

‖ψn,0‖2 → ‖v‖2 = ρ and I(ψn,0) → I(v) = Iρ2

Actually we can assume that ψn,0 ∈ Bρ (there exist αn = ρ/‖ψn,0‖2 → 1
so that αnψn,0 ∈ Bρ and I(αnψn,0) → Iρ2 , i.e. we can replace ψn,0 with
αnψn,0). So {ψn,0} is a minimizing sequence for Iρ2 , and since

I(ψn(., tn)) = I(ψn,0)

also {ψn(., tn)} is a minimizing sequence for Iρ2 . Since we have proved
that every minimizing sequence has a subsequence converging (up to trans-
lation) in H1-norm to a minimum on the sphere Bρ, we readily have a
contradiction, proving Theorem 1.2.

4. The case 2 < p < 3

The proof of the existence of a minimizer for I in this case is more
involved. Indeed the main problem here is the subadditivity condition
which is not easy to verify when 2 < p < 3 and indeed the possibility of
dichotomy for an arbitrary minimizing sequence cannot be excluded. In
this case the computations of the proof of Lemma 3.2 to prove the strong
subadditivity inequality (2.3), fail due to the limitations on p. In fact we
will recover (2.3) indirectly.

The results of this section are contained in [7] to which the reader is
referred for details and to deal with a more general case.

Turning back to (2.3), a classical approach to prove it, is to ensure that

(MD) the function s 7→ Is2

s2 is monotone decreasing.
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Indeed, in case (MD) holds, for µ ∈ (0, ρ) we get

µ2

ρ2
Iρ2 < Iµ2 and

ρ2 − µ2

ρ2
Iρ2 < Iρ2−µ2

and hence

Iρ2 =
µ2

ρ2
Iρ2 +

ρ2 − µ2

ρ2
Iρ2 < Iµ2 + Iρ2−µ2 ∀µ ∈ (0, ρ),

i.e. (2.3). Our aim, is then to give sufficient conditions that guarantee
(MD).

Let us start with the following abstract situation referred to the C1

functional

J(u) =
1
2

∫
RN

|∇u|2dx+ T (u).

Definition 4.1. Let u ∈ H1(RN ), u 6= 0. A continuous path gu : θ ∈ R+ 7→
gu(θ) ∈ H1(RN ) such that gu(1) = u is said to be a scaling path of u if

Θgu(θ) := ‖gu(θ)‖2
2‖u‖−2

2 is differentiable and H ′
gu

(1) 6= 0

where the prime denotes the derivative. We denote with Gu the set of the
scaling paths of u.

The set Gu is nonempty and indeed it contains a lot of elements: for
example, gu(θ) = θu(x) ∈ Gu, since Θgu(θ) = θ2. Also gu(θ) = u(x/θ) is
an element of Gu since Θgu(θ) = θN . As we will see in our application, it
is relevant to consider the family of scaling paths of u parametrized with
β ∈ R given by

Gβ
u := {gu(θ) = θ1−N

2
βu(x/θβ)} ⊂ Gu. (4.1)

Notice that all the paths of this family have as associated function Θ(θ) =
θ2.

Moreover, fixed u 6= 0, we define the following real valued function which
is crucial for our purpose:

hgu(θ) := J(gu(θ))−Θgu(θ)J(u) , θ ≥ 0. (4.2)

Definition 4.2. Let u 6= 0 be fixed and gu ∈ Gu. We say that the scaling
path gu is admissible for the functional J if hgu is a differentiable function.

In our application the function hgu will be obviously differentiable; this
is due to the special form of the scaling path we choose; indeed we will
work with the subfamily Gβ

u .
Our main abstract theorem is now the following.
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Theorem 4.1 (Avoiding Dichotomy). Assume that for every ρ > 0, all the
minimizing sequences {un} for Jρ2 have a weak limit, up to translations,
different from zero. Assume that T satisfies assumptions (3.2), (3.3), (3.4)
and (3.5) of Lemma 3.1.

Assume finally (2.2) and the following conditions
−∞ < Js2 < 0 for all s > 0, (4.3)
s 7→ Js2 is continuous , (4.4)

lim
s→0

Js2

s2
= 0. (4.5)

Then for every ρ > 0 the set

M(ρ) =
⋃

µ∈(0,ρ]

{u ∈ Bµ : J(u) = Jµ2}

is non empty.
If in addition

∀u ∈M(ρ) ∃ gu ∈ Gu admissible, such that
d

dθ
hgu(θ)|θ=1

6= 0, (4.6)

then (MD) holds. Moreover, if {un} is a minimizing sequence weakly
convergent to a certain ū (necessarily 6= 0) then ‖un − ū‖H1 → 0 and
J(ū) = Jρ2.

Remark 4.1. We have seen in the previous section that (4.3) ensures that
the weak limit of the minimizing sequences is not zero (this is independent
of the range in which p varies). Notice that to recover (4.3), it is sufficient
the weak subadditivity condition (2.2) in [0,+∞) and the fact that Js2 < 0
only for s in a certain interval (0, ρ̄]. Indeed, let ρ ∈ (ρ̄,

√
2ρ̄]: then for every

s ∈ (ρ̄, ρ] we get
Js2 ≤ Jρ̄2 + Js2−ρ̄2 < 0

since s2− ρ̄2 < ρ̄2. This shows that Js2 < 0 for s in the larger interval (0, ρ].
Iterating this procedure it follows that Js2 < 0 for every s > 0.

Before to prove this theorem, we think it is interesting to address the
dichotomy case, i.e. when the minimizing sequences for Iρ2 weakly converge
to a non zero function ū which is not on the right constraint but satisfies
‖ū‖2 = µ0 < ρ. The result is not surprising in view of the Lions’ principle.

Proposition 4.1 (Dichotomy). Let T ∈ C1(H1(RN ),R) satisfying (3.2)
and (3.3). Let ρ > 0 and {un} ⊂ Bρ be a minimizing sequence for Jρ2 such
that un ⇀ ū 6= 0 and assume that µ0 = ‖ū‖2 ∈ (0, ρ). Assume also that
(2.2) holds. Then

Jρ2 = Jµ2
0
+ Jρ2−µ2

0
(4.7)
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and J(ū) = Jµ2
0
.

This proposition shows that in the dichotomy case, in (2.2) the equality
holds and the weak limit ū is a minimizer on the manifold given by the
constraint ‖u‖2 = µ0. Although Bµ0 is not the original constraint, we can
take advantage of the fact that ū is a minimizer on ‖u‖2 = µ0.

Proof of Proposition 4.1. Since un − ū ⇀ 0, we get

‖un − ū‖2
2 + ‖ū‖2

2 = ‖un‖2
2 + o(1)

therefore

αn =
ρ2 − µ2

0

‖un − ū‖2
→ 1. (4.8)

On the other hand, {un} is a minimizing sequence for Iρ2 , so

1
2
‖un‖2

D1,2 + T (un) = Iρ2 + o(1)

and by (3.2), we deduce also
1
2
‖un − ū‖2

D1,2 +
1
2
‖ū‖2

D1,2 + T (un − ū) + T (ū) = Jρ2 + o(1).

Hence using (4.8) and (3.3) we infer
1
2
‖αn(un − ū)‖2

D1,2 +
1
2
‖ū‖2

D1,2 + T (αn(un − ū)) + T (ū) = Jρ2 + o(1)

that is,
J(αn(un − ū)) + J(ū) = Jρ2 + o(1). (4.9)

Then, since ‖αn(un − ū)‖2 = ρ2 − µ2
0 and (2.2) we get

Jρ2−µ2
0
+ J(ū) ≤ J(αn(un − ū)) + J(ū) = Jρ2 + o(1) ≤ Jρ2−µ2

0
+ Jµ2

0
+ o(1)

which implies J(ū) = Jµ2
0

and consequently (4.7). �

A crucial remark now for our purpose is in order. The strong subaddi-
tivity inequality (2.3) holds if the following condition is satisfied

(I) the function s 7→ Js2

s2 in the interval [0, ρ] achieves its unique mini-
mum in s = ρ.

Indeed for µ ∈ (0, ρ) we get µ2

ρ2 Jρ2 < Jµ2 and ρ2−µ2

ρ2 Jρ2 < Jρ2−µ2 . Therefore

Jρ2 =
µ2

ρ2
Jρ2 +

ρ2 − µ2

ρ2
Jρ2 < Jµ2 + Jρ2−µ2 ∀µ ∈ (0, ρ).
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We now show a lemma that asserts that the behavior of the function s 7→
Js2 near zero is sufficient to deduce “almost” (2.3), the strong subadditivity
inequality. Moreover this Lemma will be useful also to show Theorem 4.1.

Lemma 4.1. Let us assume that condition (4.3) is satisfied in a certain
interval [0, ρ] and that (4.4) and (4.5) hold. Then for every ρ > 0 there
exists ρ0 ∈ (0, ρ] such that for every µ ∈ (0, ρ0)

Jρ2
0
< Jµ2 + Jρ2

0−µ2 .

Proof. Let us fix ρ > 0 and define

ρ0 := min
{
s ∈ [0, ρ] s.t

Js2

s2
=
Iρ2

ρ2

}
which is strictly positive in virtue of (4.4) and (4.5).

We claim that the function s 7→ Js2

s2 in the interval [0, ρ0] achieves the
minimum only in s = ρ0. By the claim follows, as noticed before, that
Jρ2

0
< Jµ2 + Jρ2

0−µ2 for every µ ∈ (0, ρ0). In order to prove the claim we

notice that if there exists ρ∗ < ρ0 such that
J

ρ2∗
ρ2
∗
<

J
ρ2
0

ρ2
0

it will exists by

continuity a ρ̄ < ρ0 such that
Jρ̄2

ρ̄2 =
J

ρ2
0

ρ2
0

which contradicts the definition of
ρ0. �

With this result in hands we can give now the

Proof of Theorem 4.1. To prove that M(ρ) 6= ∅ let us fix ρ > 0. By Lemma
4.1 there exists ρ0 ∈ (0, ρ] such that for every µ ∈ (0, ρ0)

Jρ2
0
< Jρ2

0−µ2
0
+ Jµ2

0
.

Then by Lemma 3.1 we get {u ∈ Bµ0 : J(u) = Jµ2
0
} 6= ∅.

To get (MD) it is sufficient to prove condition (I) on every interval [0, ρ].
So let us fix ρ > 0 and call α := min[0,ρ]

Is2

s2 < 0, by (4.3). Let

ρ0 := min
{
s ∈ [0, ρ] s.t

Js2

s2
= α

}
.

We have to prove that ρ0 = ρ.

Thanks to (4.4) and (4.5), ρ0 > 0 and

∀ s ∈ [0, ρ0) :
Jρ2

0

ρ2
0

<
Js2

s2
(4.10)
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namely, the function [0, ρ0] 3 s 7→
Js2

s2 ∈ R− achieves the minimum only in
s = ρ0, by definition of ρ0. Since condition (I) is satisfied in [0, ρ0] we have
the strong subadditivity inequality

Jρ2
0
< Jµ2 + Jρ2

0−µ2 ∀µ ∈ (0, ρ0).

Therefore we can apply Lemma 3.1 to the minimization problem
Jρ2

0
= inf

Bρ0

J(u)

and we deduce the existence of ū ∈ Bρ0 such that J(ū) = Jρ2
0
. In particular

ū ∈ M(ρ). Now we argue by contradiction by assuming that ρ0 < ρ. Then
fixed gū ∈ Gū with its associated Θ, by (4.10) and the definition of ρ0:

Jρ2
0

ρ2
0

≤
JΘ(θ)ρ2

0

Θ(θ)ρ2
0

for all θ ∈ (1− ε, 1 + ε).

Therefore we have
J(gū(θ))
Θ(θ)ρ2

0

≥
JΘ(θ)ρ2

0

Θ(θ)ρ2
0

≥
Jρ2

0

ρ2
0

=
J(ū)
ρ2
0

for every θ ∈ (1− ε, 1 + ε).

This means that the map hgū(θ) = J(gū(θ))−Θ(θ)J(ū), defined in a neigh-
borhood of θ = 1, is non negative and has a global minimum in θ = 1 with
hgū(1) = 0. Then we get

h′gū
(1) = 0.

Since gū is arbitrary this relation has to be true for every map gū, so we
have found a ū ∈ M(ρ) such that for every gū ∈ Gū it results h′gū

(1) = 0;
this clearly contradicts (4.6) and so ρ0 = ρ. This implies condition (I) on
every interval of type [0, ρ] and so (MD), that is, s 7→ Js2/s2 is monotone
decreasing in [0,+∞).

To prove the final part, let {un} be a minimizing sequence for Jρ2 weakly
convergent to a certain ū. We already know that ū 6= 0. Since we have just
shown that in (0, ρ) the strong subadditivity condition is satisfied we can
apply Lemma 3.1 and conclude the proof. �

To prove Theorem 1.3 we show that all the hypothesis of Theorem 4.1
are satisfied.

As before, for simplicity we define

A(u) :=
∫

R3

|∇u|2dx, B(u) :=
∫

R3

φu|u|2dx, C(u) := −
∫

R3

|u|pdx.

so that
I(u) =

1
2
A(u) +

1
4
B(u) +

1
p
C(u).

São Paulo J.Math.Sci. 5, 2 (2011), 149–173



Minimization for the NSP Equation 165

We divide the proof in various steps.

Step 1 Condition (2.2) holds and the functional T = 1
4B + 1

pC satisfies
(3.2), (3.3), (3.4) and (3.5).

These facts are proved in [19] (Proposition 2.3) and Section 3 (see Remark
3.1) respectively.

Step 2 If 2 < p < 3, then condition (4.3) is satisfied.

We already know that Is2 > −∞ for all s > 0 so we just have to prove that
Is2 < 0 for every s > 0. Let u ∈ H1(R3) and choose the family of scaling
paths given in (4.1)

gu(θ) = θ1− 3
2
βu(x/θβ)

such that Θ(θ) = θ2 and ‖gu(θ)‖2 = θ. We easily find the following scaling
laws:

A(gu(θ)) = θ2−2βA(u),

B(gu(θ)) = θ4−βB(u),

C(gu(θ)) = θ(1− 3
2
β)p+3βC(u).

For β = −2 we get

I(gu(θ)) =
θ6

2
A(u) +

θ6

4
B(u) +

θ4p−6

p
C(u) → 0− for θ → 0,

since 4p − 6 < 6 and C(u) < 0. This proves that there exists a small θ0
such that

Is2 < 0 ∀ s ∈ (0, θ0].
Then by Step 1 and Remark 4.1 we conclude that Is2 < 0 for every s > 0.

Step 3 For every ρ > 0, all the minimizing sequences {vn} for Iρ2 have a
weak limit, up to translations, different from zero. Furthermore the
weak limit is in M(ρ).

The proof of this step is the same as in the case 3 < p < 10/3 but we give it
for completeness. Let {vn} be a minimizing sequence in Bρ for Iρ2 . For any
sequence {yn} ⊂ R3 we have that vn(.+ yn) is still a minimizing sequence
for Iρ2 . Again we will show that there exist a sequence {yn} ⊂ R3 such
that the weak limit of vn(.+ yn) is different from zero.

By the well-known Lions’ lemma it follows that if

lim
n→∞

(
sup
y∈R3

∫
B(y,1)

|vn|2dx

)
= 0,
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then vn → 0 in Lq(R3) for any q ∈ (2, 2∗) and so C(vn) → 0. On the other
hand, by Step 2, Iρ2 < 0 so we have necessarily that

sup
y∈R3

∫
B(y,1)

|vn|2dx ≥ δ > 0.

In this case we can choose {yn} ⊂ R3 such that∫
B(0,1)

|vn(.+ yn)|2dx ≥ δ > 0

and hence, due to the compact embedding H1(B(0, 1)) ↪→ L2(B(0, 1)), we
deduce that the sequence vn(.+ yn) weakly converges to a nonzero v.

From the previous step it follows that v ∈ M(ρ) 6= ∅: if ‖v‖2 = ρ it is
obvious, otherwise use Proposition 4.1.

Before going to Step 4, we prove a lemma about the behavior of the
levels of minima of the functional associated to the nonlinear Schrödinger
equation without the nonlocal term. Let us define

G(u) =
1
2
‖∇u‖2

2 −
1
p

∫
R3

|u|pdx,

where 2 < p < 10/3 and let

Gρ2 = inf
Bρ

G(u). (4.11)

It is known that, for every ρ > 0

∃uρ ∈ Bρ such that Gρ2 = G(uρ) < 0

(see [2]); moreover by (4.9)

∀u ∈ Bρ : G(u) ≥ 1
2
‖∇u‖2

2 − bpρ
6−p
2 ‖∇u‖

3(p−2)
2

2 .

As a consequence we get

0 > G(uρ) ≥ (
1
2
− bpρ

6−p
p ‖∇uρ‖

3p−10
2

2 )‖∇uρ‖2
2 (4.12)

which implies, since p < 10/3, that

{‖∇uρ‖2}ρ>0 is bounded for ρ→ 0. (4.13)

Lemma 4.2. We have limρ→0
Gρ2

ρ2 = 0.
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Proof. Since the minimizer uρ for Gρ2 satisfies

−∆uρ − |uρ|p−2uρ = ωρuρ, (4.14)

we get, taking into account (4.12),

ωρ

2
=
‖∇uρ‖2

2 −
∫

R3 |uρ|pdx
2
∫

R3 |uρ|2dx
≤

1
2‖∇uρ‖2

2 − 1
p

∫
R3 |uρ|pdx∫

R3 |uρ|2dx
=
G(uρ)
ρ2

< 0

(4.15)
where ωρ is the Lagrange multiplier associated to the minimizer. Actually
we prove that limρ→0 ωρ = 0, so by comparison in (4.15) we get the Lemma.

To show that limρ→0 ωρ = 0 we argue by contradiction by assuming that
there exists a sequence ρn → 0 such that ωρn < −c for some c ∈ (0, 1).
Since the minimizers un := uρn satisfy the equation (4.14), we get

c‖un‖2
H1 ≤

∫
R3

|∇un|2dx+ c

∫
R3

|un|2dx

≤
∫

R3

|∇un|2dx− ωρn

∫
R3

|un|2dx =
∫

R3

|un|pdx ≤ c‖un‖p
H1 ,

which implies that there exists c′ > 0 such that ‖∇un‖2 > c′ > 0. But
then, by using (4.12) and (4.13)

0 ≥ G(un) ≥ 1
2
c′ − o(1)

with o(1) → 0 for n → ∞ and this yields to a contradiction, finishing the
proof. �

Now we can proceed.

Step 4 The function s 7→ Is2 satisfies (4.4) and (4.5).

We first prove that if ρn → ρ then limn→∞ Iρ2
n

= Iρ2 . For every n ∈ N,
let wn ∈ Bρn such that I(wn) < Iρ2

n
+ 1

n < 1
n . Therefore, by using the

interpolation and the Sobolev inequality, we get

1
2
‖∇wn‖2

2 − Cρ
6−p
2

n ‖∇wn‖
3(p−2)

2
2 ≤ 1

2
‖∇wn‖2

2 −
1
p
‖wn‖p

p ≤ I(wn) <
1
n
.

Since 3(p−2)
2 < 2 and {ρn} is bounded, we deduce that

{wn} is bounded in H1(R3).
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In particular {A(wn)} and {C(wn)} are bounded sequences, and also
{B(wn)} since in general,

∀u ∈ H1(R3) : B(u) =
∫

R3

φu|u|2dx ≤ c‖u‖4
H1(R3),

see e.g. [16]. So we easily find

Iρ2 ≤ I(
ρ

ρn
wn) =

1
2

(
ρ

ρn

)2

A(wn) +
1
4

(
ρ

ρn

)4

B(wn) +
1
p

(
ρ

ρn

)p

C(wn)

= I(wn) + o(1) < Iρ2
n

+ o(1).

On the other hand, given a minimizing sequence {vn} ⊂ Bρ for Iρ2 , we have

Iρ2
n
≤ I(

ρn

ρ
vn) = I(vn) + o(1) = Iρ2 + o(1)

which, joint to the previous computation, gives limn→∞ Iρ2
n

= Iρ2 .

In order to show that limρ→0
Iρ2

ρ2 = 0, we notice that (see (4.11))

Gρ2

ρ2
≤
Iρ2

ρ2
< 0.

Since Gρ2/ρ2 → 0 (see Lemma 4.2) we easily conclude the proof of (4.5).

Step 5 For small ρ the functional I satisfies (4.6)

First recall by Step 3 thatM(ρ) 6= ∅; moreover since 0 /∈M(ρ), A(u), B(u)
and C(u) are all different from zero whenever u ∈M(ρ).

We claim now that

∀u ∈M(ρ) : −A(u)− 1
4
B(u) +

6− 3p
2p

C(u) = 0 (4.16)

Indeed, for u ∈ M(ρ) (i.e ‖u‖2 = µ ∈ (0, ρ] and I(u) = Iµ2) we define
v(θ, u) = θ−

3
2u(x

θ ) so that ‖v(θ, u)‖2 = ‖u‖2. It follows that

A(v(θ, u)) = θ−2A(u), B(v(θ, u)) = θ−1B(u), C(v(θ, u)) = θ3− 3
2
pC(u).

Since the map θ 7→ I(v(θ, u)) is differentiable and u achieves the mini-
mum on Bµ, we get

d

dθ
I(v(θ, u))|θ=1 = 0

which is exactly our claim (4.16).
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Now, for u 6= 0 we compute explicitly hgu(θ) by choosing the family of
scaling paths of u parametrized with β ∈ R given by

Gβ
u = {gu(θ) = θ1− 3

2
βu(x/θβ)} ⊂ Gu.

All the paths of this family have as associated function Θ(θ) = θ2. We get
(see (4.2))

hgu(θ) =
1
2
(θ2−2β−θ2)A(u)+

1
4
(θ4−β−θ2)B(u)+

1
p
(θ(1− 3

2
β)p+3β−θ2)C(u),

which shows that the paths in Gβ
u are admissible, i.e. hgu is differentiable

for every gu ∈ Gβ
u . We have also, for gu ∈ Gβ

u :

h′gu
(1) = −βA(u) +

2− β

4
B(u) +

(1− 3
2β)p+ 3β − 2

p
C(u).

We will show that the admissible scaling path satisfying d
dθhgu(θ))|θ=1 6= 0

can be chosen in Gβ
u .

For future reference we compute

I(gu(θ))
θ2‖u‖2

2

=
hgu(θ)
θ2‖u‖2

2

+
I(u)
‖u‖2

2

(4.17)

=
1

‖u‖2
2

(
1
2
θ−2βA(u) +

1
4
θ2−βB(u) +

1
p
θ(1− 3

2
β)p+3β−2C(u)

)
.

To prove (4.6) we argue now by contradiction. Assume that there exists a
sequence {un} ⊂ M(ρ) with ρ ≥ ‖un‖2 = ρn → 0 such that for all β ∈ R
(that is: for all gun ∈ G

β
un)

h′gun
(1) = −βA(un) +

2− β

4
B(un) +

(1− 3
2β)p+ 3β − 2

p
C(un) = 0

then, by using (4.16) we get

1
2
B(un) +

p− 2
p

C(un) = 0

and hence (again by (4.16))

B(un) = 2A(un) , C(un) =
p

2− p
A(un),

I(un) =
A(un)

2
+
B(un)

4
+
C(un)
p

=
3− p

2− p
A(un).

(4.18)
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The contradiction is achieved by showing that relations (4.18) are impos-
sible for p ∈ (2, 3) for small ρ. We know that{

I(un) = Iρ2
n
→ 0 (by continuity)

A(un), B(un), C(un) → 0 (by (4.18)) (4.19)

Because of the following Hardy-Littlewood-Sobolev inequality

B(un) =
∫

R3

|un(x)|2|un(y)|2

|x− y|
dxdy ≤ c‖un‖4

12/5

(that we will frequently use), it is convenient to consider some cases.

• Case a) 2 < p < 12/5.

Then

B(un) ≤ c‖un‖4
12/5 ≤ c‖un‖4α

p ‖un‖4(1−α)
6 , α =

3p
2(6− p)

.

We get, thanks to (4.18) and the Sobolev inequality ‖un‖2
6 ≤ SA(un) (here

S is the best Sobolev constant),

B(un) ≤ cB(un)
4α
p B(un)

4(1−α)
2 .

This is in contradiction with (4.19) since 4α
p + 4(1−α)

2 > 1, being p < 3.

• Case b) p = 12/5.

This case is simpler: thanks to (4.18) we get

‖un‖12/5
12/5 = cB(un) ≤ c‖un‖4

12/5

which contradicts (4.19).

• Case c) 12/5 < p < 8/3.

Interpolating L12/5 between L2 and Lp we get

‖un‖p
p = cB(un) ≤ c‖un‖4

12/5 ≤ c‖un‖4α
2 ‖un‖4(1−α)

p , α =
5p− 12
6(p− 2)

i.e. ‖un‖p
p ≤ ρ4α

n ‖un‖4(1−α)
p . Since p < 4(1 − α), i.e. p < 8/3, we get a

contradiction with (4.19).

• Case d) p = 8/3

Again by interpolation we get

B(un) ≤ c‖un‖4
12/5 ≤ cρ4/3

n ‖un‖8/3
8/3,

and again, using that B(un) = ‖un‖8/3
8/3 we get a contradiction.
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• Case e) 8/3 < p < 3.

In this case for u0 satisfying (4.18), with ‖u0‖2 = ρ0 we get (see (4.17))

Iθ2ρ2
0

θ2ρ2
0

≤ I(gu0(θ))
θ2ρ2

0

=
1
ρ2
0

(
1
2
θ−2βA(u0) +

1
2
θ2−βA(u0) +

A(u0)
2− p

θ(1− 3
2
β)p+3β−2

)
.

Now let us choose β = 2(2−p)
10−3p so that

0 < −2β = (1− 3
2
β)p+ 3β − 2 < 2− β.

Hence we obtain
Iθ2ρ2

0

θ2ρ2
0

≤ I(gu0(θ))
θ2ρ2

0

=
A(u0)
ρ2
0

[
4− p

2(2− p)
θ

4(p−2)
10−3p +

1
2
θ

4(4−p)
10−3p

]
=

2− p

3− p

I(u0)
ρ2
0

[
4− p

2(2− p)
θ

4(p−2)
10−3p +

1
2
θ

4(4−p)
10−3p

]
and so renaming θ2ρ2

0 = s2 we get

Is2

s2
≤ −cs

4(p−2)
10−3p + o(s

4(p−2)
10−3p ) (4.20)

for sufficiently small s.
On the other hand for un satisfying (4.18) we have

‖un‖p
p = cB(un) ≤ c‖un‖4

12/5 ≤ c‖un‖4α
2 ‖un‖4(1−α)

p α =
5p− 12
6(p− 2)

,

that is
‖un‖p

p ≤ cρ4α
n ‖un‖4(1−α)

p . (4.21)

Since now 8/3 < p (that is 4(1− α) < p) we cannot argue as in Case c) to

get the contradiction. But we deduce from (4.21) that ‖un‖p
p ≤ cρ

2(5p−12)
3p−8

n ,
and hence using (4.18),

Iρ2
n

ρ2
n

≥ −cρ
4(p−2)
3p−8

n . (4.22)

Combining (4.22) with (4.20) we find

−cρ
4(p−2)
3p−8

n ≤
Iρ2

n

ρ2
n

≤ −cρ
4(p−2)
10−3p
n + o(ρ

4(p−2)
10−3p
n )
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This drives to a contradiction for ρn → 0 since

4(p− 2)
3p− 8

>
4(p− 2)
10− 3p

.

Summing up, we have verified all the hypothesis of Theorem 4.1 so the
minimizing sequence {un} is strongly convergent in H1(R3). Moreover the
minimizer is real-valued and this finishes the proof of Theorem 1.3.

4.1. The orbital stability. The proof of the orbital stability is exactly
as in the case 3 < p < 10/3, since we have never used this restriction. The
unique fact used in the proof of the orbital stability is just the convergence
of every minimizing sequence and the conservation of energy and charge.
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