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Abstract. In this work we study the relation between tilting
and standard stratification. We recall that for each standardly
stratified algebra corresponds a tilting module. We show that
the poset given by the different stratifications of one algebra is
a subposet of the poset formed by the tilting modules. Also, we
show several examples, in particular we see that in the oriented
An for n = 2, 3, 4 all tilting modules are given by stratifications.

Preliminars

In this work all algebras are finite dimensional K - algebras, ba-
sic and indecomposables, K is an algebraically closed field and it is
known that an algebra Λ with these properties is of the form Λ = KQ

I
where Q is a finite quiver and I an admissible ideal.

Let v1, ...vn be the vertices of Q in a fixed order and S1, ..., Sn the
corresponding order of simple modules, Pi the projective cover of Si
and Qi the injective envelope of Si. The standard module ∆i is defined
as the maximal factor of Pi with composition factors Sj , j ≤ i[R]. In
dual way, it is defined the co-standard ∇i as the maximal submodule
of Qi with composition factors Sj , j ≤ i[R]

Let ∆ = {∆1, ...,∆n}, consider F (∆), the full subcategory of
mod Λ, consisting by M ∈ mod Λ such that M has a filtration with
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136 Fidel Hernández Advincula

factors in ∆, this is, 0 = M0 ⊂ M1 ⊂ ... ⊂ Mt = M con Mi
Mi−1

' ∆k.

Dually, it is defined F (∇).

There are the following subcategories of mod Λ:

• Y (∆) = {Y ∈ modΛ/Ext1(F (∆), Y ) = 0}
• F (∆) ∩ Y (∆)
• W (∇) = {W ∈ modΛ/Ext1(W,F (∇)) = 0}
• W (∇) ∩ F (∇)

The algebra Λ is called standardly stratified if Λ ∈ F (∆).

If also, the endomorphisms ring of each standard module is simple,
Λ is called quasi - hereditary (see for instance [R] and [X]).

1. A tilting module associated to the standard stratifica-
tion

An A - module T is called tilting (generalized) if:

(1) pdT <∞.
(2) Exti (T, T ) = 0,∀i > 0
(3) There is an exact sequence 0→ A→ T0 → T1 → ....→ Ts →

0, with Ti ∈ addT, ∀i.
If the algebra Λ is standardly stratified, we have that F (∆) is a

resolving category ([X]), i. e. is closed under extensions, kernel of
surjections and contains the projectives.

Let $(∆) be the interseccion of the subcategories F (∆) and Y (∆)

There is the following fact, proved in [X], Theor. 4.3:

Proposition 1. If Λ is standardly stratified. Then there is a tilting
module T , unique except for the multiplicity of the indecomposable
direct summands such that add (T ) = $ (∆) .

2. A Poset given by the standard stratifications

For an Artin algebra Λ, consider the set TΛ of all tilting modules
with direct summands of multiplicity one.
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For each tilting module T ∈ TΛ consider the right perpendicular
category T⊥ = {X ∈ modΛ/Exti(T,X) = 0, ∀i}

In [HU], it is defined a partial order in the class of all tilting modules
for an Artin algebra by the following relation T1 6 T2 ⇔ T⊥1 ⊆ T⊥2 .

For this relation T is minimal if and only if P<∞ is contravariantly
finite ([HU]).

Using the results of [AR], we see se that Y (∆) = T⊥.

Theorem 2. The order among the different forms in that an algebra
can be standardly stratified , given by inclusion between the respec-
tive subcategories F (∆), induces an inverse order between the tilting
modules corresponding to these stratifications.

Proof. If we have two orders of simple modules such that Λ is stan-
dardly stratified in these orders and F1 (∆) ⊂ F2 (∆) ⇒ Y2 (∆) ⊂
Y1 (∆)

(If Y ∈ Y2 (∆) ⇒ Ext1(X,Y ) = 0, X ∈ F2 (∆), as F1 (∆) ⊂
F2 (∆)⇒ Ext1(X,Y ) = 0, X ∈ F1 (∆)⇒ Y ∈ Y1 (∆)).

Then we have Y2 (∆) ⊂ Y1 (∆), and as Yi (∆) = T⊥i then T⊥2 ⊆
T⊥1 �

We know that Proj ⊂ F (∆) ⊂ mod A, also F (∆) ⊂ P<∞.

If F (∆) = P<∞, that is to say F (∆) is maximal then P<∞ is
contravariantly finite, well F (∆) it is, then T is minimal.

If F (∆) = Proj, that is to say F (∆) is minimal then Y (∆) =
{Y/Ext1(X,Y ) = 0, X ∈ F (∆)} = modA, then F (∆) ∩ Y (∆) =
Proj, therefore T = P1 ⊕ ... ⊕ Pn = A, then T⊥ = A⊥ = modA and
we conclude that T is maximal.

If F (∆) is maximal (minimal) not necessarily F (∆) = P<∞(Proj)

Example 3. Let Am be the algebra KQ
I where Q is the quiver

β1 β2 βm−1
1• � 2• � 3• ...

m−1• �
m•

α1 α2 αm−1

São Paulo J.Math.Sci. 4, 2 (2010), 135–139



138 Fidel Hernández Advincula

and I the ideal generated by αi+1αi, βiβi+1, αiβi − βi+1αi+1,
1 ≤ i ≤ m− 2, αm−1βm−1.

We can see that this algebra is quasi hereditary, only in this order
of simple modules, then F (∆) is maximal and minimal because the
poset has only one element and F (∆) 6= P<∞ and F (∆) 6= Proj.

3. Remarks and Examples

Remark 4. We have several cases in that the maximal and the mini-
mal are reached for the Poset given by the standard stratifications[HM1]

(1) The Hereditary algebras
(2) The quasi hereditary algebras without oriented cycles, except

loops
(3) The algebras which are standardly stratified in all orders

For the algebras with radical square zero, if it quasi triangular it is
reached the minimal and the maximal.[HM2]

Remark 5. For the hereditary algebras given by the quiver An for n =
2, 3, 4, we can check that all tilting modules are given by stratifications,
but for the hereditary algebra given by the quiver

1•

!!B
BB

BB
BB

B

•3

2•

==||||||||

the tilting module T = P1⊕P2⊕I3 is not associated to stratification.

In the Kronecker algebra, that is to say the hereditary algebra given
by the quiver 1•⇒ •2 we only have two stratifications: the one given
by the projectives and the other given by the injectives and we have
infinite tilting modules.

The algebra given by the quiver 1•� •2 with radical square zero is
not standardly stratified in any orden and we have an unique tilting
module which is the trivial given by the sum of the projectives.
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