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Abstract. In this work we briefly describe the theory of (first-order)
structured deformations of continua as well as the variational problems
arising from this theory.

1. Introduction

The theory of (first-order) structured deformations introduced by Del
Piero & Owen [16] sets a basis to address a large variety of problems in con-
tinuum mechanics where geometrical changes can be associated to smooth-
classical deformations, piecewise deformations and more complex deforma-
tions for which an analysis at macroscopic and microscopic level is required.
For instance, in a solid with a crystalline defective structure, separation of
cracks at the macroscopic level may compete with slips and lattice distor-
tions at the microscopic level preventing the use of classical theories where
deformations are assumed to be smooth. The objective of the theory of
structured deformations is to generalize the theoretical apparatus of contin-
uum mechanics as a starting point for a unified description of bodies with
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microstructure. It also turns out to be relevant to describe phenomena as
plasticity, damage, creation of voids, mixing, and fracture in terms of the
underlying microstructure.

From a variational point of view, the problem of assigning a free energy to
a body that undergoes a structured deformation was first studied by Choksi
& Fonseca [12] in the context of functions of special bounded variation,
shortly denoted by SBV (we refer to Section 3 for the main notations and
concepts used throughout this work). This energy was defined as the more
effective way to build up the deformation using sequences of approximating
simple deformations in SBV. The results obtained in [12] show that the bulk
density of the free energy of a structured deformation can be influenced by
the bulk and interfacial density of the free energy of these approximating
sequences providing precise relations among them.

The overall plan of this work in the ensuing sections will be as follows: in
Section 2 we briefly describe the theory of structured deformations according
to [16]. In addition we present some examples and a generalization to
second order structured deformations derived by Owen & Paroni [25]. The
purpose of Section 3 is to fix some notation and to give a brief overview
of the concepts and main results that are used in Section 4. In this last
section we discuss the notion of structured deformations in the context of
SBV functions as defined in [12]. In addition we present the main result in
[12] and a further generalization of this result to the BV-setting that was
derived by Baía, Matias & Santos[10].

2. Structured deformations

The main objective of the theory of structured deformations introduced
in [16] (see also Del Piero & Owen [17] and Owen [24]) is to describe how a
continuous body with microstructure will deform under prescribed applied
forces. An essential initial step towards this objective is that of defining this
class of deformations. To this purpose, we start by introducing the classes
of regions that bodies can occupy in the Euclidean space, identified in the
sequel by R

N :

- An open and bounded set A ⊂ R
N is said to be a fit region if it is

of finite perimeter and its boundary has zero volume.
- A piecewise fit region is a finite union of fit regions.

The notion of structured deformation relies on the concepts of classical
deformation and simple deformation:

- A classical deformation from a fit region A is an orientation preserv-
ing mapping u : A → R

N that extends to all of R
N as a C1-function

and that, in addition, is invertible with inverse of class C1.
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- A simple deformation from a piecewise fit region A is a pair (K, u),
where K ⊂ A has zero volume and u : A\K → R

N is injective and
piecewise classical. The mapping u and the set K, where jump dis-
continuities are allowed, are called, respectively, the transplacement
and the disarrangement site for the simple deformation (K, u).

In general, a simple deformation can separate a body, partially or entirely,
into pieces and can deform each piece separately. These pieces can come in
contact after deformation, but, because u is injective, cannot interpenetrate.
Each simple deformation is intended to describe macroscopic, geometrical
changes in a body that arise when all or a portion of the body is disconnected
through slip or separation. We remark that the set K was initially called
in [16] the crack site in line with the interpretation of discontinuities in the
continuum body as fractures. In this context, K can be seen basically as the
collection of all points of the body at which a new crack is created and u
specifies the position occupied by the remaining points of the body after the
deformation. We also observe that fit regions are not adequate to describe
the concept of simple deformations since, for instance, still with reference
to fractures, they exclude the existence of unopened cracks.

Structured deformations are a proper subset of a class of limits of se-
quences of simple deformations suitable to describe phenomena where dis-
continuities are allowed to diffuse through the body giving rise to the oc-
currence of structural changes at microscopic level. More precisely, a (first-
order) structured deformation (K, g,G) from a a piecewise fit region A con-
sists of a simple deformation (K, g) from A and a continuous vector field
G : A\K → R

N×N such that:

- G is piecewise continuous in the closure of A,
- there exists a positive number m for which

m ≤ det G(x) ≤ det ∇g(x), ∀x ∈ A\K.

As proved in [16, Theorem 5.8] given a structured deformation from A,
(K, g,G), there exists a sequence of simple deformations from A, {(Kn, un)},
such that

un
L∞

−→ g, ∇un
L∞

−→G,

and

K =

∞
⋃

p=1

∞
⋂

n=p

Kn.

The site of all disarrangements (both macroscopic and microscopic) of a
structured deformation from A, (K, g,G) is called its zone of disarrange-
ments or fractured zone. It is given by the intersection over all sequences
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that determine (K, g,G) of all sets

∞
⋂

p=1

clo

[

∞
⋃

n=p

Kn

]

,

where the closure is taken relative to A, and contains the set K. We ob-
serve that the gradient ∇un of each transplacement of an approximating
sequence {(Kn, un)} can be regarded as a local measure of deformation at
those points of A at which no disarrangement or fracture occurs. Thus G
can be considered as a local measure of deformation without disarrange-
ments or fracture, in the sense that G is not affected by the presence of
disarrangements or fractures at either the macroscopic and microscopic lev-
els. It is also natural to consider ∇g as a local measure of the macroscopic
deformation determined by the macroscopically observed transplacement g.
For these reasons, ∇g and G are called, respectively, the macroscopic de-
formation tensor and the tensor of deformation without disarrangements or
fracture.

To illustrate these notions above, we present here two simple examples
of structured deformations that can be found in [16].

7\4

1\4

1\4

1\2

f_4

1

Figure 1. The broken ramp function un for n = 4

Example 2.1. (The broken ramp functions and its limit) Let N = 1 and
A = (0, 1). For each n ∈ N let (Kn, un) be the simple deformation from A
given by

Kn =

{

1

n
, ...,

n − 1

n

}

,
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un(x) := x +
k

n
,

k

n
≤ x <

k + 1

n
, k = 0, . . . , n − 1

(see Figure 1). It easily follows that

un
L∞(0,1)
−→
n→∞

g, ∇un
L∞(0,1)
−→
n→∞

G

where g(x) = 2x and G(x) = 1 and, in addition,
∞
⋃

p=1

∞
⋂

n=p

Kn = ∅.

That is, {(Kn, un)} converges (in the sense above) to the structured defor-
mation (K, g,G) where K = ∅. In terms of the total distributional derivative
we have that

Dun = 1 +

n−1
∑

k=1

1

n
δ k

n
,

where δa stands for the Dirac mass at x = a, and Dun ⇀Dg (in the sense

of distributions). Thus, the part of Dun corresponding to jumps converges
(in the sense of distributions) to G−∇g, which in this case, is the constant
function 1. In other words, this example illustrate a typical situation in
which each individual term of the determining sequence involves microfrac-
tures which, for n large enough, spread all over the body with decreasing
amplitudes of the associated jumps. In the limit the jumps disappear and K
turns out to be the empty set (no macrofracture is present).

Example 2.2. (The deck of cards functions and its limit) Let N = 2 and
A = (0, 1)2. For each n ∈ N let (Kn, un) be the simple deformation from A
given by

Kn = (0, 1) ×

{

k

n
, k = 1, 2, ..., n − 1

}

,

un(x, y) :=

(

x + d
k

n
, y

)

,
k − 1

n
≤ y <

k

n
, k = 1, . . . , n, d > 0,

(see Figure 2). In this case

un
L∞(0,1)
−→
n→∞

g, ∇un
L∞(0,1)
−→
n→∞

G

where g(x, y) = (x + d y, y) and G(x, y) = I and, in addition,
∞
⋃

p=1

∞
⋂

n=p

Kn = ∅.
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d
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Figure 2. The deck of cards function un for n = 8

Figure 3. Convergence

That is, {(Kn, un)} converges to the structured deformation (∅, g,G) (see
Figure 3). Thus, the macroscopic deformation is a simple shear, but the
equality G = I means that there is no deformation without disarrangements.
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In the context of of defective crystals the structured deformation (K, g,G)
may therefore describe slips across the crystallographic planes, occurring at
the microscopic level without deforming the lattice.

We finish this section by remarking that the principal concepts and results
associated to first-order structured deformations were extended in Owen &
Paroni [25] through the notion of second-order structured deformation. This
generalization allows for refinements of kinematical quantities such as accel-
eration and stretching which are not available through first-order structured
deformations. Roughly speaking the original triple (K, g,G) is extended to
a quadruple (K, g,G,H) where H ∈ R

N×N is a piecewise continuous, second
order symmetric tensor field. The principal result in [25] is an approxima-
tion theorem for second-order structured deformations that generalizes the
corresponding result for first-order structured deformations and includes
the effects of limits of second gradients and jumps in the first gradients of
approximating deformations. A typical example of second-order structured
deformation is the bending of a deck of cards (roughly speaking Figure 2 but
bent). In this example, the corresponding second order structured deforma-
tion (∅, g,G,H) is such that ∇G 6= ∇2g 6= H and represents a macroscopic
bending of a two-dimensional region with accompanying disarrangements
due to jumps in both the approximating sequence un and its gradient ∇un.

3. Preliminaries on BV functions

In this section we briefly summarize some facts on functions of bounded
variation which will be the natural framework for a mathematical theory
on structured deformations. We refer to Ambrosio, Fusco and Pallara [5],
Evans and Gariepy [18], Federer [19], Giusti [22] and Ziemer [27] for a
detailed description of this subject. We will use throughout the following
notations:

- R
d×N will be identified with the space of real-valued d×N matrices,

N ≥ 1, d ≥ 1,
- R

d×N×N is the set of real tensors of order d × N × N,
- Ω ⊂ R

N , will denote an open bounded set,
- A(Ω) is the family of all open subsets of Ω,
- M(Ω) is the set of finite Radon measures on Ω,

- M(Ω; Rd) is the space of finite R
d-valued Radon measures on Ω,

- ||µ|| stands for the total variation of a measure µ ∈ M(Ω),
- SN−1 stands for the unit sphere in R

N ,
- LN denotes the Lebesgue measure in R

N ,
- HN−1 denotes the N − 1 dimensional Hausdorff measure in RN ,
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- µ⌊A denotes the restriction of the measure µ to the µ-measurable
set A, i.e. is the measure defined by µ⌊A(E) = µ(A ∩ E),

- ei denotes the ith element of the canonical basis of R
N for i =

1, . . . N,
- Q denotes the unit cube centered at the origin with one side orthog-

onal to eN ,
- Q(x, δ) denotes a cube centered at x ∈ Ω with side length δ and

with one side orthogonal to eN ,
- Qν(x, δ) is the cube centered at x ∈ Ω with side length δ and with

one side orthogonal to ν ∈ SN−1,
- Qν := Qν(0, 1),
- a ⊗ b denotes the tensorial product of vectors a and b.

A function u ∈ L1(Ω; Rd) is said to be of bounded variation, and we
write u ∈ BV (Ω; Rd), if all its first distributional derivatives Djui ∈ M(Ω)
for i = 1, ..., d and j = 1, ..., N. The matrix-valued measure whose entries
are Djui is denoted by Du. The space BV (Ω; Rd) is a Banach space when
endowed with the norm

‖u‖BV = ‖u‖L1 + ||Du||(Ω).

By the Lebesgue Decomposition Theorem Du can be split into the sum
of two mutually singular measures Dau and Dsu (the absolutely continuous
part and singular part, respectively, of Du with respect to LN ). By ∇u we
denote the Radon-Nikodým derivative of Dau with respect to LN , so that
we can write

Du = ∇uLN⌊Ω + Dsu.

Let Ωu be the set of points where the approximate limit of u exists, i.e.,
x ∈ Ω such that there exist z ∈ R

N with

lim
ε→0

−

∫

Q(x,ε)
|u(y) − z| dy = 0.

If x ∈ Ωu and z = u(x) we say that u is approximately continuous at x (or
that x is a Lebesgue point of u). The function u is approximately continuous
LN -a.e. x ∈ Ωu and

LN (Ω \ Ωu) = 0. (3.1)

Let Su be the jump set of this function, i.e., the set of points x ∈ Ω \ Ωu

for which there exists a, b ∈ RN and a unit vector ν ∈ SN−1, normal to Su
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at x, such that a 6= b and

lim
ε→0+

1

εN

∫

{y∈Qν(x,ε) : (y−x)·ν>0}
|u(y) − a| dy = 0 (3.2)

and

lim
ε→0+

1

εN

∫

{y∈Qν(x,ε) : (y−x)·ν<0}
|u(y) − b| dy = 0. (3.3)

The triple (a, b, ν) uniquely determined by (3.2) and (3.3) up to permutation
of (a, b), and a change of sign of ν and is denoted by (u+(x), u−(x), νu(x)).

If u ∈ BV (Ω) it is well known that Su is countably N − 1 rectifiable, i.e.

Su =
∞
⋃

n=1

Kn ∪ E,

where HN−1(E) = 0 and Kn are compact subsets of C1-hypersurfaces.
Furthermore, HN−1((Ω \ Ωu) \ Su) = 0 and the following decomposition
holds

Du = ∇uLN⌊Ω + [u] ⊗ νuH
N−1⌊Su + Dcu,

where [u] := u+ − u− and Dcu is the Cantor part of the measure Du, i.e.,
Dcu = Dsu⌊(Ωu).

If Ω is an open and bounded set with Lipschitz boundary then the outer
unit normal to ∂Ω (denoted by ν) exists HN−1 a.e. and the trace for func-
tions in BV (Ω; Rd) is defined.

The following results on BV functions will be used in the sequel.

Lemma 3.1. Let u ∈ BV (Ω; Rd). There exist piecewise constant functions
un such that un → u in L1(Ω; Rd) and

||Du||(Ω) = lim
n→∞

||Dun||(Ω) = lim
n→∞

∫

Sun

|[un](x)| dHN−1(x).

The space of special functions of bounded variation introduced by De
Giorgi and Ambrosio [15] in problems arising from pattern recognition and
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the mathematical theory of liquid crystals, SBV (Ω; Rd), is the space of
functions u ∈ BV (Ω; Rd) such that Dcu = 0, i.e. for which

Du = ∇uLN + [u] ⊗ νuH
N−1⌊Su.

The next result is a Lusin type theorem for gradients due to Alberti [2]
and it is essential for the proofs of the results presented on this survey.

Theorem 3.2. Given f ∈ L1(Ω; Rd×N ) there exists u ∈ SBV (Ω; Rd) and
a Borel function g : Ω → R

d×N such that

Du = fLN + gHN−1⌊Su,

∫

Su

|g| dHN−1 ≤ C||f ||L1(Ω;Rd×N ).

Remark 3.3. From the proof of Theorem 3.2 it follows also that

||u||L1(Ω) ≤ C||f ||L1(Ω;Rd×N ).

Following Carriero, Leaci and Tomarelli (see [13] and [14]) we define,

SBV 2(Ω; Rd) =
{

v ∈ SBV (Ω; Rd), ∇v ∈ SBV (Ω; Rd×N )
}

.

If u ∈ SBV 2(Ω; Rd) we use the notation ∇2u = ∇(∇u), that is, ∇2u is the
absolutely continuous part of D(∇u) with respect to Lebesgue measure. We
will also denote by

BV 2(Ω; Rd) =
{

v ∈ BV (Ω; Rd), ∇v ∈ BV (Ω; Rd×N )
}

.

4. Free energies for structured deformations in the context
of SBV functions. Generalization to the BV-setting

The question of assigning a free energy to a body that undergoes a struc-
tured deformation was first studied by Choksi & Fonseca [12] within a
broader notion of structured deformation based on SBV functions. Our
objective in this section is to present the work in [12] (see Subsection 4.1)
as well as a further generalization to the BV-setting derived in Baía, Matias
& Santos [10] (see Subsection 4.2).
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4.1. SBV-setting. According to [12] a structured deformation in Ω is a
pair (g,G) where the macroscopic deformation g is an element of
SBV (Ω; Rd) and the part of the deformation without disarrangements G
is an integrable tensor field in Ω (the crack site is naturally identified with
the jump set of g). The authors define the energy assigned to a structured
deformation (g,G) as the more effective way to build up the deformation
using sequences of approximating simple deformations in SBV. We describe
this process in two steps:

Step 1. It was first proved in [12] that given such a pair (g,G) there exist
deformations un ∈ SBV (Ω; Rd) with

un
L1

−→ g and ∇un
M(Ω;Rd×N )

⇀ G (4.1)

(which provides the counterpart to the SBV -setting of the Approximation
Theorem in [16] with respect to a weaker convergence). Indeed, given un

L1

−→ g by Theorem 3.2 there exist hn ∈ SBV (Ω; Rd) such that

∇hn = G − ∇un. On the other hand, using Lemma 3.1 it is possible
to find for fixed n a sequence hn,m of piecewise constant functions such that

hn,m
L1

−→
m→∞

hn. Setting

vn,m := un + hn − hn,m

the conclusion now follows by a standard diagonalization argument.

Step 2. As a result of Step 1, the energy associated to (g,G), I(g,G),
was defined as the relaxation with respect to the topology given in (4.1) of
the functional

E(u) =

∫

Ω
W(∇u) dx +

∫

Su

Ψ([u], νu) dHN−1, u ∈ SBV (Ω; Rd),

for appropriate bulk and interfacial densities W and Ψ, that is

I(g,G) := inf
{un}⊂SBV (Ω;Rd)

{

lim inf
n→∞

E(un), un
L1

−→ g, ∇un
M(Ω;Rd×N )

⇀ G

}

.

(4.2)

The main objective in [12] was to characterize I(g,G) through an integral
representation formula. More precisely, the authors characterized different
versions of I according with the convergence arising from the hypotheses
on the energy densities W and Ψ that are of order technical and include
coercivity and homogeneity of Ψ. As explained in [12] these hypotheses
are not acceptable from the physical point of view and can be relaxed. We
summarize the main results in [12] as follows.
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Case p = 1. Let

I0(g,G) :=

inf
{un}⊂SBV (Ω;Rd)

{

lim inf
n→∞

E(un), un
L1

−→ g, ∇un
M(Ω;Rd×N )

⇀ m,
dm

dLN
= G

}

,

I1(g,G) :=

inf
{un}⊂SBV (Ω;Rd)

{

lim inf
n→∞

E(un), un
L1

−→ g, ∇un
M(Ω;Rd×N )

⇀ G

}

.

Under appropriate hypotheses it is proven that

I0(g,G) =

∫

Ω
H1 (∇g(x), G(x)) dx + µs(Ω)

for some Radon measure µs, absolutely continuous with respect to HN−1⌊Sg,

and where for A,B ∈ R
d×N we have that

H1(A,B) :=

inf
u ∈ SBV (Q; R

d),

|∇u| ∈ L1(Q)

{
∫

Q

W(∇u) dx +

∫

Su∩Q

Ψ([u], ν) dHN−1,

u⌊∂Q= Ax,

∫

Q

∇u dx = B

}

.

In addition

I1(g,G) =

∫

Ω
H1 (∇g(x), G(x)) dx +

∫

Sg∩Ω
h1 ([g], νg) dHN−1

where for λ ∈ R
d and ν ∈ SN−1

h1(λ, ν) := inf
u∈SBV (Q;Rd)

{
∫

Qν

W∞(∇u) dx +

∫

Su∩Q

Ψ([u], νu) dHN−1,

u⌊∂Qν
= uλ,ν ,

∫

Qν

∇u dx = 0

}

being, as usual, the recession function of W defined by

W∞(A) := lim sup
t→∞

W (tA)

t
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and

uλ,ν(x) :=







0 if x ∈ Qν and − 1
2 ≤ x.ν < 0,

λ if x ∈ Qν and 0 ≤ x.ν < 1
2 .

Case p > 1. Let

Ip(g,G) := inf
{un}⊂SBV (Ω;Rd)

{

lim inf
n→∞

E(un), un
L1

−→ g, ∇un
M(Ω;Rd×N )

⇀ G,

sup
n

|∇un|Lp(Ω;Rd) < ∞

}

.

Then, under some additional hypotheses

Ip(g,G) =

∫

Ω
Hp (∇g(x), G(x)) dx +

∫

Sg∩Ω
hp ([g]) dHN−1

where, for A,B ∈ R
d×N and λ ∈ R

d

Hp(A,B) :=

inf
u ∈ SBV (Q; R

d),

|∇u| ∈ L1(Q)

{
∫

Q

W(∇u) dx +

∫

Su∩Q

Ψ([u], ν) dHN−1,

u⌊∂Q= Ax,

∫

Q

∇u dx = B

}

and

hp(λ) :=

inf
u∈SBV (Q;Rd)

{
∫

Su∩Q

Ψ([u], ν) dHN−1, u⌊∂Q= uλ,eN
, ∇u = 0 LN − a.e.

}

.

As noticed in [12] the new bulk density Hp is essentially the same for all
p ≥ 1 and it exhibits the interaction between the initial bulk and interfacial
energies W and Ψ. In the case p > 1, as admissible sequences are taken
so that {|∇un|} is bounded in Lp, then the new interfacial energy is inde-
pendent from W. Roughly speaking this means that, in these cases, it is
cheaper to approximate jumps with jumps rather than with sharp gradients,
and it is a contrast with the case p = 1 where there is a contribution of W,
through its recession function, in h1.
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We finish this part by remarking that the principal difference of the char-
acterizations derived in [12] with respect to previous integral representation
results for similar relaxed energies, where relaxation is taken with respect
to the L1 (BV weak) topology (cf. Ambrosio & Dal Maso [4], Barroso, Bou-
chitté, Buttazo & Fonseca [6], Braides & Coscia [7], Bouchitté, Fonseca &
Mascarenhas [8], Bouchitté, Fonseca, Leoni & Mascarenhas [9], Fonseca &
Müller [20, 21]), is the fact that gradients of approximating sequences {un}
in (4.1) are constrained to converge to the given function G (not necessarily
∇g). In this case, if ∇un → G in L1, the difference G − Dg is achieved by
the limit of singular measures since Dun → Dg in the sense of distributions.
Moreover, the Hausdorff measure of the jump set of un tends necessarily to
infinity, otherwise Theorem 2.1 in Ambrosio [1] asserts that G = ∇g almost
everywhere.

In the context of defective crystals, as already mentioned in [12], (4.2) can
be interpreted as a way to realize the deformed crystal by piecing together
elastic crystals at a finer and finer scale. We refer to Choksi, Del Piero,
Fonseca & Owen [11] where the framework introduced in [12] has been
used to predict in simple models the origins and main characteristics of
phenomena as fracture, yielding and histerisis, with applications to single
defective crystals (see Section 4.3 in [11]).

4.2. BV-setting. The notions and results derived in [12] have been gener-
alized to the full BV-setting for a class of second order energies suitable to
the study of equilibrium configurations of thin defective crystalline struc-
tures in [10]. As pointed out in Matias & Santos[23] the energy considered
in [12] is not appropriate to this study since some control in the second or-
der derivatives of the deformation is needed to avoid geometrical obstacles
in the thin film limit.

To present the main result in [10] we start by introducing the space of
generalized structured deformations

GSD(Ω; Rd) := BV 2(Ω; Rd) × BV (Ω; Rd×N ).

For any (g,G) ∈ GSD(Ω; Rd) we consider the relaxed energy

I(g,G) = inf
{un}⊂SBV 2(Ω;Rd)

{

lim inf
n→∞

E(un), un
L1

−→ g, ∇un
L1

−→G

}

(4.3)
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where

E(u) =

∫

Ω
W (∇u,∇2u) dx +

∫

Su

Ψ1([u], νu) dHN−1

+

∫

S∇u

Ψ2([∇u], ν∇u) dHN−1

for u ∈ SBV 2(Ω; Rd), and the functions W,Ψ1,Ψ2 satisfy hypotheses sim-
ilar to the ones considered in [12]. The main result in this work asserts
that there exist bulk and interfacial densities W1,W2, γ1, γ2 such that for
all (g,G) ∈ GSD(Ω; Rd)

I(g,G) =

∫

Ω

(

W1(G −∇g) + W2(G,∇G)
)

dx +

∫

Sg

γ1([g], νg)dH
N−1

+

∫

SG

γ2(G
+, G−, νG) dHN−1 +

∫

Ω
W1

(

−
dDcg

d|Dcg|

)

d|Dcg|

+

∫

Ω
W∞

2

(

G,
dDcG

d|DcG|

)

d|DcG| (4.4)

where W∞
2 , as usual, denotes the recession function of W2 in the second

variable, that is,

W∞
2 (A,B) = lim sup

t→∞

W (A, tB)

t
, A ∈ R

d×N , B ∈ R
d×N×N .

To show (4.4) a similar relaxation result in the SBV -setting is first derived.
Althought this characterization could have been derived directly for the
whole energy I(g,G) using localization and blow up methods, Alberti’s
theorem (Theorem 3.2 above) allows the authors to divide this energy into
two first order relaxed energies I1(g,G) and I2(G), rendering the arguments
more concise. More precisely it was first proved that

I(g,G) = I1(g,G) + I2(G)

where

I1(g,G) = inf
{un}⊂SBV 2(Ω;Rd)

{

lim inf
n→∞

∫

Sun

Ψ1([un], ν(un)) dHN−1,

un
L1

−→ g, ∇un
L1

−→G

}
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and

I2(G) = inf
{vn}⊂SBV (Ω;Rd×N )

{

lim inf
n→∞

∫

Ω
W (vn,∇vn) dx

+

∫

Svn

Ψ2([vn], ν(vn)) dHN−1, vn
L1

−→G

}

.

Using a relaxation result in Bouchitté, Fonseca & Mascarenhas [8] for the
energy I2(g,G) , and a sequential characterization of the energy I1(g,G)
together with Reshetnyak’s Theorem (cf. Reshetnyak [26] ) and Alberti’s
Rank One Theorem (cf. Alberti [3]) it was then deduced that

I1(g,G) =

∫

Ω
W1(G −∇g) dx +

∫

Sg

γ1([g], νg)dH
N−1

+

∫

Ω
W1

(

−
dDcg

d|Dcg|

)

d|Dcg|

and

I2(G) =

∫

Ω
W2(G,∇G) dx +

∫

SG

γ2(G
+, G−, νG) dHN−1

+

∫

Ω
W∞

2

(

G,
dDcG

d|DcG|

)

d|DcG|.

We note here that the effect of the structured deformation is in this case
captured in the first energy I1(g,G) through the limit energy density W1
that depends on G −∇g.

Finally we remark that both integral representation results presented in
this section refer to first-order structured deformations. A natural general-
ization, which will be the scope of a forthcoming work, will be to consider
the same kind of integral representation problems in the context of second-
order structured deformations.
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