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Abstract. We will discuss the so-called mixed endpoint conditions
for variational problems with non-holonomic constraints given by form
actions of order greater than one. We will present some results and
discuss the inverse problem of Calculus of Variations.

1. Introduction

In the present text we describe new results for the the inverse problem
of Variational Calculus for multiple integrals in the context of exterior dif-
ferential systems. We deal with non-holonomic constraints in the setting
of the mixed endpoint conditions defined by P. A. Griffiths ([16]). This
work is a follow up of ([29]). In section I and II we present a short review
of the latter work. In section III we discuss the inverse problem of Varia-
tional Calculus, and conclude in section IV with a study of the Generalized
Lagrange Problem with non-holonomic constraints.

Caratheodory [1929], Weil-De Donder [1936] and Lepage [1936-1942]
were the first to study Variational Calculus for multiple integrals. Later
Dedecker [1953-1977], Liesen [1967], R. Hermann [1966], H. Goldschmidt
and S. Sternberg [1973], Ouzilou [1972], D. Krupka [1970-1975], I. M. An-
derson [1980], P. L. Garcia and A. Pérez-Rendón [1969-1978], C. Günther
[1987], Edelen [1961] and Rund [1966], gave their contributions to this field.

In 1983 Griffiths (see [16]) presented a new approach to variational prob-
lems in the context of exterior differential systems. His work in the set
of one-dimensional integral manifolds of a differential system (I∗, L∗) ad-
dressed the problem of finding extrema for the functional φ using intrinsic
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234 Pedro Gonçalves Henriques

entities. He established the mixed endpoint conditions for problems with
non-holonomic constraints.

The Inverse Problem of Variational Calculus was presented in 1887 by
Helmholtz in the following way: given Pi = Pi(x, uj , uj

x, u
j
xx) is there a

Lagrangian L(x, uj , uj
x) such that Ei(L) = ∂L/∂ui−Dx∂L/∂u

i
x = Pi where

Dx = ∂/∂x + ui
x∂/∂u

i + ui
xx∂/∂u

i
x? He found necessary conditions for Pi

to be a Euler-Lagrange system (see (3.1) (3.2) and (3.3)). Years later these
equations where proved to be locally sufficient conditions.

I. M. Anderson [1992], [1980], P. J. Olver [1986], F. Takens [1979], W.
M. Tulczyjew [1980] and A. M. Vinagradov [1964] generalized Helmholtz’s
conditions both to higher order systems of partial differential equations and
to multiple integrals.

1.1. Integral manifolds and valued differential systems. Let X be
a manifold and assume that a Pfaffian differential system (I∗, L∗) is given
by:

i) a subbundle I∗ ⊂ T ∗X,
ii) another subbundle L∗ ⊂ T ∗X with I∗ ⊂ L∗ ⊂ T ∗X,

such that the rank (L∗/I∗) = n (with n being a natural number).
An integral manifold of (I∗, L∗) is given by an oriented connected com-

pact n-dimensional smooth manifold N (possibly with a piecewise smooth
boundary N) together with a smooth mapping

f : N → X

satisfying:

I∗f(x)
⊥ = L∗f(x)

⊥ + f∗(TN), (1.1)

for all x ∈ N .
V (I∗, L∗) is the collection of integral manifolds f of (I∗, L∗).
A valued differential system is a triple (I∗, L∗, ϕ), where (I∗, L∗) is a

Pfaffian differential system and ϕ is an n-form on X.
We define the functional φ associated with (I∗, L∗, ϕ) in V (I∗, L∗) by:

φ : V (I∗, L∗) → R,

f → φ[f ] =
∫
f∗ϕ. (1.2)
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Inverse Problem of Variational Calculus 235

1.2. Local embeddability. Let us assume that

d(C∞(X,L∗)) ⊂ C∞(X,L∗ ∧ T ∗X)

and let d′ = dimX, s = rankI∗, (d(C∞(X,L∗)) is the set of images by the
exterior derivative of C∞(X,L∗)). Using the Frobenius theorem, we can
set for every p ∈ X a chart coordinate system {u1, ..., us+n, v1, ..., vd′−s−n}
so that:

i)
L∗ = span{duα|1 ≤ α ≤ s+ n}) (1.3)

ii)

L∗⊥ = span{ ∂

∂vi
|1 ≤ i ≤ d′ − s− n} (1.4)

for an open subset U of X with p ∈ U.

Definition 1.1. Let (I∗, L∗) be a Pfaffian differential system with

d(C∞(X,L)) ⊂ C∞(X,L∗ ∧ T ∗X) .

(I∗, L∗) is locally embeddable if for every p ∈ X there exists an open neigh-
borhood U of p and local coframes CF = {θ1, ..., θs} for I∗ and CF ′ =
{θ1, ..., θs, du”s+1, du”s+n} for L∗U satisfying the following conditions:

(i) δ(I∗U ∧ Ω) ⊂ T ∗U ∧ ∧n(L∗U )/T ∗U ∧ I∗U ∧ ∧n−1(L∗))
(ii) Ker δ is a constant rank subbundle of I∗ ∧ Ω,

where Ω = span{du”s+1 ∧ ... ∧ d̂u”s+β ∧ ... ∧ du”s+n}, d̂u”s+β - means
deletion of s+ b factor (for n = 1, d̂u”s+1 = 1).

The map δ : I∗ ∧ Ω → ∧n+1(T ∗U)/I∗u ∧ (∧n(T ∗U)) is induced by:

d : C∞(U, I∗ ∧ Ω) → C∞(U,∧n+1(T ∗U))

in I∗ ∧ Ω, i.e, if I∗ has no Cauchy characteristics, the structure equations
are locally:

dθi ≡ πi
j ∧ du”s+j +Aij′

i′απ
i′
j′ ∧ θα +Bi

αβθ
α ∧ du”s+βmodI ∧ I (1.5)

1 ≤ i, i′, α ≤ s, 1 ≤ j, j′, β ≤ n, I = C∞(X, I∗).
In ([26]) we showed that if (I∗, L∗) is locally embeddable, there exist

locally defined mappings that induce (I∗, L∗) from the canonical system in
J1(Rn, Rs) with possible constraints, giving a local correspondence between
these two differential systems. These sets of systems form a general class
that can be described locally by the canonical system of J1(Rn, Rs).
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1.3. The Cartan system. Let (I∗, L∗, ϕ) be a valued differential system
on X, and W be the total space of I∗. Let χ be the canonical form on T ∗X,
and i the inclusion map W i

↪→T
∗X.

Let us assume that there exists a local n-form ω inducing a nonzero
section of ∧n(L∗/I∗) with the following form:

ω = ω1 ∧ ... ∧ ωn (1.6)

ωi = (−1)i−1ω1 ∧ ... ∧ ω̂i... ∧ ωn (1.7)

Let Wn be the n-Cartesian power of W, and Z be a subset of Wn defined
by Z = {z ∈ Wn : π′(z) ∈ ∆Xn}, where π′ is the natural projection
π′(z) : Wn → X, and ∆Xn is the diagonal submanifold of Xn.

The subset Z is a vector subbundle over X and dimZ = d + sn with
d ≤ d′. We define

Ψ = dψ (1.8)

where ψ is given by

ψ = π∗ϕ+ (πjoi′)∗[i∗(χ)] ∧ π∗ωj . (1.9)

πj is the natural projection into the jth component πj : Wn → W , i’ is
the inclusion map Z → Wn and π is the natural projection π : Z → X.
Locally (πjoi′)∗[i∗(χ)] ∧ π∗ωj = λi

jθi
j with θi

j = θj ∧ ωj .

Definition 1.2. Given the n + 1-form Ψ, the Cartan system C(Ψ) is the
ideal generated by the set of n-forms {vyΨ where v ∈ C∞(Z, TZ)}. An
integral manifold of (C(Ψ), ω) is given by an oriented connected compact n-
dimensional smooth manifold N (possibly with a piecewise smooth boundary
∂N) together with a smooth mapping f : N → X satisfying:

f∗θ = 0 for every θ ∈ C(Ψ) (1.10)

and

f∗(ω) 6= 0. (1.11)

Solutions of (C(Ψ), ω) projected in X will give a candidate for extremum
of φ with suitable boundary conditions.

δφ =
∫

f(N)
vydψ + d(vyψ) (1.12)
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1.4. The momentum space. Suppose we are given on Z:

(i) a closed (n+ 1)-form Ψ with the associated Cartan system C(Ψ),
(ii) π′∗ω: the pull back to Z of ω, the n-form which induces a nonzero

section on ∧n(L∗/I∗).

Definition 1.3. Let (C(Ψ), π′∗ω)n be the ideal generated by (C(Ψ), π′∗ω)
in C∞(Z,∧nT ∗Z), z0 ∈ Z and Ep

0 a p-dimensional subspace of the tan-
gent space Tz0. We say that [z0, E

p
0 ] is a p-dimensional integral element of

(C(Ψ), π′∗ω)n if

(i) < Ep
0 , α >= 0 for all (C(Ψ), π′∗ω)n

(ii) < Ep
0yω >6= 0

The set of integral elements [z0, En
0 ] gives a subset

Vn(C(Ψ), π∗ω)) ⊂ Gn(Z).

Denoting by π” the projection Gn(Z) → Z and assuming regularity at each
step, one inductively defines:

Z1 = π”(Vn(C(Ψ), π∗ω)), V ′n(C(Ψ), π∗ω))) =

{E ∈ Vn(C(Ψ), π∗ω) : E tangent to Z1} (1.13)

Z2 = π”(V ′n(C(Ψ), π∗ω)), V ”n(C(Ψ), π∗ω))) =

{E ∈ V ′n(C(Ψ, π∗ω) : E tangent to Z2}... (1.14)

Definition 1.4. (I∗, L∗, ϕ) is a locally embeddable valued differential sys-
tem, and ω = ω1 ∧ ... ∧ ωn. If there exists a k0 ∈ N , such that Zk0 =
Zk0+1 = ... = Zk0+n′(n′ ∈ N) in the above construction, with:

(i) Zk0 being a manifold of dimension (n+ 1)m+ n for m ∈ N , and
(ii) (C(Ψ), π∗ω)Zk0

being a differential system in Zk0 with rn = 0 (Car-
tan number in Cartan-Kähler Theorem) for all Vn−1(C(Ψ), π∗ω)) .

Then (I∗, L∗, ϕ) is a non-degenerate valued differential system, and Z = Y
is called the momentum space.

For n = 1 we follow [16] and replace condition (ii) by ψ ∧ Ψn 6= 0
on Zk0 .

We call (C(Ψ), π∗ω)Y the prolongation of (C(Ψ), π∗ω) in the momentum
space. By construction, the differential system (C(Ψ), π∗ω)Y satisfies:

(i) the projection (C(Ψ), π∗ω) → Y is surjective,
(ii) the integral manifolds of (C(Ψ), π′∗ω) on Z coincide with those of

(C(Ψ), π∗ω) on Y .
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1.5. Well-posed valued differential systems. Suppose we have the fol-
lowing subbundles of T ∗X such that:

(a)
I∗ ⊂ L∗ ⊂ T ∗X
∪ ∪
P ∗ ⊂ M∗

(1.15)

(b) the locally given n-form ω also induces a nonzero section on
∧n(M∗/P ∗),

(c) Y ⊂ (P ∗)n|∆Xn , with Y a subbundle of (P ∗)n|∆Xn .

Definition 1.5. (I∗, L∗, ϕ, P ∗,M∗) is a well-posed valued differential sys-
tem if the following conditions are satisfied:

(i) (I∗, L∗, ϕ) is a non-degenerate valued differential system (with
dimY = (n + 1)m + n) and ϕ = Lω for a smooth function L on
X;

(ii) there exists a subbundle P ∗ of I∗ of rank m and a subbundle M∗ of
L∗ of rank m+ n as in (1.15);

(iii) π”∗M∗ =span{π∗θ|θ ∈ C∞(X,M∗)} is completely integrable on Y ,
where π” = π ◦ i, and i once more denotes the inclusion mapping
Y → Z and π the projection Z → X.

CF = {θα, dus+j , πi′
j′ , πi”

j |1 ≤ α ≤ s, 1 ≤ i′ ≤ sl, j
′ ∈ Li′ , sl+1 ≤ i” ≤

s, 1 ≤ j ≤ n} for T ∗X with Li′ ⊂ {k ∈ N, 1 ≤ k ≤ n} :

(i)
I∗ = span{θα|1 ≤ α ≤ s}; (1.16)

(ii)
L∗ = span{θα, dus+j |1 ≤ α ≤ s, 1 ≤ j ≤ n}; (1.17)

(iii) T ∗X = L∗⊕R∗ (⊕ denotes a direct sum) withR∗ = span{πi′
j′ , πi”

j |1 ≤
i′ ≤ sl, j

′ ∈ Li′ , sl+1 ≤ i” ≤ s, 1 ≤ j ≤ n};
(iv)

dθi′
j” ≡ 0 mod I, for j” /∈ Li′{θi′

j” = θi′ ∧ ωj”}; (1.18)

(v)

dθi′
j′ ≡ πi′

j′ ∧ ω mod I, for j′ ∈ Li′ ; (1.19)

(vi)
dθi”

j ≡ πi”
j ∧ ω mod I, when 1 ≤ j ≤ n; (1.20)

(vii) πi′
j′ , πi”

j are linearly independent mod L.
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In [29] we presented a set of boundary conditions for different types of
Well-posed valued differential systems. Solutions of the Cartan system with
these boundary conditions have null first variations i.e. they are soutions
of the Euler-Lagrange system.

2. Generalized Lagrange Problem.

Let X = J1(Rn, Rm) (the 1 jet manifold), with the canonical system
I∗ defined on X (i.e. I∗ = span{θα = dyα − yα

xidx
i}). Let ϕ = Lω with

ω = dx1 ∧ ... ∧ dxn. We choose x1, ..., xn to be coordinates for Rn, and
y1, ..., ym coordinates for Rm.

Definition 2.1. Let f be a solution to the canonical differential system
I∗, with the independence condition given by L∗ = span{I∗, dx1, ..., dxn}
and k ∈ N . The family F (x, t1, ..., tk) of integral manifolds of (I∗, L∗) is a
k-parameter variation of f if:

(i) F (x, t1, ..., tk) is smooth with (t1, ..., tk) ∈ [0, ε1] × ... × [0, εk], for
εi > 0, 1 ≤ i ≤ k,

(ii) F(t1,...,tk)
.= F (x, t1, ..., tk) ∈ V (I∗, L∗) for all (t1, ..., tk) ∈ [0, ε1] ×

...× [0, εk],
(iii) F (x, 0) = f(x) for all x ∈ N,N ⊂ R.

F∗( ∂
∂ti

) is an infinitesimal variation of F .

We will consider variations satisfying the condition π”(F (x, t)) = π”(f(x))
for all x ∈ ∂N and t ∈ [0, ε] (π” is the projection J1(Rn, Rm) → Rn).

Without loss of generality we can choose v so that vydxi = 0, thus
replacing a one parameter variation of f by another that has the same first
and second variation while satisfying:

π”(F (x, t))N = idN (2.1)
for all t ∈ [0, ε]).

The framework of this Lagrange problem subjected to constrains repre-
sents a very important set of problems for the study of Calculus of Varia-
tions.

3. Inverse problem for calculus of variations.

3.1. Two Examples. In 1887, Helmholtz solved the following problem:

Example 1. Given Pi = Pi(x, uj , uj
x, u

j
xx). Is there a Lagrangian

L(x, uj , uj
x) such that Ei(L) = ∂L/∂ui − Dx∂L/∂u

i
x = Pi where Dx =

∂/∂x+ ui
x∂/∂u

i + ui
xx∂/∂u

i
x? He found the necessary conditions for Pi :
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(i)
∂Pi/∂u

j
xx = ∂Pj/∂u

i
xx, (3.1)

(ii)
∂Pi/∂u

j
x = ∂Pj/∂u

i
x + 2Dx∂Pj/∂u

i
xx, (3.2)

(iii)
∂Pi/∂u

j = ∂Pj/∂u
i −Dx∂Pj/∂u

i
x +Dxx∂Pj/∂u

i
xx. (3.3)

This problem led to the following studies [4].

(i) - the derivation and analysis of Helmholtz conditions as necessary
and (locally) sufficient conditions for a differential operator to coin-
cide with the Euler-Lagrange operator for some Lagrangian;

ii) - the characterization of the obstructions to the existence of global
variational principles for different operators defined on manifolds;

iii) - the invariant inverse problem for different operators with symmetry;
and

(iv) - the variational multiplier problem wherein variational principles
are found, not for a given differential operator, but rather for the
differential equations determined by that operator.

That is: find a matrix B = [Bj
i ] such that Bj

iPj = Ei(L) for some L,
with B being non-singular.

Let E →M be a fibered manifold. J∞(E) is the infinite jet of E.
Let

θi = dui − ui
xdx (3.4)

θi
x = dui

x − ui
xxdx (3.5)

and
ΩP = Piθ

i ∧ dx+ 1/2[∂Pi/∂u
i
x −Dx∂Pi/∂u

i
xx]θi ∧ θj

+1/2[∂Pi/∂u
i
xx + ∂Pj/∂u

i
xx]θi ∧ θj

x. (3.6)

If P satisfies the Helmholtz conditions, then dΩP = 0. If ΩP is exact
(equivalently if Hn+1(E) n+1 de Rham cohomology group of E is trivial),
then Pi is globally variational.

If θL = Ldx+ ∂L/∂ui
xθ

i, then dθL = ΩP .

In 1913, Volterra [50] showed that if L =
∫
N uiPi(x, tuj , tuj

x, tu
j
xx)dt

where N = [0, 1], then:
Ei(L) = Pi. (3.7)

We have a global solution to the inverse problem in the case of one
independent variable and to equations Pi = 0 of second order.

Vaingberg 1964 [49] generalized this result, however this Lagrangian is
usually of much higher order than necessary.
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From [5] one can derive the following theorem:

Theorem 3.1. Let ∆ be a differential operator of order 2k

∆ = Pβ(xi, uj , uj
1, ..., u

j
2k)θ

β ∧ ω. (3.8)
Then ∆ is the Euler-Lagrange operator of a k − th order Lagrangian L =
L(xi, uj , uj

1, ..., u
j
k), if and only if ∆ satifies the higher order Helmholtz con-

ditions, and the functions

pβ(t) = Pβ(xi, uj , uj
1, ..., u

j
k, tu

j
k+1..., t

kuj
2k) (3.9)

are polynomials in t of degree less or equal to k.

The functions uj
k denote all possible kth-order derivatives of uj , 1 ≤

β, j ≤ m and 1 ≤ i ≤ n, θβ = dyβ − yβ
xidx

i and ω = dx1 ∧ ... ∧ dxn.

Example 2. Let T = T (x, y, z, u, ux, uy, uz, uxx, uxy, , ..., uzz) be a second
order operator. We assume that T is a smooth function.
Let L = L(x, y, z, u, ux, uy, uz) be a first-order operator with L being a
smooth function.

E[L] = ∂L/∂u−Dx∂L/∂ux −Dy∂L/∂uy −Dz∂L/∂uz

where
Dx = ∂/∂x+ ux∂/∂u+ uxx∂/∂ux + uxy∂/∂uy + ...

Let v be a lift to the momentum space of an infinitesimal variation
F∗(∂/∂t) of f = πog, where g is a solution of (C(Ψ), π∗ω). The Lie-
derivative of ψ = π∗ϕ+ (πjoi′)∗[i∗(χ)] ∧ π∗ωj along v is:

vydψ + d(vyψ) = E[L](u)v1π∗(dx ∧ dy ∧ dz)
+d(∂L/∂uxv

1π∗(dy ∧ dz)− ∂L/∂uyv
1π∗(dx ∧ dz)

+∂L/∂uzv
1π∗(dx ∧ dy)) (3.10)

Suppose that for every vector v with π∗v ∈ TfV (I∗, L∗, ϕ, [h]) we have a
vector w with π∗w ∈ TfV (I∗, L∗, ϕ, [h]) such that

vydψ + d(vyψ) = T [u]v1π∗(dx ∧ dy ∧ dz)
+d(∂L/∂uxw

1π∗(dy ∧ dz)− ∂L/∂uyw
1π∗(dx ∧ dz)

+∂L/∂uzw
1π∗(dx ∧ dy)). (3.11)

Then we have T [u] = E[L](u).
If we identify e1 with π∗(dy ∧ dz), e2 with π∗(dz ∧ dy) and e3 with

π∗(dx ∧ dy) at each point of the integral manifold of (C(Ψ), π∗ω), we can
write:
d(∂L/∂uxv

1π∗(dy ∧ dz)− ∂L/∂uyv
1π∗(dx ∧ dz) + ∂L/∂uzv

1π∗(dx ∧ dy))
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= DivV [u]π∗(dx ∧ dy ∧ dz),
where

V [u] = ∂L/∂uxv
1e1 + ∂L/∂uyv

1e2 + ∂L/∂uzv
1e3. (3.12)

We can conclude that
vydψ + d(vyψ) = (E[L](u)v +DivV [u])π∗(dx ∧ dy ∧ dz).

We have
E[L](u) = 0 if L[u] = DivW [u]. (3.13)

Suppose T [u] = E[L](u). Then

E(E[L](u)v +DivV [u]) = E[T (u)v].

Let
ψ′ = π∗Tω + (πjoi′)∗[i ∗ (χ)]π∗ωj (3.14)

If we define
H(T )[v]π∗(dx ∧ dy ∧ dz) = vydψ′ + d(vyψ′)− E[T (u)v]π∗(dx ∧ dy ∧ dz),

then H(T ) = 0 if T [u] is Euler-Lagrange. Helmholtz equations are:

(i) ∂T/∂ux = Dx∂T/∂uxx + 1/2Dy∂T/∂uxy + 1/2Dz∂T/∂uxz,
(ii) ∂T/∂uy = Dy∂T/∂uxx + 1/2Dx∂T/∂uyx + 1/2Dz∂T/∂uyz,
(iii) ∂T/∂uz = Dz∂T/∂uxx + 1/2Dx∂T/∂uzx + 1/2Dy∂T/∂uzz.

We have a sequence of spaces
0 → R → F [u]

Grad−−−−→ V (u)
Curl−−−−→ V (u)

Div−−−→ F (u)
E−→ F (u)

H−→ V (u) (3.15)

that is a cochain complex, the Euler-Lagrange complex, where F [u] is
the set of smooth functions F (x, y, z, u, ux, uy, uz, uxx, uxy, , ..., uzz), V [u] is
the set of vector fields defined in Rn with F [u] coeficients. This complex is
exact and thus the inverse problem is solved in this second example.

3.2. Variational Bicomplex. Let us introduce now a very important tool
for a globalization of the inverse problem [40].

Definition 3.1. A p form ω on J∞(E) is said to be of type (r, s), where
r + s = p, if at each point x of J∞(E),

ω(X1, X2, ..., Xp) = 0, (3.16)
whenever either

(i) more than s of the vectors X1, X2, ..., Xp are π∞M vertical, or
(ii) more than r of the vectors X1, X2, ..., Xp annihilate all contact one

forms.
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Note: Ωr,s denotes the space of type (r, s) forms on J∞(E).

(i) π : E →M is a fiber bundle.
(ii) In some cases we can assume that there exists a transformation group

G acting on E.
(iii) There exists a set of differential equations on sections of E.

d = dH + dV

dH : Ωr,s(J∞(E)) → Ωr+1,s(J∞(E)), (3.17)

dV : Ωr,s(J∞(E)) → Ωr,s+1(J∞(E)) (3.18)

d2
H = 0, dHdV = −dV dH , d

2
V = 0 (3.19)

In local coordinates

dHf = [∂f/∂xi + uαi∂f/∂u
α + uα

ij∂f/∂u
α
j + ...]dxi (3.20)

dV f = ∂f/∂uαθα + ∂f/∂uα
i θ

α
i + ... (3.21)

I is locally given by:

I = Ωr,s(J∞(E))) → Ωr,s(J∞(E))), (3.22)

I(ω) =
1
s
θα ∧ [(∂/∂uαyω)−Di((∂/∂uα

i yω) +Dij((∂/∂uα
ijyω)− ...] (3.23)

Definition 3.2. The sequences of spaces

↑ dV ↑ dV ↑ δV

0 → Ω0,3 ... → Ωn,3 I−→ F 3 → 0
↑ dV ↑ dV ↑ dV ... ↑ dV ↑ dV ↑ δV

0 → Ω0,2 dH−−→ Ω1,2 dH−−→ Ω2,2 ...
dH−−→ Ωn−1,2 dH−−→ Ωn,2 I−→ F 2 → 0

↑ dV ↑ dV ↑ dV ... ↑ dV ↑ dV ↑ δV

0 → Ω0,1 dH−−→ Ω1,1 dH−−→ Ω2,1 ...
dH−−→ Ωn−1,1 dH−−→ Ωn,1 I−→ F 1 → 0

↑ dV ↑ dV ↑ dV ... ↑ dV ↑ dV ↑ δV

0 → R → Ω0,0 dH−−→ Ω1,0 dH−−→ Ω2,0 ...
dH−−→ Ωn−1,0 dH−−→ Ωn,0

(3.24)

is the Variational Bicomplex.

Therefore the generalization of (3.15) is:

0 → R → Ω
0,0 dH−−→ Ω

1,0 dH−−→ Ω
2,0

...
dH−−→ Ω

n−1,0 dH−−→ Ω
n,0 E−→ F

1 δH−−→ F
2 δH−−→ F

3
... (3.25)
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4. G.L. Problem with non-holonomic constraints

4.1. G.L. Problem with non-holonomic constraints. Let us recall
from [26] the Generalized Lagrange problem with non-holonomic constraints
for n > 1,m = 1.

Let us assume gρ(xi, u, uxj ) = 0, with rank[∂gρ/∂uxj ] = n − l,
gρ(xi, u, uxj ) smooth functions with 1 ≤ j ≤ n, 1 ≤ ρ ≤ n − l and l ≥ 0
(I∗, L∗, ϕ, I∗, L∗) is a well-posed valued differential system, where: I∗ =
span {θ}, and L∗ = span {θ, dxi|1 ≤ i ≤ n}

θ = {du− uxidxi|1 ≤ i ≤ n}. (4.1)

In this setting we have:

dθµ = −duxµ ∧ ω (4.2)
dθρ = −(Aµ

ρduxµ ∧ ω −Bρθ ∧ ω) (4.3)
Aµ

ρ = −aρ
σg

σ
uxµ (4.4)

Bρ = −aρ
σg

σ
u (4.5)

Lµ = (∂/∂duxµ −Aµ
ρ∂/∂uxρ)L, (4.6)

Lµν = (∂/∂duxµ −Aµ
ρ∂/∂uxρ)Lν , (4.7)

and

[aρ
σ] = [gσ

uρ
]−1 with 1 ≤ ρ, σ,≤ n− l and n− l + 1 ≤ µ, ν ≤ n. (4.8)

Ψ ≡ (Lµ − λµ − λρAµ
ρ)π∗(duxµ ∧ ω) + dλµ ∧ π∗(θµ) + dλρ ∧ π∗(θρ)

+(Lu − λρBρ + LuxρBρ)π∗(θ ∧ ω), (4.9)

The Cartan system is:

π∗θα (1 ≤ α ≤ n) (4.10)

(Lµ − λµ − λρAµ
ρ)π∗ω (n− l + 1 ≤ µ ≤ n) (4.11)

(−dλρ ∧ π∗ωρ − dλµ ∧ π∗ωµ) + (Lu + λρBρ − LuxρBρ) ∧ π∗ω (4.12)

Let us assume gρ/∂uxµ = 0 for all n− l+1 ≤ µ ≤ n and all 1 ≤ ρ ≤ n− l.
Then the Euler-Lagrange equation is:
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E[L] = ∂L/∂u+ ∂L/∂uxσBσ −Dxµ∂L/∂uxµ + λσBσ − λρ
xρ (4.13)

Proposition 4.1. Let (I∗, L∗) be a locally embeddable differential system
defined in X = J1(Rn, R)|gρ(xi,u,u

xj )=0, rank[∂gρ/∂uxj ] = n − l,
gρ(xi, u, uxj ) smooth functions, 1 ≤ i, j ≤ n, 1 ≤ ρ ≤ n − l, l ≥ 0, and
gρ/∂uxµ = 0 for all n − l + 1 ≤ µ ≤ n and all 1 ≤ ρ ≤ n − l, where I∗ =
span {θ},
L∗ = span {θ, dxi|1 ≤ i ≤ n},

θ = du− uxjdxj 1 ≤ j ≤ n. (4.14)

Let Q(xi, u, uxµ , uxµxν , λρ, λρ
xi) with n − l + 1 ≤ µ, ν ≤ n, 1 ≤ σ, ρ ≤ n − l

and 1 ≤ i ≤ n, with Q(xi, u, uxµ , tuxµxν , λρ, λρ
xi) being a polynomial in t of

degree less or equal to 1, and

P = Q+ λρ
xρ − λρBρ. (4.15)

And furthermore, let us assume that P satisfies the Helmholtz conditions
and does not depend on λρ and λρ

xi coordinates, then Q is locally a Euler-
Lagrange operator for a Lagrangian L(xi, u, uxµ).

Proof: In this case the Helmholtz condition is:

∂P/∂uxµ = Dxµ∂P/∂uxµxµ + 1/2Dxν∂P/∂uxµxν , (4.16)

with n− l + 1 ≤ µ, ν ≤ n.

From Theorem 3.1 we know that a function F (xi, u, uxµ) can be found
that does not depend on uν

xx, such that E[F ] = ∂F/∂u−Di
x∂F/∂u

i
x.

In addition, if in the domain of P the sequence of spaces is exact:

Ωn,0 E−→ F 1 H−→ 0 (4.17)

then we have a global solution for the inverse problem.

Example 3. Let X = J1(Rn, R)|gρ(xi,u,u
xj )=0, rank[∂gρ/∂uxj ] = n − l,

gρ(xi, u, uxj ) smooth functions, 1 ≤ i, j ≤ n, 1 ≤ ρ ≤ n − l, l ≥ 0, and
gρ/∂uxµ = 0 for all n − l + 1 ≤ µ ≤ n and all 1 ≤ ρ ≤ n − l, where
I∗ = span {θ}, L∗ = span {θ, dxi|1 ≤ i ≤ n} and Q(xi, u, uxµ , uxµxν ) =
2uxσ(xi, u)Bσ−

∑
µ 2uxµxµ+λσBσ−λρ

xρ. Q satisfies Helmhotz equations and
is globally a Euler-Lagrange operator with L =

∑
µ(uxµ)2+

∑
σ(uxσ(xi, u))2.
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