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Abstract. We consider an incompressible fluid contained in a toroidal
stratum and subject only to Newtonian self-attraction. Under the as-
sumption of infinitesimal thickness of the stratum we show the exis-
tence of stationary motions during which the stratum is approximatly
a round torus (with radii r, R and R >> r) that rotates around its
axis and at the same time rolls on itself. Therefore each particle of the
stratum describes an helix-like trajectory around the circumference of
radius R.

1. Introduction

The problem of the determination of the figures of equilibrium of a self-
gravitating rotating mass has received a lot of attention in the classical lit-
erature beginning with the work of Newton on the oblateness of the earth
[2],[1] and [3]. The method of canals introduced by Newton was exploited by
Maclaurin and Jacobi who discovered several families of ellipsoids of equi-
librium. The search for stationary motions in ellipsoidal regions, including
ellipsoids of equilibrium, of self-gravitating incompressible fluids was com-
pleted by Riemann [4] who developed ideas of Dirichlet [5]. Poincaré [6]
adopted a global point of view and introduced the concept of bifurcation
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Figure 1. The geometry of TR.

in the attempt of describing the whole set of figures of equilibrium of ro-
tating self-gravitating masses. More recently several papers have appeared
approaching this classical problem with variational techniques [8] [9] [10].
The case of a rotating solid torus T was first considered by Poincaré [6], see
also [7], and revisited in [8]. It is natural to expect that the motion studied
in these papers belongs to a family of stationary motions where, beside
rotating around its axis, the torus rolls on itself so that the fluid particles
describe a helix-like path around the circumference C of radius R that con-
nects the centers of the cross sections of the torus. We can also conjecture
that beside this class of stationary motions of solid self-gravitating torii,
there is also the possibilty of similar stationary motions of self-gravitating
toroidal strata. This last class of motions however will not contain as a
special case the case of relative equilibrium since for a toroidal stratum the
pressure cannot compensate the self attraction that tries to collapse the
torus to the circumference C.

In this note we consider the case of an incompressible self-gravitating
toroidal stratum TR of very small (infinitesimal) thickness. We represent
TR in the form,

see Figure 1,


TR = {x ∈ R3 : x = Rε1(φ) + (r(θ) + λ)εr(θ, φ),

(θ, φ) ∈ S1 × S1, λ ∈ [− s(θ)
2 , s(θ)

2 ]}
ε1(φ) = cos φe1 + sinφe2,

εr(θ, φ) = cos θε1(φ) + sin θe3,

(1.1)
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where ej , j = 1, 2, 3 are the vector of the standard basis of R3 , θ → r(θ)
is the polar representation of the cross section of the middle fiber T 0

R =
{x ∈ TR : λ = 0} of TR and s(θ) is the thickness of the stratum. We let
r0 the average of r(θ) and consider the case where ε := r0

R << 1. Under
this assumption we regard the stationary motion of the toroidal stratum as
a perturbation of the limit helicoidal motion of a cylindrical stratum that
we can ideally associate to ε = 0. Since cylinder and torus are different
topological objects, the problem of continuing the motion of the fluid in
the cylindrical stratum into a stationary motion in the toroidal stratum TR

is a singular perturbation problem.
Set

X(θ, φ) = Rε1(φ) + r(θ)εr(θ, φ). (1.2)

Under the standing assumption of infinitesimal thickness the velocity field
v = v(θ, φ, λ) on TR does not depend on λ and can be computed on the
middle fiber T 0

R = {x = X(θ, φ), (θ, φ) ∈ S1 × S1}. Therefore we have
v = Xθθ̇ + Xφφ̇ where subscripts denote partial differentiation and ˙ time
differentiation. Since we look for stationary motions which are invariant
under rotations around the symmetry axis of TR we have{

θ̇ = ω(θ),
φ̇ = Ω(θ),

(1.3)

for some 2π−periodic functions Ω, ω and therefore a routine computation
shows that velocity and acceleration vector fields on T 0

R are given by

v(θ, φ) = ω(r′εr + rεθ) + Ω(R + r cos θ)ε2, (1.4)

and

a(θ, φ) = [(r′′ − r)ω2 + r′ω′ω − (R + r cos θ) cos θΩ2]εr

+ [((R + r cos θ)Ω)′ω + (r cos θ)′ωΩ]ε2
+ [2r′ω2 + rω′ω + (R + r cos θ) sin θΩ2]εθ, (1.5)

where εr is defined in (1.1) and εθ = − sin θε1 + cos θe3, ε2 = − sinφe1 +
cos φe2. Let n = n(θ, φ) = Xφ∧Xθ

|Xφ∧Xθ| the exterior unit normal to T 0
R at X(θ, φ)

and δ = δ(θ) the thickness of the stratum along n that is δ = sn · εr.

The balance between inertial forces and newtonian self-attraction at the
typical point X(φ, θ) of T 0

R reads

a(φ, θ) = Gµ

∫ ∗

S1×S1

X(α, β)−X(θ, φ)
|X(α, β)−X(θ, φ)|3

|Xφ ∧Xθ|(α, β)δ(α)dαdβ,(1.6)

where µ is the constant density of the fluid, G the gravitational constant
and the integral in the r.h.s. is to be intended in the sense of Cauchy

São Paulo J.Math.Sci. 5, 2 (2011), 331–345



334 Giorgio Fusco, Piero Negrini, and Waldyr M. Oliva

principal value. That is∫ ∗

S1×S1

= lim
l→0+

∫
(S1×S1)\Bl

with Bl a ball or radius l centered at X(φ, θ).
Due to the axial symmetry of the motion and of the mass distribution

in TR the component on ε2 of the r.h.s. of (1.6) vanishes and therefore the
equation of motion (1.6) admits the first integral

(R + r cos θ)2Ω = J(R), (1.7)

that expresses the conservation of momentum of momentum with respect
to the symmetry axis of TR. Equation (1.6) must be complemented with
the continuity equation that states the constance of the flux through the
section Sθ of TR obtained by cutting TR normally to T 0

R along the line
θ = const :

|Sθ|v · εt = C(R). (1.8)

where εt = n ∧ ε2 is a unit vector tangent at X(θ, φ) to the line φ = const
on T 0

R . Observing that
εt = (rεr)θ

|(rεr)θ| = r′εr+rεθ√
r′2+r2

,

n = rεr−r′εθ√
r′2+r2

,

δ = sr√
r′2+r2

,

|Sθ| = 2π(R + r cos θ)δ,

(1.9)

where ′ denotes differentiation with respect to θ, we can rewrite (1.8) in
the explicit form

(R + r cos θ)srω = C(R). (1.10)

By means of the first integral (1.7) and the continuity equation (1.10) we
can determine s = s(θ) and Ω = Ω(θ) once r = r(θ) and ω = ω(θ) are
known. This allows for transforming (1.6) and (1.10) into an equivalent
system, see (2.7) below, for the unknowns r = r(θ), ω = ω(θ). We let r0

and ω0 be the averages of r and ω and we represent the unknowns r and ω
in the form

r = r0(1 + ερ), (1.11)
ω = ω0(1 + εw),

where ε := r0
R is regarded as a small parameter and ρ and w are 2π−periodic

functions with zero average. We observe that the representation of TR in
(1.1) is not unique. To make the representation (1.1) of TR unique we
impose on the unknown ρ the conditions
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{ ∫
S1 ρ cos θ = 0.∫
S1 ρ sin θ = 0.

(1.12)

In the following we sketch the proof of the existence, for small ε > 0, of a
solution r, ω, s, Ω of the integral-differential equation (1.6). This is stated
in the following theorem. For a complete detailed proof we refer the reader
to the forthcoming paper [11].

Theorem 1.1. Given r0 > 0 and ω0 > 0, there exists ε0 > 0 such that
for each ε = r0

R < ε0 the system (2.7), has a 2π−periodic solution r =
r0(1 + ερ), ω = ω0(1 + εw) such that:

(i): The maps ρ and w are of class C2,γ and C1,γ respectively for some
γ ∈ (0, 1). Moreover ρ and w have zero average and ρ satisfies
(1.12).

(ii): ρ and w satisfy the estimates
lim

ε→0+
‖ρ‖W 2,2 = 0,

lim
ε→0+

‖w − w̄‖W 1,2 = 0,

where w̄ := −1
4 cos θ.

(iii): The solution is unique in the set of maps that satisfy:
‖ρ‖W 2,2 + ‖w‖W 1,2 ≤ 2 ‖w̄‖W 1,2 .

(iv): The function s is of class C1,γ and the function Ω is of class
C2,γ. Moreover

‖s− s̄‖W 1,2 = o(ε),∥∥Ω− Ω
∥∥

W 2,2 = o(ε),

where s̄ = ω2
0r0

2πµG(1−ε3
4 cos θ) and Ω = ±ω0εν(ε) with ν(ε) such that

c ≤ ν(ε)√
1 + log 1

ε

≤ C,

for some c, C > 0 independent from ε.

From Theorem 1.1 we see that, during the stationary motion of the
stratum, the cross section of the torus remains nearly circular: the error
r0ερ is a o(ε), the angular velocity ω differes from its average by a term
of O(ε) and it is smaller than the average at θ = 0 and larger than ω0

at θ = π. The thickness s of the stratum is smaller at θ = 0 and larger
at θ = π. The angular velocity Ω around the axis of the torus is almost
independent of θ.
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336 Giorgio Fusco, Piero Negrini, and Waldyr M. Oliva

The paper is organized as follows. In sec. 2 we reduce (1.6) to a system, see
(2.7), of two scalar equation for the unknowns r, ω by eliminating s and Ω
via the continuity equation (1.10) and the first integral (1.7). In sec. 3 we
present explicit expressions of the significant part of the newtonian forces
and study their dependence on the parameter ε. Using the analysis in sec.
3 we write, in sec. 4, the system for r, ω as a weak nonlinear equation
which, for ε << 1, can be solved leading to the proof of Theorem 1.1.

We denote by ϕ0, ϕj
n, j = 1, 2, n = 1, · · · the Fourier coefficient of a

2π−periodic integrable function ϕ.

2. The system for r and ω

In the following, if h : R→ R is a 2π-periodic function, we set

〈h〉 =
∫

S1

h(θ)dθ. (2.1)

Let F the integral term on the r.h.s. of (1.6), that is the force of newtonian
interaction. Define

f r = F · εr, fθ = F · εθ, f = F · ε1 = f r cos θ − fθ sin θ. (2.2)

The axial symmetry of the problem implies that, as can be also verified by
inspecting the expression of F , the components f r, fθ, f depend only on
the variable θ. Rewrite (1.6) in the form

vθω + vφΩ = F. (2.3)

From the kinematic identity

vθ · ε1 = (v · ε1)θ ⇒ 〈(v · ε1)θ〉 = 0, (2.4)

and (2.3) it follows

〈vφ · ε1
Ω
ω
〉 = −〈(R + r cos(·))Ω

2

ω
〉 = 〈f

ω
〉, (2.5)

where we have also used (1.4) that implies vφ · ε1 = −(R + r cos θ)Ω. From
(1.7) and (2.5) we obtain

J2(R) = − 〈 f
ω
〉

〈 1
ω(R+r cos(·))3

〉 ,

Ω2(θ) = − 1
(R+r cos θ)4

〈 f
ω
〉

〈 1
ω(R+r cos(·))3

〉 .
(2.6)
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By means of this expressions of Ω2 and (2.2), (1.5), from (1.6), after dividing
by ω, it follows

(r′′ − r)ω + r′ω′ = − cos(·)
ω(R+r cos(·))3

〈 f
ω
〉

〈 1
ω(R+r cos(·))3

〉 + fr

ω

2r′ω + rω′ = sin(·)
ω(R+r cos(·))3

〈 f
ω
〉

〈 1
ω(R+r cos(·))3

〉 + fθ

ω .
(2.7)

We let Fr and Fθ the expressions on the r.h.s. of (2.7).

3. Analysis of F r and Fθ

We look for a solution (ρ, w) of (2.7) in the space W 2,2(−π, π)×W 1,2(−π, π)
and let the Fourier series of ρ and w be:{

ρ =
∑∞

2 (ρ1
n cos(n·) + ρ2

n sin(n·)),
w =

∑∞
1 (w1

n cos(n·) + w2
n sin(n·)), (3.1)

where we have kept into account that ρ and w have zero average together
with (1.12).

We set ‖(ρ,w)‖ := ‖ρ‖W 2,2 + ‖w‖W 1,2 and assume

‖(ρ,w)‖ ≤ M, (3.2)

for some constant M > 0 to be chosen later.
A basic step in the proof of Theorem 1.1 is the the determination of the

main terms in ε of Fr and Fθ and the analysis of their dependence from
the Fourier coefficients of ρ and w. From (1.2), (1.9) and (1.10) we obtain

δ|Xθ ∧Xφ| =
rs√

r′2 + r2

√
r′2 + r2(R + r cos(·)) (3.3)

= rs(R + r cos(·)) = C(R)
1
ω

.

We note that from (3.3), we have∫
S1×S1

hδ|Xθ ∧Xφ|dθdφ = C(R)
∫

S1

〈h
ω
〉dφ, (3.4)

for each function h : S1 × S1 → R. Since f r, fθ, f depend only on the
variable θ it suffices to compute these components at φ = 0. From this
observation and (3.3) it follows{

f r = GµC(R)
R2

∫
S1×S1

1
ω(α)

Nr(α,β,θ)
D3(α,β,θ)

dαdβ,

fθ = GµC(R)
R2

∫
S1×S1

1
ω(α)

Nθ(α,β,θ)
D3(α,β,θ)

dαdβ,
(3.5)
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where, after setting ε = r0
R and

z(t) = 2(1− cos t), (3.6)

it results
N r = 1

2(−z(β) cos θ + ε(−z(β) cos α cos θ − z(α− θ))
+ε2(−z(β)ρ(α) cos α cos θ − z(α− θ)ρ(α) + 2(ρ(α)− ρ(θ)))),

N θ = 1
2(z(β) sin θ + ε(z(β) cos α sin θ + 2 sin(α− θ))

+ε2(z(β)ρ(α) cos α sin θ + 2ρ(α) sin(α− θ))).
(3.7)

D2 = z(β)[1 + ε(cos α + cos θ) (3.8)
+ε2(cos α cos θ + ρ(α) cos α + ρ(θ) cos θ)
+ε3(ρ(α) + ρ(θ)) cos α cos θ + ε4ρ(α)ρ(θ) cos α cos θ]
+ε2z(α− θ)[1 + ε(ρ(α) + ρ(θ)) + ε2(ρ(α)ρ(θ)

+
(ρ(α)− ρ(θ))2

z(α− θ)
)].

We let D2
0(β, α) := z(β) + ε2z(α) and define d = d(ρ;α, β, θ, ε) by setting

D2 = D2
0(β, α− θ)(1 + d(ρ;α, β, θ, ε)). (3.9)

Since d is a quantity of O(ε) one can check that, provided ε ∈ (0, ε0], for
some ε0 > 0, we have

1
D3

=
1

D3
0(β, α− θ)

(
1 +

∞∑
n=1

(
−3

2
n

)
d(ρ;α, β, θ, ε)n

)
, (3.10)

and the series on the r.h.s. converges absolutely and uniformly on S1 ×
S1 × S1.

Similarly

1
ω

=
1
ω0

(
1 +

∞∑
m=1

εm

(
−1
m

)
wm

)
=

1
ω0

(
1 +

∞∑
m=1

(−1)mεmwm

)
.(3.11)

It follows
1

ωD3
=

1
ω0D3

0(β, α− θ)
(1 + S(ρ,w;α, β, θ, ε)), (3.12)

where S(ρ, w) = S(ρ,w;α, β, θ, ε) is given by

São Paulo J.Math.Sci. 5, 2 (2011), 331–345



On the stationary motion of a self-gravitating toroidal stratum 339

S(ρ,w) =
∞∑

n=1

n∑
m=0

(−1)mεm

(
−3

2
n−m

)
wmd(ρ)n−m (3.13)

and, under the assumption (3.2), S(ρ,w) is Hölder continuous for some
γ ∈ (0, 1) and

||S(ρ, w)||C0,γ ≤ Cε, (3.14)
||S(ρ1, w1)− S(ρ2, w2)||C0,γ ≤ Cε||(ρ1, w1)− (ρ2, w2)||.

By means of (3.12) and some computation we can rewrite (3.5) in the
form:{

f r = GµC(R)
2ω0R2

∑3
h=1

∫
S1×S1 Kr

h(β, α− θ, ε)(1 + Sr
h(ρ,w;α, β, θ, ε))dαdβ,

fθ = GµC(R)
2ω0R2

∑2
h=1

∫
S1×S1 Kθ

h(β, α− θ, ε)(1 + Sθ
h(ρ,w;α, β, θ, ε))dαdβ,

(3.15)

where

Kr
1 =

2ε2(ρ(α)− ρ(θ))
D3

0(β, α− θ)
, (3.16)

Kr
2 =

1
ε
K2 = − εz(α− θ)

D3
0(β, α− θ)

,

Kr
3 = − cos(θ)K3 = − z(β) cos θ

D3
0(β, α− θ)

,

Kθ
1 =

1
ε
K1 =

2ε sin(α− θ)
D3

0(β, α− θ)
,

Kθ
2 = sin(θ)K3 =

z(β) sin θ

D3
0(β, α− θ)

,

where Sr
h(ρ,w) and Sθ

h(ρ,w) are functions similar to S(ρ, w) that satisfy
(3.14).

The singular operators Kr
1 and Kj , j = 1, 2, 3 introduced above are of

the type studied in [12]. The properties of these operators are listed in the
following lemma that we quote from [11] without proof.
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Lemma 3.1. Let σ : S1 × S1 × S1 → R a map of class C0,γ , γ ∈ (0, 1).
Then

Kr
1σ(θ) =

∫ ∗

S1×S1

Kr
1(α, β, θ, ε)σ(α, β, θ)dαdβ, (3.17)

Kjσ(θ) =
∫ ∗

S1×S1

Kj(α, β, θ, ε)σ(α, β, θ)dαdβ, j = 1, 2, 3, (3.18)

define continuous linear maps Kr
1,Kj : C0,γ → C0,γ′

, j = 1, 2, 3 for all
0 < γ′ < γ

1+γ . Moreover:

||Kr
1|| < Cγ′ ||ρ||C1,γ , (3.19)

||K1|| < Cγ′ ,

||K2|| < C,

||K3|| < C(1 + log
1
ε
),

where C and Cγ′ are constants and limγ′→ γ
1+γ

Cγ′ = +∞.

From Lemma 3.1 and the fact that Sr
h(ρ,w) and Sθ

h(ρ, w) satisfy (3.14)
it follows that f r and fθ are C0,γ for some γ ∈ (0, 1). On the other hand by
an elementary but long computation it is possible to determine the Fourier
coefficients of the function Kjϕ, j = 1, 2, 3 in term of the Fourier coefficients
of ϕ and the same is true for the functions Kjϕ̃, Kjϕ̂, j = 1, 2, 3 where

ϕ̃ = −3
2
(

z(β)
D2

0(β, α− θ)
ϕ(α); ϕ̂ = −3

2
ε2z(α− θ)

D2
0(β, α− θ)

ϕ(α).

By utilizing this fact, after singling out the terms of O(ε) in Sr
h(ρ,w) and

Sθ
h(ρ,w), through a standard but tedious computation one obtains the fol-

lowing basic result which yields explicit expressions of Fr and Fθ in term
of the Fourier coefficients of ρ and w. We set c(ε) := GµC(R)

2ω3
0r2

0R
and denote

by symbol o(εk)0,γ a map h(ρ,w;α, θ, ε) such that

||h(ρ,w)||C0,γ ≤ C(ε)εk, (3.20)

||h(ρ1, w1)− h(ρ2, w2)||C0,γ ≤ C(ε)εk||(ρ1, w1)− (ρ2, w2)||,

where C(ε) satisfies limε→0+ C(ε) = 0.
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Proposition 3.1. We have

Fr

ω0r0
= −4πc(ε) + 4πεc(ε)[

1
2

cos θ

+
∞∑
2

(1− n)(ρ1
n cos nθ + ρ2

n sin nθ) + w(θ)] + εN r
F (3.21)

Fθ

ω0r0
= 4πεc(ε)[

∞∑
1

(−w2
n cos nθ + w1

n sinnθ) +
1
2

sin θ] + εN θ
F .

where N r
F = N r

F (ρ,w; θ, ε), NF
θ = N θ

F (ρ, w; θ, ε) are o(ε0)0,γ.

4. The proof of Theorem 1.1

We let X the set of the pairs (ρ,w) of 2π−periodic functions
ρ ∈ W 2,2(−π, π), w ∈ W 1,2(−π, π) that satisfy (3.2) and are of the form
(3.1) that is satisfy

ρ0 = 0, w0 = 0, (4.1)

ρj
1 = 0, j = 1, 2.

X with the distance induced by the norm ‖(ρ,w)‖ := ‖ρ‖W 2,2 + ‖w‖W 1,2 is
a complete metric space.

We say that a map h(ρ,w; θ, ε) that satisfies (3.2) is oX(εk) if h is such
that

||h(ρ,w)||L2 ≤ C(ε)εk, (4.2)

||h(ρ1, w1)− h(ρ2, w2)||L2 ≤ C(ε)εk||(ρ1, w1)− (ρ2, w2)||,
where limε→0+ C(ε) = 0.

Remark 4.1. If (ρ,w) ∈ X then

h(ρ,w; θ, ε) = o(εk)0,γ ⇒ h(ρ,w; θ, ε) = oX(εk) (4.3)

Let
( ar

ω
aθ

ω

)
the l.h.s. of (2.7). Then from (3.1) we obtain

1
ω0r0

ar

ω
= −1 + ε(ρ′′ − ρ− w) + εN r

a , (4.4)

1
ω0r0

aθ

ω
= ε(2ρ′ + w′) + εN θ

a .

São Paulo J.Math.Sci. 5, 2 (2011), 331–345
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where N r
a = N r

a (ρ,w; θ, ε) and N θ
a = N θ

a (ρ,w; θ, ε) are oX(ε0). We are now
in the position of transforming the equations (2.7) into an infinite set of
equations for the Fourier coefficients of the unknowns ρ and w.

From (4.4) and Proposition 3.1 it follows that we can rewrite (2.7) in the
form

−1 + ε(ρ′′ − ρ− w) = −4πc(ε) + 4πεc(ε)[
1
2

cos θ

+
∞∑
2

(1− n)(ρ1
n cos nθ + ρ2

n sinnθ) + w(θ)] + εN r,

(4.5)

ε(2ρ′ + w′) = 4πεc(ε)[
∞∑
1

(−w2
n cos nθ + w1

n sinnθ) +
1
2

sin θ] + εN θ,

where we have set N r = N r
F −N r

a and N θ = N θ
F −N θ

a . From Remark 4.1
and (4.4) and Proposition 3.1 it follows that N r and N θ are oX(ε0).

By projecting (4.5)1 on the subspace of constant functions we obtain

c(ε) =
1
4π

− 1
8π

εN r
0 . (4.6)

Using (4.6) we rewrite (4.5) in the form

ρ′′ − ρ− w − [
∞∑
2

(1− n)(ρ1
n cos nθ + ρ2

n sinnθ) + w(θ)] =
1
2

cos θ + Ñ r,

(4.7)

2ρ′ + w′ − [
∞∑
1

(−w2
n cos nθ + w1

n sinnθ)] =
1
2

sin θ + Ñ θ,

where Ñ r and Ñ θ are oX(ε0) and Ñ r
0 = 0.

As discussed in [11] we can assume

Ñ θ
0 = 0, (Ñ θ)j

1 = 0, j = 1, 2
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and rewrite (4.7) in the form

∞∑
2

(−n2 + n− 2)(ρ1
n cos nθ + ρ2

n sinnθ)− 2
∞∑
1

(w1
n cos nθ + w2

n sinnθ)

=
1
2

cos θ + Ñ r,(4.8)
∞∑
2

2n(ρ2
n cos nθ − ρ1

n sinnθ) +
∞∑
2

2n(w2
n cos nθ − w1

n sinnθ) = Ñ θ,

where we have also used the Fourier series of ρ, w, ρ′, w′, ρ′′. In (4.8)2 we
have set w1

1 = −1
4 that follows from (4.8)1.

Lemma 4.1. Let L(ρ,w) the l.h.s. of (4.8). Then

(i): L(ρ,w) ∈ L2 × L2.
(ii): The map L : W 2,2 ×W 1,2 → L2 × L2 defined by

W 2,2 ×W 1,2 3 (ρ,w) → L(ρ,w) ∈ L2 × L2, (4.9)

is linear and bounded and has a bounded inverse L−1 : L2 × L2 →
W 2,2 ×W 1,2.

Proof. By inspecting (4.8) and by observing that (ρ,w) ∈ W 2,2 × W 1,2

implies that the series in (4.8) are well defined L2 functions proves (i) and
also that L is bounded. To show that L−1 exists and is bounded we note
that from (4.8) the equation

L(ρ,w) = (p, v) ∈ L2 × L2, (4.10)

is equivalent to the system{
w1

1 = p1
1,

w2
1 = p2

1,
(4.11)

{
(2− n + n2)ρ1

n + 2w1
n = −p1

n,
(2− n + n2)ρ2

n + 2w2
n = −p2

n,
, n ≥ 2, (4.12)

{
2nρ2

n + (n + 1)w2
n = v1

n,
2nρ1

n + (n + 1)w1
n = v2

n,
, n ≥ 2, (4.13)
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where (4.11) and (4.12) follow from (4.7)1 and (4.13) from (4.7)2. Equa-
tions (4.12) and (4.13) imply(

ρ1
n

w1
n

)
=

1
2− 3n + n3

(
n + 1 −2
−2n 2− n + n2

)(
−p1

n
v2
n

)
, (4.14)(

ρ2
n

w2
n

)
=

1
2− 3n + n3

(
n + 1 −2
−2n 2− n + n2

)(
−p2

n
v1
n

)
,

and therefore
|ρj

n| ≤ C
n2

∑
i=1,2(|pi

n|+ 1
n |v

i
n|),

|wj
n| ≤ C

n

∑
i=1,2(

1
n |p

i
n|+ |vi

n|),
, n ≥ 2. (4.15)

These inequalities and (4.11) show that the Fourier coefficients ρj
n, j =

1, 2; n = 2, · · · and wj
n, j = 1, 2; n = 1, · · · define functions ρ ∈ W 2,2 and

w ∈ W 1,2 that satisfy (4.1). �

From Lemma 4.1 it follows that (4.8) is equivalent to the equation

(ρ,w) = (0, w̄) + L−1

(
Ñ r(ρ,w)
Ñ θ(ρ,w)

)
:= G(ρ,w), (4.16)

where we have set w̄ = −1
4 cos θ. Therefore the problem of solving (4.8) is

reduced to the existence of a fixed point for the map G : X → X.

Fix M = 2 ‖(0, w̄)‖ in (3.2). Then from the fact that Ñ r and Ñ θ are
oX(ε0) and from Lemma 4.1 we have:

(ρ,w) ∈ X ⇒ (4.17)
‖G(ρ,w)‖ ≤ ‖(0, w̄)‖+ C(ε),

‖G(ρ,w)−G(ρ̃, w̃)‖ ≤ C(ε) ‖(ρ,w)− (ρ̃, w̃)‖ .

Therefore, for ε > 0 smaller than some ε0 > 0, G : X → X is a contraction
and (4.16) has a unique solution (ρ∗, w∗) ∈ X. Due to the equivalence
between (4.16) and (4.8), (ρ∗, w∗) is a solution of (2.7). Moreover (4.17)
imply:

‖ρ∗‖W 2,2 ≤ C(ε), (4.18)
‖w∗ − w̄‖W 1,2 ≤ C(ε),

where C(ε) → 0 as ε → 0+. From these estimates and Lemma 3.1 it follows
that the r.h.s. of system (2.7) computed for (ρ,w) = (ρ∗, w∗) is of class
C0,γ . Therefore we can regard (2.7) as a system of o.d.e. with a Hölder
continuous r.h.s. This shows that ρ∗ ∈ C2,γ and w∗ ∈ C1,γ . The uniqueness
in (iii) is just a restatement of the fact that (ρ∗, w∗) is the unique fixed point
of a contraction on X. The properties of s in (iv) follow (1.10) and from
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(i) and (ii) recalling also the expression of c(ε) and (4.6). The statement
on the smoothness of Ω follows from (2.6)2 and (i) and (ii). The expression
of Ω follows from (2.6)2 and from the computation of 〈 f

ω 〉 (see [11]). The
proof of Theorem 1.1 is concluded.
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