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Abstract. We show how the matrix problems can be used in
studying triangulated categories. Then we apply the general
technique to the classification of stable homotopy types of poly-
hedra, find out the “representation types” of such problems and
give a description of stable homotopy types in finite and tame
cases.
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The technique of matrix problems, especially, of bimodule cate-
gories, has proved their efficiency in lots of problems from represen-
tation theory, algebraic geometry, group theory and other domains
of modern algebra. During last years, mainly due to the works of
Baues, Henn, Hennes, and the author, it has found new applications
in algebraic topology, namely, in studying stable homotopy classes of
polyhedra (see [19], [8], [4]–[7], [16]). In the survey [15] the author has
picked out the background of this approach, which is based on the tri-
anguled structure of thew stable homotopy category. In this paper we
show that the same method can be used in general situation, when
we construct subcategories of a triangulated category from simpler
ones (see Section 1). Then we summarize what can be done using this
technique for the classification problem of stable homotopy classes.
Namely, we consider the subcategories Sn of the stable homotopy
category consisting of polyhedra having only cells of n consecutive
dimensions. We classify polyhedra from Sn for n ≤ 4 and show that
for n > 4 this problem becomes wild in the sense of the representa-
tion theory of algebras. Then we consider the subcategories Tn of
Sn consisting of polyhedra with no torsion in ontegral homologies.
This time we classify polyhedra from Tn for n ≤ 7 and show that
for n > 7 their classification is also a wild problem. In some sense,
these results are “final,” though we are sure that this technique will
be useful for some other problems of algebraic topology as well as for
studying other triangulated categories.

Since the technical details of calculations are sometimes rather cum-
bersome and can be found in the previous papers, we usually omit
them, just outlining the ideas.

1. Matrix problems arising in triangulated categories

Let C be a triangulated category with the shift A 7→ SA, A and
B be two fully additive (but usually not triangulated) subcategories
of C . We denote by A †B the full subcategory of C consisting of all
objects C arising in triangles

A
a−→ B

b−→ C
c−→ SA with A ∈ A , B ∈ B. (1.1)
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Matrix problems and stable homotopy 211

We also denote by I the ideal of the category C consisting of all
morphisms γ : C → C ′ that factorizes both through B and through
SA , i.e. such that γ = γ′α = γ′′β, where α : C → SA, β : C → B,
where A ∈ A , B ∈ B.

On the other hand, we consider the A -B-bimodule BCA , which is
the restriction of the regular C -bimodule C (A,B) for A ∈ A , B ∈
B. We often omit subscripts and denote this bimodule by C if it
cannot lead to misunderstanding. Recall that the bimodule category
Bim(BCA ) has

⋃
A∈A
B∈B

C (A,B) as the set of objects, while the set of

morphisms Bim(a, a′), where a : A→ B, a′ : A′ → B′, is defined as{
(α, β) | α : A→ A′, β : B → B′, βa = a′α

}
.

We denote by J the ideal of Bim(BCA ) consisting of all morphisms
(α, β) : a → a′ such that α factors through a and β factors through
a′.

We define a functor F : Bim(BCA ) → (A † B)/I as follows.
For every morphism a : A → B, choose a triangle like (1.1) and
set C = Fa. If a′ : A′ → B′, C ′ = Fa′ and (α, β) ∈ Bim(a, a′), there
is γ : C → C ′ such that the diagram

A
a−−−−→ B

b−−−−→ C
c−−−−→ SA

Sa−−−−→ SB

α

y β

y γ

y ySα ySβ
A′

a′−−−−→ B′
b′−−−−→ C ′

c′−−−−→ SA′
Sa′−−−−→ SB′

(1.2)

commutes. Set F (α, β) = γ mod I . We must check that the latter
definition is consistent. Indeed, if γ′ : C → C ′ is another morphism
making diagram (1.2) commutative, g = γ − γ′, then gb = c′g = 0,
therefore there are f : SA → C ′ and h : C → B′ such that g = cf =
b′h, i.e. g ∈ I . Thus F is well-defined.

Suppose now that C (B,SA) = 0 for all A ∈ A , B ∈ B. In this
situation we define a functor G : A †B → Bim(BCA )/J as follows.
Let C ∈ A †B. Choose one triangle like (1.1) and set a = GC. If
GC ′ = a′, i.e. C ′ occur in the triangle

A′
a′−→ B′

b′−→ C ′
c′−→ SA′ with A′ ∈ A , B′ ∈ B,
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212 Yuriy A. Drozd

and γ : C → C ′, then c′γb = 0, hence γb = b′β for some β : B → B′.
Choose one of such triangles Since

B
b−→ C

c−→ SA
−Sa−−−→ SB

and

B′
b−→
′
C ′

c−→
′
SA′

−Sa′−−−→ SB′

are also triangles, there is a morphism α : A → A′ that makes
the diagram (1.2) commutative, thus (α, β) ∈ Bim(a, a′). Set Gγ =
(α, β) mod J . If (α′, β′) is another pair making (1.2) commutative,
then (β − β′)b′ = 0, hence β − β′ = a′f for some f : B → A′; in the
same way Sα−Sα′ = g(Sa), i.e. α−α′ = g′a for some g : SB → SA′

and g′ : B → A′ such that Sg′ = g. Therefore (α − α′, β − β′) ∈J ,
so the functor G is well-defined.

Theorem 1.1. Suppose that C (B,SA) = 0 for all A ∈ A , B ∈
B. Then the functors F,G constructed above induce quasi-inverse
functors

F̄ : Bim(BCA )/J → (A †B)/I

and
Ḡ : (A †B)/I → Bim(BCA )/J .

Thus (A †B)/I → Bim(BCA )/J . Moreover, I 2 = 0, therefore,
the natural functor Π : (A †B)→ (A †B)/I is an epivalence.

Recall that an epivalence is a functor E : C1 → C2, which is

• full, i.e. all induced maps C1(X,Y ) → C2(EX,EY ) are sur-
jective;
• dense, i.e. every object from C2 is isomorphic to EX for some
X ∈ C1;
• conservative, i.e. f ∈ C1(X,Y ) is invertible if and only if so is
Ef ∈ C2(EX,EY ).

(In [2] such functors are called detecting.) Note that then also

• X ' Y in C1 if and only if EX ' EY in C2;
• if C1 and C2 are additive, then an object X ∈ C1 is inde-

composable (into a nontrivial direct sum) if and only if so is
EX.

Proof. One immediately sees that F (J ) = 0 and G(I ) = 0, hence
F̄ and Ḡ are well-defined. Moreover, we have already seen that, given
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Matrix problems and stable homotopy 213

(α, β), the morphism γ is defined up to a summand from I , and given
γ, the pair (α, β) is defined up to a summand from J . It obviously
implies that F̄ Ḡ ' Idnolimits and ḠF̄ ' Idnolimits. If γ : C → C ′

and γ′ : C ′ → C ′′ are from I , then γ = gf for some f : C → B and
g : B → C ′, where B ∈ B, while γ′ = g′f ′ for some f ′ : C ′ → SA
and g′ : A → C ′′, where A ∈ A . Then γ′γ = g′f ′gf = 0, since
f ′g ∈ C (B,SA). Thus I 2 = 0 and, therefore, Π is an epivalence. �

Corollary 1.2. Under conditions of Theorem 1.1, let V be a subbi-
module of BCA such that f1af2 = 0 whenever a ∈ V , fi ∈ C (Bi, Ai)
with Ai ∈ A , Bi ∈ B (i = 1, 2). Denote by A †V B the full subcat-
egory of A †B consisting of all objects C arising in triangles (1.1)
with a ∈ V , IV = I ∩ (A †V B), JV = J ∩ Bim(V ). Then the
functor F and G constructed above induce quasi-inverse functors F̄ :
Bim(V )/J → (A †V B)/IV and Ḡ : (A †V B)/I → Bim(V )/JV .
Thus (A †V B)/I ' Bim(V )/JV . Moreover, I 2

V = 0 and J 2
V =

0, therefore, the natural functors (A †V B) → (A †V B)/IV and
Bim(V )→ Bim(V )/J 2

V are epivalences. In particular, there is a one-
to-one correspondences between isomorphism classes of objects and of
indecomposable objects from A †V B and Bim(V ).

2. Stable homotopy category

In this paper the word “polyhedron” is used as a synonym for“finite
cell (or CW) complex”. We denote by Hot the category of punc-
tured topological spaces with homotopy classes of continuous maps
as morphisms and by CW its full subcategory consisting of polyhe-
dra. We denote by CX the cone over the space X, i.e. the factor
space X × I/X × 1, I = [0, 1] being the unit interval. For a map
f : X → Y we denote by Cf the cone of this map, i.e. the factor
space (Y tCX)/ ∼, where the equivalence relation ∼ is given by the
rule f(x) ∼ (x, 0). Let also SX be the suspension of X, i.e. the factor
space CX/(X × 0). This operation induces a functor S : Hot→ Hot.
Note that for every X the space SX is an H-cogroup and the n-fold
suspension SnX is a commutative H-cogroup for n ≥ 2 [23, 2.21 –
2.26]. Therefore, Hot(SnX,Y ) is a group, commutative for n ≥ 2.
The natural maps Hot(SnX,SnY ) → Hot(Sn+1X,Sn+1Y ) are group
homomorphisms. Set

Hos(X,Y ) = lim−→
n

Hot(SnX,SnY ).
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214 Yuriy A. Drozd

It is a group called the group of stable maps from X to Y . Thus
we get the stable homotopy category Hos and its full subcategory S
consisting of polyhedra. We also denote by CF and T respectively the
full subcategories of CW and of S consisting of torsion free polyhedra
X, i.e. such that all integral homology groups Hk(X) = Hk(X,Z) are
torsion free. The groups Hos(Sn, X) are called the stable homotopy
groups of the space X and denoted by πSn (X).

The category Hos is additive, with the bouquet (or wedge) X ∨ Y
playing the role of direct sum. Moreover, Hos is fully additive, i.e. ev-
ery idempotent in it splits [12, Theorem 4.8]. The suspension induces
a functor, which we also denote by S : Hos → Hos. Obviously, it
is fully faithful. Thus we can “supplement” it so that S becomes
an equivalence. To do it, we consider formal “imaginary spaces”
SnX with n < 0 setting, for n < 0 or m < 0, Hos(SnX,SmY ) =
Hos(Sn+kX,Sm+kY ), where k = −min(n,m). Then we consider for-
mal bouquets

∨r
i=1Xi, where each Xi is either a “real” or an “imagi-

nary” space, and define Hos(
∨s
j=1 Yj ,

∨r
i=1Xi) as the set of r×s matri-

ces (fij) with fij ∈ Hos(Yj , Xi) (see [12] for details). As a result we get
the category (also denoted by Hos), where S is an auto-equivalence.

In fact, the new category is a triangulated category. The triangles
in it are the cofibration sequences, i.e. those isomorphic to the cone
sequences

X
f−→ Y

g−→ Cf
h−→ SX,

where g is the natural embedding Y → Cf and h is the natural
surjection Cf → SX ' Cf/Y [22]. Note that in the stable category
Hos they coincide with the fibration sequences [12], though we do not
use this fact.

Recall that every polyhedron X of dimension n+1 can be obtained
from its n-skeleton Xn as the cone of a map f : kSn → Xn, which
results in attaching k cellls. Actually, we just glue k balls kBn+1

to Xn identifying each point of the boundary (which is just kSn)
with its image under f . So, following Baues, we describe such a cell
complex using its gluing (or attachment) diagram, which shows how
the higher-dimensional cells are attched to the lower-dimensional one.
For instance, such a diagram for the real projective space P4

R looks
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like
4 •

2

1
					

					
3 •

1
					

					
2 •

2

1 •

(2.1)

It means that there are 4 cells of dimensions 1, 2, 3, 4, B2 is attached
to S1 by the map of its boundary S1 → S1, which is of degree 2, B3

is attached to S1 by the map S2 → S1, which is the generator of the
group π2(S1) ' Z, B4 is attached both to S3 by the map S3 → S3

of degree 2 and to S2 using the generator of π4(S3) ' Z/2. Since the
latter is a unique non-zero element, we will omit the label “1” in this
case (as well as in all similar cases). Certainly, the same polyhedron
can be described by quite different gluing diagrams. For instance, any
triangulation of a manifold gives rise to a gluing dfiagram, and there
is plenty of them.

We denote by CWk
n the full subcategory of CW consisting of (n−1)-

connected cell complexes of dimension at most n+k. If X ∈ CWk
n, one

can suppose that its (n−1)-th skeleton Xn−1 (the “(n−1)-dimensional
part” of X) consist of a unique point and X has no cells of dimensions
greater than n+ k.

Every polyhedron from S decomposes into a direct sum of inde-
composable ones. Note that such a decomposition is far from being
unique (see [12, 4.2] for examples). Nevertheless, a description of in-
decomposable polyhedra in S can be a good first step towards the
classification problem. Moreover, if the endomorphism ring Es(Y ) =
Hos(Y, Y ) is local and Y ∨ Y ′ '

⊕
i Yi, there is an index i such that

Yi ' Y ∨ Y ′′ [1, Lemma I.3.5] Hence, in all decompositions of a poly-
hedron X into bouquets of indecomposables the multiplicity of Y is
the same. Another approach gives the notion of congruence. Namely,
we say that two polyhedra X,Y are congruent if there is a polyhedron
Z such that X ∨ Z ' Y ∨ Z. One can show, following [21] or [13],
that an equivalent condition is that the images of X and Y in all lo-
calizations Sp of the stable homotopy category are isomorphic. Here
Sp (p is a prime integer) is the category whose objects are polyhedra,
but Hosp(X,Y ) = Hos(X,Y ) ⊗ Zp, where Zp is the ring of p-adique
integers. (The same notion is obtained if we replace Zp by the subring
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{ a/b | a, b ∈ Z, p - b } of the rational numbers.) We call the classes of
congruence genera, like they do in the theory of integral representa-
tions. Though genera satisfy the cancellation property (in fact, by
definition), their decomposition into bouquets of indecomposable is
not unique too (see the first of the cited examples from [12]).

Recall that due to the Generalized Freudenthal Theorem [12, The-
orem 1.21] there is no need to go up to infinity in defining Hos(X,Y )
if we deal with polyhedra. Namely, if Y is (n − 1)-connected and
dimX ≤ m, then the map Hot(X,Y ) → Hot(SX,SY ) is bijective if
m < 2n − 1 and surjective if m = 2n − 1. It implies that the map
Hot(SkX,SkY )→ Hos(X,Y ) is bijective for k > m− 2n+ 1 and sur-
jective for k = m − 2n + 1. In particular, if Y is (n − 1)-connected,
πSm(Y ) ' π2(m−n+1)(S

m−n+2Y ). Moreover, on the subcategory of
Hot consisting of simply connected spaces the suspension functor is
conservative. Therefore, the induced functor CWk

n → CWk
n+1 is an

equivalence for n > k+ 1 and an epivalence for n = k+ 1. Denote by
Sn the image in S of the category CWn−1

n . The polyhedra from Sn

can only have cells on n consecutive levels (from n-th up to (2n−1)-th)
and every polyhedra having cells on n consecutive levels is isomorphic
in S to SmX for some integer m and some X ∈ Sn. We also denote
by Tn the full subcategory of Sn consisting of torsion free polyhedra.

Definition 2.1 (cf. [3]). An atom is an indecomposable object A from
Sn, which does not belong to S(Sn−1)∪ S2(Sn−1). (In other words,
any polyhedron isomorphic to A in S must have cells of dimensions
n and 2n − 1.) If A is an atom, all polyhedra of the sort SmA are
called suspended atoms.

This definition immediately implies that every polyhedron is iso-
morphic in S to a bouquet of suspended atoms, though, as we have
mentioned, such a decomposition is not unique. Note that, unlike
Baues, we consider S1 as an atom (a unique atom in S1), hence all
spheres are considered as suspended atoms. Note also that this def-
inition implies that all atoms are of odd dimensions: an atom from
Sn is of dimension 2n− 1.

São Paulo J.Math.Sci. 4, 2 (2010), 209–249
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To clarify the structure of Sn we use the technique from Section 1.
Namely, choose an integer m such that 0 ≤ m < n− 1 and set

A = An,m = S2m+1Sn−m−1,

B = Bn,m = Sn−m−1Sm+1,

Sn,m =Bn,m SAn,m ,

In,m = { f : X → Y |X,Y ∈ Sn, f factors both

through B and through SA },
Jn,m = { (α, β) ∈ Bim(a, a′) | a, a′ ∈ Sn,m,

α factors through a and β factors through a′}.

(2.2)

Then polyhedra from A only have cells in dimensions from n+m up
to n−m− 2, while those from B only have cell in dimensions from n
up to n+m. If C ∈ Sn, its (n+m)-th skeleton B belongs to B, while
the factor space C/B belongs to SA , i.e. C/B ' SA, A ∈ A . Then
C ∈ A †B, since A→ B → C → C/B ' A is a cofibration sequence.
On the other hand, any object from A †B obviously belongs to Sn.
So we have proved

Theorem 2.2. Sn ' An,m†Bn,m. Thus Sn/In,m ' Bim(Sn,m)/Jn,m.
Moreover, I 2

n,m = 0.

To consider torsion free polyhedra, we set

A 0 = A 0
n,m = S2m+1Tn−m−1,

B0 = B0
n,m = Sn−m−1Tm+1,

S 0 = S 0
n,m = { a ∈ Sn,m | Hn+m(a) = 0 } ,

I 0
n,m = In,m ∩ (A 0 †S 0 B0),

J 0
n,m = Jn,m ∩ Bim(S 0).

(2.3)

To get an analogue of Theorem 2.2 we need the following lemma.

Lemma 2.3. Let f ∈ Hos(A,B), where A and B are torsion free
polyhedra, A is (m− 1)-connected, dimB ≤ m and Cf is also torsion
free. There are decompositions A ' C⊕A′, B ' C⊕B′ such that, with

respect to this decomposition, f =

(
Idnolimits 0

0 g

)
with Hm(g) = 0

and Cf ' Cg.
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Proof. Note first that if A = kSm, B = lSm are bouquets of m-
dimensional spheres, then Hm(A) = mZ, Hm(B) = lZ, and the nat-
ural map Hos(A,B) → Homnolimits(Hm(A),Hm(B)) is an isomor-
phism. In particular, every decomposition of Hm(A) arises from a de-
composition of A, and the same is true for B. In this case Hm(f), or,
the same, f is actually an integer matrix and there are decompositions
A ' C ⊕A′, B ' C ⊕B′ (all summands are, of course, also bouquets

of spheres) such that, with respect to them, f =

(
Idnolimits 0

0 d

)
,

where d : A′ → B′ can be presented by diagonal matrix without unit
components.

In general case, the calculation of homologies of cell spaces from
[23, Chapter 10] shows that the embedding α : Am → A induces a

surjection Hm(Am) → Hm(A), while the surjection β : B → B̃ =

B/Bm−1 induces an embedding Hm(B) → Hm(B̃) with torsion free

cokernel. Therefore, there are decompositions Am ' A1 ⊕ A0, B̃ '
B1 ⊕ B0 such that the restriction of Hm(α) onto A1 is an isomor-
phism, and that onto A0 is 0, while Hm(f) induces an isomorphism
Hm(B)→ imnolimitsHm(β) = Hm(B1). Denote by α1 : A1 → A and
β1 : B → B1 the corresponding components of α and β. As above,
there are decompositions A1 ' C ⊕A0, B1 ' C ⊕B0 such that, with

respect to them, the morphism β1fα1 =

(
Idnolimits 0

0 d

)
, where d

can be presented by diagonal matrix without unit components. De-
note by ι : C → A1 the natural embedding (presented by the matrix(

Idnolimits
0

)
) and by π : B1 → C the natural projection (presented

by the matrix (Idnolimits 0) ). Then πβ1fα1ι = Idnolimits, so
B ' C ⊕ B′, A ' C ⊕ A′, so that, with respect to these decomposi-

tions, f =

(
Idnolimits 0

0 g

)
. Then Cf ' Cg and d = β0gα0, where

α0 : A0 → A′ and β0 : B′ → B0. Note that α0 and β0 also induce iso-
morphisms of the m-th homology groups, so CokernolimitsHm(g) '
CokernolimitsHm(d). Since this cokernel embeds in Hm(Cg), it is
torsion free. Therefore, d = 0, whence Hm(g) = 0. �
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Theorem 2.4. Tn ' A 0
n,m †S 0 B0

n,m. Thus Tn/I 0
n,m '

Bim(S 0
n,m)/J 0

n,m. Moreover, (I 0
n,m)2 = (J 0

n,m)2 = 0, so this equiva-
lence induces one-to-one correspondences between isomorphism classes
of objects and of indecomposable objects in Tn and in Bim(S 0

n,m).

Proof. Let C ∈ Tn, B = Cn+m, SA ' C/B. The triangle

A
a−→ B

b−→ C
c−→ SA (2.4)

gives rise to the exact sequence of homologies

· · · → Hk(A)
Hk(a)−−−→ Hk(B)

Hk(b)−−−→ Hk(C)
Hk(c)−−−→ Hk(SA) '

' Hk−1(A)
Hk−1(a)−−−−−→ Hk−1(B)

Hk−1(b)−−−−−→ Hk−1(C)→ . . .

If k < n+m, then Hk(A) = Hk−1(A) = 0, so Hk(B) ' Hk(C) is torsion
free. If k > n+m, we get in the same way that Hk(A) ' Hk+1(C) is
also torsion free. Let now k = n+m, then we get the exact sequence

0→ Hn+m+1(C)→ Hn+m(A)
Hn+m(a)−−−−−−→ Hn+m(B)→ Hn+m(C)→ 0.

Note that Hn+m(B) is always torsion free, since B contains no cells
of dimensions bigger than n+m, hence B ∈ T . Therefore, Hn+m(A)
is torsion free too, so A ∈ T . Moreover, CokernolimitsHn+m(a) is
also torsion free. As both Hn+m(A) and Hn+m(B) are free, it means
that Hn+m(A) 'M ⊕M ′, Hn+m(B) 'M ⊕M ′′ so that Hn+m(a)

induces isomorphism M → M and is zero on M ′. By Lemma 2.3,
there are decompositions A ' A0 ∨ A′, B ' A0 ∨ B′ such that, with

respect to them, a =

(
Idnolimits 0

0 a′

)
, where a′ ∈ S 0. Then Ca′ '

Ca ' C, so C ∈ A 0†S 0B0. On the other hand, if C ∈ A 0†S 0B0, i.e.
belongs to a triangle (2.4) with A ∈ A 0, B ∈ B0 and Hn+m(a) = 0,
the exact sequence of homologies implies that C ∈ Tn.

To prove the remaining assertions, it is enough to show that uav = 0
for every a ∈ S 0(A,B), v : B′ → A, u : B → A′, where A,A′ ∈
A 0, B,B′ ∈ B0 (see Corollary 1.2). Since Hn+m(a) = 0, the induced
mapAm+n → B/Bm+n−1 is zero. On the other hand, S (B′, A/Am+n)
= 0 = S ((B′)m+n−1, Am+n), so the map v : B′ → A factors through
a map B′/(B′)m+n−1 → Am+n. Since the same holds for u, it implies
that uav = 0. �
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We shall also use the following obvious lemma.

Lemma 2.5. Let X ∈ Sn, Hi = Hi(X). If X is decomposable, there

are decompositions Hi = H ′i ⊕ H
′′
i and indices j, k such that both

H ′j 6= 0 and H ′′k 6= 0.

(Note also that Hi(X) = 0 for i < n or i > 2n− 1.)

3. Discrete case: Whitehead–Chang Theorem

We apply now Theorem 2.2 to polyhedra from Sn for small n. First,
we recall some values of stable homotopy groups [20, Sections XI.15–
16]:

• πSn+1(Sn) ' Z/2, the generator being the (suspended) Hopf

map η = 2n−1h2, where h2 is the Hopf fibration S3 → S2;
• πSn+2(Sn) ' Z/2, the generator being the double Hopf map η2,

i.e. the composition of Hopf maps Sn+2 → Sn+1 → Sn;
• πSn+3(Sn) ' Z/24, the generator being ν = Sn−4h4, where h4

is the Hopf fibration S7 → S4. Moreover, the composition
η3 : Sn+3 → Sn+2 → Sn+1 → Sn equals 12ν.

If n = 1, the only atom in S1 is S1, and every polyhedron is a
bouquet of several copies of S1. If n = 2, S2 = A2,0†B2,0, and A2,0 =
B2,0 = SS1. Thus every polyhedron C from S2 is isomorphic to the
cone of a map a : kS2 → lS2. Since Hos(S2, S2) = Z, the map a can be
considered as a matrix (aij) ∈ Matnolimits(l× k,Z). If a′ is another
object from C2,1, also considered as a matrix from Matnolimits(l′ ×
k′,Z), a morphism a→ a′ in Bim(C2,1) is given by a pair of matrices
α ∈ Matnolimits(k′ × k,Z), β ∈ Matnolimits(l′ × l,Z) such that
a′α = βa. Especially, this morphism is an isomorphism if and only if
both α and β are invertible. So the well-known Smith Theorem implies
that every object a ∈ C2,1 is isomorphic to one presented by a diagonal
matrix diag nolimits (q1, q2, . . . , qr). Hence, every polyhedron from
S2 is isomorphic to a bouquet of cones

∨
iCqi, where we identify an

integer q with the corresponding map S2 → S2. Moreover, if q = uv,
where gcd(u, v) = 1, then

Cq ' C
(

1 0
0 q

)
' C

(
u 0
0 v

)
' Cu ∨ Cv.
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Therefore, Cq can only be indecomposable if q = ps, where p is prime.
On the other hand, the exact sequence of homologies arising from the
triangle

S2 q−→ S2 −→M3(q) −→ S3 (3.1)

that H2(Cq) ' Z/q and H3(Cq) = 0. Hence, Lemma 2.5 implies that
Cq is indecomposable. Therefore, the atoms in S2 are just Cq for
q = ps with a prime p. These atoms are denoted by M3(q) and their
suspensions SkM3(q) by Mk+3(q). The atoms and suspended atoms
Md(q) are called Moore spaces1 [12]. We also write Md

s instead of
Md(2s) (these atoms play a special role later).

We can calculate the groups Hos(M3(q),M3(q′)). Since πS3 (S2) '
Z/2 [20, Theorem 15.1], the exact sequences for the functor Hos arising
from the triangles (3.1) for q and q′ imply that

Hos(S2,M3(q)) ' Hos(M3(q), S3) ' Z/q,

Hos(S3,M3(q)) ' Hos(M3(q), S2) '
{
Z/2 if q is even,

0 if q is odd,

Hos(M3(q),M3(q′)) ' Z/(q, q′) if q or q′ is odd,

and there is an exact sequence

0→ Z/2→ Hos(M3
s ,M

3
r )→ Z/2m → 0, where m = min(r, s).

(3.2)

Note that the endomorphism rings Es(M3(q)) are finite, hence, local.
These considerations immediately imply the description of polyhedra
from S2.

Theorem 3.1. Every polyhedron from S2 uniquely (up to permuta-
tion of summands) decomposes into a bouquet of spheres S2, S3 and
Moore atoms M3(q).

We also need the following fact.

1In [20, Section XI.10] they are denoted by P d
q and called pseudo-projective

spaces.
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Proposition 3.2.

πS4 (M3(q)) '


0 if q is odd,

Z/4 if q = 2,

Z/2⊕ Z/2 if q = 2s, s > 1.

Proof. Recall that πS4 (S3) ' πS4 (S2) ' Z/2 [20, Theorems 15.1, 15.2].
Therefore, the exact sequence for πS4 arising from (3.1) shows that
πS4 (M3(q)) = 0 for q odd and, for q = 2s, there is an exact sequence

0→ Z/2→ πS4 (M3
s )→ Z/2→ 0.

Note that πS4 (M3
1 ) ' π6(M5

1 ), so [20, Lemma 10.2] implies that it
embeds into π6(S3) ' Z/12 [20, Theorem 16.1]. Hence, πS4 (M3

1 ) '
Z/4. For r > 1 consider the commutative diagram of triangles

S2 2−−−−→ S2 −−−−→ M3
1 −−−−→ S3

1

y 2r−1

y y 1

y
S2 2r−−−−→ S2 −−−−→ M3

s −−−−→ S3,

(3.3)

It induces the commutative diagram with exact rows

0 −−−−→ Z/2 −−−−→ πS4 (M3
1 ) −−−−→ Z/2 −−−−→ 0

0

y y y1

0 −−−−→ Z/2 −−−−→ πS4 (M3
s ) −−−−→ Z/2 −−−−→ 0,

which shows that the second row is the pushdown of the first one
along zero map, hence, it splits. �

Proposition 3.3.

Hos(Md
s ,M

d
r ) '

{
Z/4 if r = s = 1,

Z/2⊕ Z/2m otherwise, where m = min(r, s).

Proof. Obviously, we may suppose that m = 3. Since πS4 (M3
1 ) ' Z/4

is a module over the ring Hos(M3
1 ,M

3
1 ), 2Hos(M3

1 ,M
3
1 ) 6= 0, hence,

Hos(M3
1 ,M

3
1 ) ' Z/4. On the other hand, applying the functor Hos( ,M3

1 )

São Paulo J.Math.Sci. 4, 2 (2010), 209–249



Matrix problems and stable homotopy 223

to the diagram (3.3) with s > 1, we get a commutative diagram with
exact rows

0 −−−−→ Z/2 −−−−→ Hos(M3
1 ,M

3
1 ) −−−−→ Z/2 −−−−→ 0

1

x x x0

0 −−−−→ Z/2 −−−−→ Hos(M3
s ,M

3
1 ) −−−−→ Z/2 −−−−→ 0.

Thus its second row is the pull-back of the first one along the zero
map, hence, it splits. The dual consideration shows that the sequence
(3.2) for r > 1 can be obtained as a pushdown of the sequence for
r = 1, hence, it splits too. �

Note that the latter decomposition in this statement is that of
groups. Taking into account the multiplication, it is convenient to

present morphisms Md
s → Md

r as triangular matrices

(
a b
0 c

)
, with

a ∈ Z/2r, b ∈ Z/2, c ∈ Z/2s, 2s−ma ≡ 2r−mc mod 2µ, where m =
min(s, r), µ = max(s, r). The product of morphisms correspond then
to the usual product of matrices, while the sum of morphisms corre-
spond to the usual sum of matrices, with the only exception, when
s = r = 1: then we must add matrices as follows:(

a b
0 a

)
+

(
a′ b′

0 c′

)
=

(
a+ a′ b+ b′ + aa′

0 a+ a′

)
.

Let now n = 3,m = 1, then S3 = A3,1 †B3,1, where A3,1 = S3S1

and B3,1 = SS2. Hence, polyhedra from A3,1 are just bouquets of
spheres S4, while those from B are bouquets of spheres S4, S3 and
Moore spaces M4(q). For convenience, we set M4

0 = S4 and M4
∞ = S3

and order the set of indices by the rule 1 < 2 < · · · < ∞ < 0. As we
have seen, Hos(S4,M4(q)) = 0 for q odd, Hos(S4,M4

r ) = Hr ' Z/2 for
r 6= 0 and Hos(S4, S4) = H0 ' Z. Therefore, a map a : A→ B, where
A ∈ A , B ∈ B can be presented as a block matrix (ai), where the i-th
block (0 ≤ i ≤ ∞) is with the entries from Hr. The automorphisms
of A give rise to the simultaneous elementary transformations of the
columns of all matrices ai. The automorphisms of B give rise to
the independent elementary transformations of each block as well as
to addition of the rows of the blocks with bigger indices to those
with smaller ones (with respect to the just defined order). It can be
symbolically written as in the table below. Note that we have written
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inside each block the group, where its elements are from:

��

Z 0

Z/2 ∞

. . .

Z/2 2

Z/2 1

Now simple considerations show that every object from Bim(S3,1)
decomposes into a direct sum of objects given by the 1 × 1 matrices

q ∈ H0, ηr ∈ Hr, r 6= 0 and

(
2s

ηr

)
∈ H0 ⊕Hr, r 6= 0, s > 0. The first

case corresponds to the Moore space M5(q), while the second and
the third cases define new polyhedra, respectively, C5(η), C5(2rη),
C5(η2s) and C5(2rη2s), given by the gluing diagrams

5 • •

||||||||||| •

||||||||||| •

vvvvvvvvvvvvv

4 • • • •

3 • • • •

C5(η) C5(2rη) C5(η2s) C5(2rη2s)

The words in brackets show the corresponding gluings. For instance,
the diagram C5(2η) is the gluing diagram for the suspended real pro-
jective space S2P3

R, while C5(η) is that for the suspended complex
projective plane SP2

C.
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To find endomorphisms of these atoms, note that there are triangles

S3 ∨ S4 (2r η)−−−−→ S3 → C5(2rη)→ S4 ∨ S5, (3.4)

S4

(
η
2s

)
−−−−→ S3 ∨ S4 → C5(η2s)→ S5, (3.5)

S3 ∨ S4

(
2r η
0 2s

)
−−−−−−−→ C5(2rη2s)→ S3 ∨ S4. (3.6)

By Theorem 1.1, Es(C5(2rη)), up to an ideal I such that I2 = 0,
is isomorphic to the endomorphism ring of the map f = (2r η) in
the category Bim(S )/J . An endomorphism of f in Bim(S ) is a

pair (α, β), where α =

(
a bη
0 c

)
(a, c ∈ Z, b ∈ Z/2), β ∈ Z, such

that βf = fα, i.e. β = a ≡ c mod 2. Moreover, one easily sees

that J consists of the pairs with the first component

(
2rx xη
0 0

)
,

whence Es(C5(2rη))/I2 is isomorphic to the subring of Z/2r+1 ⊕ Z
consisting of all pairs (a, c) with a ≡ c mod 2. This ring has no
nontrivial idempotents, hence, C5(2rη) is indeed indecomposable, that
is, an atom. Moreover, using the triangle (3.4), one can see that I '
Z/2 and Es(C5(2rη)) is isomorphic to the ring of triangular matrices(
a b
0 c

)
, where a ∈ Z/2r+1, b ∈ Z/2, c ∈ Z, a ≡ c mod 2. The same

result for Es(C5(η2r)) follows from the triangle (3.5). Finally, one gets
from the triangle (3.6) that Es(C5(2rη2s)) is isomorphic to the ring of

triangular matrices

(
a b
0 c

)
, where a ∈ Z/2r, b ∈ Z/2, c ∈ Z/2s, a ≡

c mod 2. Therefore these polyhedra are also atoms. They are called
Chang atoms Moreover, the last ring is local, thus the multiplicity
of C5(2rη2s) (as well as of any its shift) in a decomposition of a
polyhedron into a bouquet of indecomposables is the same for all
such decompositions. Note that the same is true for suspended atoms
Md(q). On the other hand, the triangles (3.4) and (3.5) imply that
H3(C5(2rη) ' H4(C5(η2r) ' Z/2r, while other homologies of these
spaces are zero. Altogether, it gives the following description of the
category S3.
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Theorem 3.4 (Whitehead–Chang, [25, 11]). Any polyhedron from S3

uniquely (up to permutation of summands) decomposes into a bou-
quet of spheres S3, S4, S5, suspended Moore atoms M4(q),M5(q) and
Chang atoms C5(η), C5(2rη), C5(η2s) and C5(2rη2s).

Using terms from the representation theory, one can say that the
categories Sn, n ≤ 3, are discrete (or essentially finite). In this
context it means that there are only finitely many isomorphism classes
of polyhedra in Sn with a prescribed exponent of the torsion part of
homologies. (So it looks similar to the description of finitely generated
abelian groups.)

4. Tame case: Baues–Hennes Theorem

We study now the category S4. By Theorem 2.2, S4 = A † B,
where A = S3S2, B = S2S2. By Theorem 3.1, every polyhedron
from A (from B) is a bouquet of spheres S5, S6 and Moore atoms
M6(q) (respectively, S4, S5 and M5(q)). We have already calculated
morphisms between indecomposables in S2. Just in the same way one
calculates morphisms from the objects of S3S2 to those of S2S2. We
omit the details, which are standard; the result is presented in Table 1.
Actually, the groups Hos(M6

s ,M
5
r ) can be naturally considered as the

Table 1.

S5 S6 M6
1 M6

s (s > 1)

S4 Z/2 Z/2 Z/4 Z/2⊕ Z/2

S5 Z Z/2 Z/2 Z/2

M5
1 Z/2 Z/4 Z/2⊕ Z/2 Z/4⊕ Z/2

M5
r (r > 1) Z/2 Z/2⊕ Z/2 Z/2⊕ Z/4 Z/2⊕ Z/2⊕ Z/2

groups of upper triangular matrices

(
a b
0 c

)
over Z/2 with b = 0 if
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s = r = 1. Again the sum of morphisms correspond to the usual sum
of matrices, with the exceptions for s > 1, r = 1 and s = 1, r > 1,
when the sum of matrices must be twisted as follows:(

a b
0 c

)
+

(
a′ b′

0 c′

)
=

(
a+ a′ b+ b′ + aa′

0 c+ c′

)
if s > 1, r = 1,(

a b
0 c

)
+

(
a′ b′

0 c′

)
=

(
a+ a′ b+ b′ + cc′′

0 c+ c′

)
if s = 1, r > 1.

The multiplication of elements from Hos(M6
s ,M

5
r ) by morphisms be-

tween objects from A and B (also presented by triangular matrices as
in Section 3) correspond to the usual product of matrices. Therefore,
a morphism A → B can be naturally considered as a block matrix
presented in Table 2. In this table a symbol 2 (∞) shows that the

Table 2.x



(1) (2) (3) . . . . . . (3) (2) (1)

(1) 2 2 2 . . . 2 2 . . . 2 2 0

(2) 2 2 2 . . . 2 2 . . . 2 2 2
(3) 2 2 2 . . . 2 2 . . . 2 2 2

...
...

...
. . .

...
...

. . .
...

...
...

2 2 2 . . . 2 2 . . . 2 2 2

0 0 0 . . . ∞ 2 . . . 2 2 2

...
...

...
. . .

...
...

. . .
...

...
...

(3) 0 0 0 . . . 0 2 . . . 2 2 2
(2) 0 0 0 . . . 0 2 . . . 2 2 2
(1) 0 0 0 . . . 0 2 . . . 2 2 2


−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

corresponding block has values from Z/2 (respectively, from Z). Zeros
show that the corresponding block is always zero. Arrows on the left
and below symbolize the action of morphisms between the objects
from A and B respectively. The labels (1), (2), . . . (or (1), (2), . . .)
show that the corresponding horizontal (respectively, vertical) stripes
are of the same size and we must use the same elementary transfor-
mations in both of them. These stripes correspond to Md

r with the
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same d and r. Note that there are 2 horizontal and 2 vertical stripes
without such labels. They correspond to spheres Sd.

This matrix problem is a slight variation of a well-known one,
namely, representations of bunches of chains (see [9] or [10, Appendix
B]). It implies a description of indecomposable objects in the cate-
gory Bim(S4,2), hence, in S4. We call them strings and bands, as
it is usual in the representation theory of algebras. We do not pro-
vide details (see [15]), only explain the situation non-formally and just
present the corresponding attachment diagrams (Table 3). Namely,
a string can be considered as a sequence of blocks b1, b2, . . . , bm such
that, for each i ∈ { 1, 2, . . . ,m− 1 }, the horizontal (or, respectively,
vertical) stripe of the block bi is different from that of the block bi+1,
but mareked with the same label. Moreover, if i < m − 1, then the
horizontal (respectively, vertical) stripe of bi+2 diffres from that of
bi. A band is defined in the same way, but is cyclic, which means
that if we set bm+i = bi, the above rules still holds for i = m. Then
we glue the atom correseponding to the horizontal stripe of bi to the
atom correseponding to its vertical stripe (for each i) using the map
correseponding to this block and taking for bi+1 the same copy of the
“horizontal” (respectively, “vertical”) atom as for bi.

It is convenient to distinguish two types of strings: usual and dec-
orated ; I hope that the pictures show the difference. “Decorations”
(one for each string) are shown with double lines. We omit integers
precising the degrees of “vertical” attachments, as well as one pre-
cising the “long” attachment in a decorated strings of the first kind;
they can be arbitrary and differ for different attachments. Certainly,
each diagram is actually finite: it starts at any place on the left and
stops at any place on the right.
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usual strings

7 • • •

6 •

77777777777777 •

77777777777777 •

DDDDDDDDD

· · ·
5 •

�������������� •

�������������� •

��������������

· · ·
4 •

DDDDDDDDD • •

decorated strings

7 •

55555555555 •

55555555555 • •

6 •

||||||| •

											 •

55555555555 •

BBBBBBB

5 • • •

											
· · · · · ·

4 • •

���������������

��������������� •

and

7 •

55555555555 •

											

											 •

											
· · ·

6 •

											 •

											

											 •

55555555555 •

BBBBBBB

5 •

BBBBBB
• • •

· · ·
4 • • •

Multiple bullets in the case of bands symbolize not a unique cell but
several (say m) copies of it (the same for each ball). All attachments
except the one marked by the wavy line are “natural”: the first copy of
an upper cell is attached to the first copy of a lower one, the second to
the second, etc. The attachment marked by the wavy line is “twisted”
by an invertible Frobenius matrix Φ of size m×m over the field Z/2
with the characteristic polynomial f(x), which must be a power of
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bands

7 • • • • • • • • •

6 • • •

77777777777777 • • •
JJJJJ • • •

· · ·
5 • • •

�������������� • • •

�������������� • • •

��������������

4 • • •

Φ3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s

3s3s3s3s3s3s

• • • • • •

JJJJJJJJJJ

an irreducible one and such that f(0) 6= 0. For instance, if f(x) =

x3 + x+ 1, i.e. m = 3 and Φ =

(
0 0 1
1 0 0
0 1 1

)
, this attachment is:

6 •

$$IIIIIIIIIIIIII •

$$IIIIIIIIIIIIII •

ttjjjjjjjjjjjjjjjjjjjjjjj

��4 • • •

One can check that all strings and bands are indecomposable and
pairwise non-isomorphic. Note also that all atoms from S4 are p-
primary (2-primary, except Moore atoms Md(pr) with odd p, which
are p-primary). Therefore, we have the uniqueness of decomposition
of spaces from S4 into bouquets of suspended atoms. So we get the
following result. We call strings and bands Baues atoms. For instance,
the suspended real projective space S3P4

R (cf. the picture (2.1)) is a
band with f(x) = x− 1.

Theorem 4.1 (Baues–Hennes [8]). Any polyhedron from S4 decom-
poses uniquely into a bouquet of spheres, suspended Moore atoms, sus-
pended Chang atoms and Baues atoms.

In Section 7 we shall see that actually S4 is the last case where
a “good” description of polyhedra is possible. Starting from S5 this
problem becomes wild.
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5. Torsion free polyhedra. Finite case

Consider now torsion free case. Note that if all Hk(X) are torsion
free, the attachment diagram cannot contain “Moore fragments”

•
•

In particular, among the atoms from Sections 3 and 4 only Chang
atom C5 = C5(η) and the double Chang atom C7

2 = C7(η2) with the
attachment diagram

7 •

6

5

4 •
are torsion free. Therefore, if we set in Theorem 2.4 n = 5,m = 4,
the category A 0 consists of bouquets of spheres S8 and the category
B0 consists of bouquets of spheres Sd (5 ≤ d ≤ 8), suspended Chang
atoms C7, C8 and suspended double Chang atoms C8

2 . Obviously,
S 0(S8, S8) = 0. Easy calculation give the following values of the
groups Γ(B) = S 0(S8, B) for atoms B from B0:

B S5 S6 S7 C7 C8 C8
2

Γ Z/24 Z/2 Z/2 Z/12 0 Z/12

Morphisms of these spaces induce monomorphisms Γ(S7)→ Γ(C7)→
Γ(S5) and Γ(S6)→ Γ(S5), epimorphism Γ(S5)→ Γ(C8

2 ), and isomor-
phisms Γ(S7) → Γ(S6) and Γ(S7) → Γ(S6). Thus, an object from
Bim(S 0

5,4) can be presented by a block matrix as in Table 4.
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Table 3.

��

Z/24

��

Z/12

Z/12

2

OO

��

Z/2
6

OO

Z/2

12

RR

Here inside each blocks we have written the groups, wherefrom the
coefficients of this block are. The arrows show the allowed transfor-
mation between blocks. An integer k in the arrows point out that,
when we perform this transformation, the row must be multiplied by
k. (No integer means that k = 1.) For instance, we can add the rows
of the third matrix multiplied by 2 to the rows of the first one. Cer-
tainly, compositions of these transformations are also allowed. Thus,
for instance, we can add the rows of the third matrix multiplied by
2 to the rows of the second one too. The arising matrix problem is
rather simple. It is of finite type, and Table 6 shows the attachment
diagrams of the corresponding atoms from T5. We call them A-atoms
of the 1st kind.
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Table 4.

9 • •

���������������� •

���������������� •

���������������� •

����������������

8 •
7 • •
6 •
5 • • • • •

A(v) A(ηv) A(η2v) A(vη) A(vη2)

9 •

���������������� •

















 •

���������������� •

����������������

8 • •
7 • • • •
6 • •
5 • • • •

A(η2vη) A(η2vη2) A(ηvη) A(ηvη2)

The integer v show, which multiple of the generator of the group
πS8 (S5) ' Z/24 is used for the “long” attachment. Actually, 1 ≤ v ≤
12 in the case of A(v), 1 ≤ v ≤ 3 in the case of A(ηvη), 1 ≤ v ≤ 6 in
all other cases. Note that A(1) represents the suspended quaternion
projective plane SP2

H, while A(η1) represents the suspended complex
projective space S3P3

C.

So we have got a description of polyhedra from T5.

Theorem 5.1 (Baues–Drozd [4]). Every polyhedron from T5 is a
bouquet of spheres, suspended Chang and double Chang atoms, and
the A-atoms of the first kind.

Note that this time the decomposition is not unique; even the can-
cellation law does not hold. For instance, A(3) ⊕ S5 ' A(9) ⊕ S5

[4, 15]; see ibidem more on decomposition laws.
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Analogous is the case of T6, when we take m = 4. We omit details,
just schematically presenting the arising matrix problem in Table 6.
The dashed line from the 4th to the 6th level show the transformation
that only acts on the left-hand column (on Z/2 components). The

Table 5.

��

Z/24 0

��

Z/12 0

Z/12 0

2

OO

��

��

�

�
�

%

+

Z/2 Z/2
6

OO

_

6

��

12

��

0 Z/2

��

Z/2 Z/24

12

OO

0 Z/12

2

OO

resulting list of atoms (their attachment diagrams) see in the Table 7.
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Table 6.

11 •

������������ •

������������ •

������������ •

������������ •

������������
10 •

������������ •

������������ •

������������ •

������������ •

������������
9 • • •

8 • • •

7 • • • • •

6 • • • • •
A(vη2w) A(ηvη2wη) A(η2vη2wη2) A(vη2wη) A(ηvη2w)

11 •

��������������� •

��������������� •

��������������� •

���������������

10 •

��������������� •

��������������� •

��������������� •

���������������

9 • • •
8 • • •
7 • • • •
6 • • • •

A(vη2wη2) A(η2vη2w) A(η2vη2wη) A(ηvη2wη2)

We call them A-atoms of the second kind. The integers v and
w show, as above, the multiple of generator, respectively, of πS9 (S6)
and πS10(S7) used for the corresponding attachments. In all cases
v, w ∈ { 1, 2, 3, 4, 5, 6 }.

So we have got a description of polyhedra from T6.

Theorem 5.2 (Baues–Drozd [7]). Every polyhedron from T6 is a bou-
quet of spheres, suspended Chang and double Chang atoms, suspended
A-atoms of the first kind and A-atoms of the second kind.

In the next section we shall use the values of Hos-groups between
Chang atoms and spheres. To deal with the Chang atom C5 we apply
the bifunctor Hos to the cofibration sequence

S4 η−→ S3 → C5 → S5 η−→ S4. (5.1)
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It gives the commutative diagram with exact rows and columns (we
write here (X,Y ) instead of Hos(X,Y ) )

Z −−−−→ Z/2 −−−−→ (C5, S4) −−−−→ 0 −−−−→ Zy y y y y
Z/2 −−−−→ Z/2 −−−−→ (C5, S4) −−−−→ Z −−−−→ Z/2y y y y y

(S4, C5) −−−−→ (S5, C5) −−−−→ (C5, C5) −−−−→ (S3, C5) −−−−→ (S4, C5)y y y y y
0 −−−−→ Z −−−−→ (C5, S5) −−−−→ 0 −−−−→ 0y y y y y
Z −−−−→ Z/2 −−−−→ (C5, S4) −−−−→ 0 −−−−→ Z,

where all maps Z→ Z/2 are surjective and all maps Z/2→ Z/2 are
bijective. It gives the following values of Hos-groups:

Hos(C5, S4) = Hos(S4, C5) = 0

Hos(S3, C5) = Hos(C5, S5) = Z,
Hos(C5, S3) = Hos(S5, C5) = 2Z,
Hos(C5, C5) = D,

where D (the “dyad”) is the subrings of Z × Z consisting of all pairs
(a, b) with a ≡ b mod 2.

Similar observations applied to the suspended versions of the se-
quence (5.1) and the cofibration sequence

S6 η2−→ S4 → C7
2 → S7 η2−→ S5

give Table 8 of the values Hos(X,Y ) for suspended atoms from T4.

In this table the Hos-groups for suspended Chang atoms are pre-
sented in matrix form, emphasizing which components have come from
the cells of given dimensions. The superscripts = show that the di-
agonal parts of the corresponding matrices are with entries not from
Z × Z, but from D. For instance, Es(C7

2 ) is presented as the ring of
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Table 7.

S4 C7
2 : 4 7 C6 : 4 6 S5 C7 : 5 7 S6 S7

S4 Z 2Z Z/12 2Z 0 Z/2 0 Z/12 Z/2 Z/24

C7
2 : 4 Z Z= Z/12 2Z 0 Z/2 0 Z/12 0 Z/12

7 0 0 Z= 0 0 0 0 Z 0 2Z

C6 : 4 Z Z Z/12 Z= 0 0 0 Z/12 0 2Z

6 0 0 0 0 Z= 0 0 0 2Z 0

S5 0 0 0 0 0 Z 2Z 0 Z/2 Z/2

C7 : 5 0 0 0 0 0 Z Z= 0 0 0

7 0 0 2Z 0 0 0 0 Z= 0 2Z

S6 0 0 Z/2 0 Z 0 0 0 Z Z/2

S7 0 0 Z 0 0 0 0 Z 0 Z

triangular matrices

(
a b
0 c

)
, where a, c ∈ Z, a ≡ c mod 2, b ∈ Z/12.

Under such presentation the multiplication of morphisms turns into
the multiplication of matrices.

6. Torsion free polyhedra. Tame case

The category T7 is more complicated. To describe it, we use The-
orem 2.4 with n = 7,m = 3. Then A 0 consists of the bouquets of
spheres Sd (10 ≤ d ≤ 12) and suspended Chang atoms C12, while
B0 consists of bouquets of spheres Sd (7 ≤ d ≤ 10) suspended Chang
atoms C9, C10 and suspended double Chang atoms C10

2 . The calcula-
tions similar to those of the end of preceding section give Table 9 of
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the values of groups S 0(X,Y ) for the suspended atoms X ∈ A 0 and
Y ∈ B0, also presented in matrix form.

Table 8.

S10 S11 S12 C12 : 10 12

S7 Z/24 0 0 Z/24 0

C10
2 : 7 0 0 Z/2 Z/24∗ 0

10 0 0 Z/2 0 Z/2∗

C9 : 7 Z/12 0 0 Z/24∗ 0

9 0 0 Z/24 0 Z/2∗

S8 Z/2 Z/24 0 0 0

C10 : 8 0 Z/12 0 0 0

10 0 0 0 0 0

S9 Z/2 Z/2 Z/24 0 Z/12

S10 0 Z/2 Z/2 0 0

The superscripts ∗ show that in the corresponding groups we iden-
tify the elements of order 2. So actually, these values are isomorphic
to Z/24, but it is convenient to consider them as (Z/24⊕Z/2)/(12, 1).
Then again the action of morphisms from A 0 and B0, as presented
in Table 8 (or, rather, its suspended version) turns into the multipli-
cation of matrices. Again we obtain a bimodule problem close to that
of bunches of chains, especially, in its “decorated” version (see [17]).
To present the answer (for details see [16]), we introduce the following
notations and definitions.
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Definition 6.1. (1) We consider chains Ek and Fk (1 ≤ k ≤ 4):

E1 = { e1 < e2 < e4 } , F1 = { f4 < f1 } ,
E2 = { e5 < e9 } , F2 = { f3 < f5 } ,
E3 = { e6 < e7 } , F3 = { f2 } ,
E4 =

{
e3 < e10 < e′9 < e′6

}
, F4 =

{
f ′1 < f ′2 < f ′3

}
.

Actually, the elements ei (fj) correspond to the rows (columns)

of Table 9, while the relations
c
− correspond to the elements of

the groups C 0(A,B). We need extra elements e′i and f ′j since

the entries Z/2 in this table behave in a different way than
the other ones.

We set E =
⋃4
i=1 Ei, F =

⋃4
i=1 Fi, X = E ∪ F. x ≈ y means

that x and y belong to the same set Ei or Fi.
(2) We define symmetric relations ∼ and − on X setting x − y

if x ∈ Ei, y ∈ Fi or vice versa; ei ∼ e′i(i ∈ { 6, 9 } , fj ∼
f ′j (1 ≤ j ≤ 3). We also define the symmetric relations

c
−,

where c ∈ { 1, 2, 3, 4, 6 }, setting ei
c
− fj if ei− fj and the (ij)-

th entry in Table 9 is Z/m with c | m. We denote by R the

set of all relations {∼,
c
−} and by v(c) the biggest d such that

2d divides c.
(3) We define a word as a sequence w = x1r2x2r3 . . . rlxl where

xi ∈ X, ri ∈ R such that
(a) xk−1rkxk in X for each 1 < k ≤ l;
(b) if rk =∼, then rk+1 =

c
− and vice versa;

(c) if r2 =
c
− (respectively, rl =

c
−), there is no element y ∈ X

such that x1 ∼ y (respectively, xl ∼ y);

(d) if rk =
c
− with v(c) = 1, then either 2 < k < l, or k =

2, x1 = e1, or k = l, xl = x1;
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(e) if r =
c
− with v(c) = 2, then r can only occur in the

following words or their reverse:

e4 ∼ e5rf3 ∼ . . . (of any length),

e1rf4 ∼ f5, e3 ∼ e2rf4 ∼ f5,

. . .
c′

− e4 ∼ e5rf3 ∼ . . . (of any length),

e1rf4 ∼ f5

c′

− . . . (of any length),

e3 ∼ e2rf4 ∼ f5

c′

− . . . (of any length),

e1rf4 ∼ f5

c′

− . . . (of any length),

e1rf1 ∼ f ′1, e′6 ∼ e6rf2 ∼ f ′2, e′9 ∼ e9rf3 ∼ f ′3,

where c′ ≡ 0 (mod 3);

(f) if w contains a subword ei
c
− fj , c ∈ { 3, 9 } or its re-

verse, it does not contain any subword ei′
c′

− fj′ , c
′ 6≡ 0

(mod 3), ei ≈ ei′ (equivalently, fj ≈ fj′) or its reverse.
Here the reverse to the word w is the word w∗ = xlrlxl−1 . . . x2r2x1.
We call l the length of the word w.

(4) We define a cycle as a pair z = (w, r1), where w is a word such

that r2 = rl =∼ and rk 6=
c
− with v(c) = 2, while r1 =

c
− with

v(c) 6= 2 and xlr1x1 in X. For such a cycle we set xql+k = xk
and rql+k = rk for any q and 1 ≤ k ≤ l.

(5) The m-th shift of the cycle z = (w, r1) is defined as the cycle

z(m) = (w(m), r2m+1), where w(m) = x2m+1r2m+2x2m+2 . . . r2mx2m.
(6) A cycle (w, r1) is called periodic if w is of the form w =

vr1vr1 . . . r1v for a shorter cycle (v, r1).
(7) We call two words, w and w′ = x1r

′
2x2r

′
3 . . . r

′
lxl (with the

same xk), elementary congruent if there are two indices k1, k2
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such that

rk1 =
3c
−, rk2 =

d
− for some c 6= 3, d 6= 3,

r′k1 =
c
−, r′k2 =

3d
−,

r′k = rk for k /∈ { k1, k2 } ,
xk1 ≈ xk2 or xk1 ≈ xk2−1.

(8) We call two words w,w′ congruent and write w ≡ w′ if there
is a sequence of words w = w1, w2, . . . , wn = w such that wk
and wk+1 are elementary congruent for 1 ≤ k < n. We call
two cycles z = (w, r1) and z′ = (w′, r′1) congruent and write
z ≡ z′ if w′ ≡ z and r′1 = r1.

We recall that two polyhedra X,Y are called congruent if X ∨Z '
Y ∨ Z for some polyhedron Z. Then we write X ≡ Y .

Theorem 6.2. (1) Every word w defines an indecomposable poly-
hedron P (w) from T7, called string polyhedron.

(2) Let π(t) 6= t be an irreducible polynomial over the field Z/2.
Every triple (z, π(t),m), where is a non-periodic cycle and
m ∈ N, defines an indecomposable polyhedron P (z, π,m) from
T7, called band polyhedron.

(3) Every indecomposable polyhedron from T7 is congruent either
to a string or to a band one.

(4) P (w) ≡ P (w′) if and only if either w′ ≡ w or w′ ≡ w∗.
(5) P (z, π(t),m) ≡ P (z′, π′(t),m) if and only if m = m′ and one

of the following possibilities hold:
(a) π′(t) = π(t) and either z′ ≡ z(k) with k even or z′ = z∗(k)

with k odd;
(b) π′(t) = tdπ(1/t), where d = deg π, and either z′ = z(k)

with k odd or z′ = z∗(k) with k even.
(6) Neither string polyhedron is congruent to a band one.

The cofibration sequence

A
f−→ B → Cf → SA, A ∈ A 0, B ∈ B0,

and the attachment diagram of a string polyhedron P (w) is con-
structed as follows.
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(1) The indecomposable summands of A correspond to the follow-
ing subwords of w (or their reverse):

S10 to f1 ∼ f ′1,
S11 to f2 ∼ f ′2,
S12 to f3 ∼ f ′3,
C12 to f4 ∼ f5.

(2) The indecomposable summands of B correspond to the fol-
lowing subwords of w (or their reverse):

S7 to e1,

C10
2 to e2 ∼ e3,

C9 to e4 ∼ e5,

S8 to e6 ∼ e′6,
C10 to e7,

S9 to e9 ∼ e′9,
S10 to e10.

(3) The attachments correspond to the subwords ei
c
− fj (or their

reverse). Namely, such an attachment starts at the f -end of
the corresponding subword and ends at its e-end; the number
c shows which multiple of the generator of the (ij)-th group
from Table 9 must be taken.

For instance, if

w = e10

1
− f ′2 ∼ f2

8
− e6 ∼ e′6

1
− f ′1 ∼ f1

2
− e4

∼ e5

6
− f5 ∼ f4

1
− e2 ∼ e3

1
− f ′3 ∼ f3

2
− e5

∼ e4

3
− f1 ∼ f ′1

1
− e′9 ∼ e9

12
− f3 ∼ f ′3,
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the polyhedron P (w) has the attachment diagram

13 •

6
�������

�������

•

2

������������ •

12
�������

�������

12 •

8

*******

*******

11 •

2

*******

*******

•

1

*******

*******

•

3
�������

�������

10 • •

9 • • •

8 •

7 • • •

Let now P (z, π(t),m) be a band polyhedron. Replacing w by w∗,
we may suppose that x1 ∈ E, xn ∈ F. Let also Φ be the Frobenius
matrix with the characteristic polynomial π(t)m. Then the cofibration
sequence and the attachment diagram are constructed as follows.

(1) Do the construction as above for the word w.
(2) Replace every summand Aj of A and every summand Bi of B

by m copies of it, Aj1, . . . , Ajm and Bi1, . . . , Bim.

(3) If there was an attachment Aj
c−→ Bi, replace it by the attach-

ments Ajk
c−→ Bik (1 ≤ k ≤ m).

(4) If Aj is the last summand of A, Bi is the first summand of

B and r1 =
c
−, add new attachments Ajk

c−→ Bil in all cases,
when the (lk)-th coefficient of the matrix Φ is nonzero.

For instance, consider the band polyhedron P (z, t2 + t + 1, 3) z =

(w,
1
−), where

w = e2 ∼ e3

1
− f ′3 ∼ f3

2
− e9 ∼ e′9

1
− f ′1 ∼ f1

3
− e4 ∼ e5

6
− f5 ∼ f4.
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Then the attachment diagram is

13 • • ••

2

88888888

88888888

88888888

88888888

• • ••

6
��������

��������

��������

��������

12

11 • • ••

3

88888888

88888888

88888888

88888888

• • ••

10 • • ••

9 • • •• • • ••

8

7 • • ••
1

,l -m -m .n .n /o /o 0p 1q 1q 2r 2r 3s 4t 4t
7w 8x 9y :z ;{ <| =}

>~
?�
@�
A�
B�
C�
C�
D�

• • ••

Here the double lines show the attachments like

• • • •
• • • •

while the wavy line shows the attachment

•
JJJJJJ •

JJJJJJ •
JJJJJJ •

tttttt
ffffffffffffff

• • • •
ruled by the Frobenius matrix with the characteristic polynomial
π(t)2 = t4 + t2 + 1, namely,0 0 0 1

1 0 0 0
0 1 0 1
0 0 1 0

 .

In particular, the band polyhedron P ((e4 ∼ e5

1
− f5 ∼ f4,

1
−), t −

1, 1) with the attachement diagram

13 •

1
�������

�������

12

11 •

1
�������

�������

10

9 •
8

7 •

describes the suspended complex projective space S5P4
C.
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7. Wild cases

Since we are dealing with additive categories that are not categories
over a filed, we have to precise the notion of wildness. The following
one seems to work in all known cases.

Definition 7.1. We call an additive category C wild if, there is a
field k such that for every finitely generated k-algebra Λ there is a full
subcategory CΛ ⊆ S and an epivalence CΛ → Λ-mod (the category
of Λ-modules that are finite dimensional over k).

One can see that for algebras over a field this definition is equivalent
to the usual one (see, for instance [14]). One can also easily show that
if a category D is wild and there is an epivalence C ′ → D for a full
subcategory C ′ ⊆ C , then C is wild as well.

Now we present the results on wildness of categories Sn and Tn.

Theorem 7.2 (Baues [6]). If n > 4, the category Sn is wild.

Proof. Obviously, one only has to prove the claim for n = 5. The cat-
egory S5 contains the full subcategory C = A †B, where A consists
of bouquets of suspended Moore atom A = M6(2) and B consists of
bouquets of suspended Moore atoms B = M8(2). Let V = A SB.
Since Hos(B,A) = 0, Corollary 1.2 is applicable. Moreover, the ideal
J in this case is zero, so C /I ' Bim(V ) with I 2 = 0, hence, the
natural functor C → Bim(V ) is an epivalence.

Consider the cofibration sequence

S7 2−→ S7 → A→ S8 2−→ S8. (7.1)

Apply to it the functors Hos( , S6) and Hos( , S5). Taking into ac-
count the Hopf map η : S6 → S5 we get the commutative diagram
with exact rows

0 −−−−→ Z/2 −−−−→ Hos(A,S6) −−−−→ Z/2 −−−−→ 0

η∗

y y yo
0 −−−−→ Z/2 −−−−→ Hos(A,S5) −−−−→ Z/2 −−−−→ 0 .

Since η3 = 4ν, where ν is the element of order 8 in Hos(S8, S5), the
map η∗ in this diagram is zero, therefore, the lower exact sequence
splits and Hos(A,S5) ' Z/2 ⊕ Z/2.Quite similarly, one shows that
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Hos(S8, B) ' Z/2 ⊕ Z/2. Now apply the functors Hos( , S5) and
Hos( , B) to the exact sequence (7.1) and take into account the map
S5 → B form the definition of B = M6(2). Since Hos(S7, B) ' Z/2,
we get the commutative diagram with exact rows

0 −−−−→ Z/2 −−−−→ Hos(A,S5) −−−−→ Z/2 −−−−→ 0y y yo
0 −−−−→ Z/2⊕ Z/2 −−−−→ Hos(A,B) −−−−→ Z/2 −−−−→ 0 .

We know that the upper row of this diagram splits. Hence, the lower
row splits too, so Hos(A,B) ' (Z/2)3. Recall that Es(A) ' Es(B) '
Z/4 (Proposition 3.3). Hence, there is an epivalence Bim(V ) →
Λ-mod, where Λ is the path algebra of the quiver • (( // 66 • over the
field Z/2. The latter is well-known to be wild, therefore, so is also
S5. �

Theorem 7.3 ([16]). The category Tn is wild for n > 7.

Proof. Again we only have to prove it for n = 8. The category T8

contains the full subcategory C = A †V B, where A consists of bou-
quets of Chang atoms C14

2 , B consists of bouquets of spheres S8 and
S11, and V = B(S 0

8,3)A . Moreover, I 0
8,3 ∩ BimV = 0, so there is an

epivalence C → Bim(V ). Consider the cofibration sequence

S13 η2−→ S11 → C14
2 → S14 → S12

and apply to it the functor Hos( , S11). We get the exact sequence

Z/2 (η2)∗−−−→ Z/24→ Hos(C14
2 , S11)→ Z→ Z/2,

wherefrom S 0(C14
2 , S11) ' Z/12. Moreover, there is a commutative

diagram of cofibration sequences

S13 η−−−−→ S12 −−−−→ C14 −−−−→ S14 η−−−−→ S13

Idnolimits

y η

y y yIdnolimits

yη
S13 η2−−−−→ S11 −−−−→ C14

2 −−−−→ S14 −−−−→
η2

S12 .
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Applying the functor Hos( , S8), we get the commutative diagram
with exact rows

0 −−−−→ Z/2 −−−−→ Hos(C14
2 , S8) −−−−→ Z/24 −−−−→ 0y y y

0 −−−−→ Z/2 −−−−→ Hos(C14, S8) −−−−→ 0 −−−−→ 0 .

(Recall that πSd+4(Sd) = πSd+5(Sd) = 0 and πSd+6(Sd) = Z/2 [24]).

Therefore, S 0(C14
2 , S8) ' Z/24 ⊕ Z/2. So we present maps a ∈

V (A,B), where A ∈ A , B ∈ B, as block-triangular matrices

a =

(
a1 a2

0 a3

)
,

where a1 is with the coefficients from Z/24, a2 is with coefficients from
Z/2 and a3 with coefficients from Z/12. On the other hand, maps
α : A→ A′, where A,A′ ∈ A , and β : B → B′, where B,B′ ∈ B can
be presented by block- triangular matrices

α =

(
α1 α2

0 α3

)
and β =

(
β1 β2

0 β3

)
,

where α2 has coefficients from Z/12, β2 has coefficients from Z/24,
other blocks have components from Z and α1 ≡ α3 mod 2.

We consider the full subcategory C ⊂ Bim(V ) consisting of all
maps a such that the corresponding blocks a1, a2, a3 are of the form

a1 =

(
6I 0 0
0 12 0

)
, a2 =

(
0 I 0
0 0 u

)
a3 = (6v1 6v2 0) ,

where the entries I stand for identity matrices (not necessary of the
same dimensions) and u, v1, v2 are arbitrary matrices with coefficients
from Z/2 of proper sizes. We write a = a(u, v1, v2). One can verify
that if (α, β) is a morphism a(u, v1, v2)→ a(u′, v′1, v

′
2), there are inte-

gral matrices γ1, γ2, γ3 such that viγ1 = γ2vi (i = 1, 2) and uγ3 = γ1u.
Conversely, any given triple γ1, γ2, γ3 with these properties can be ac-
complished to a morphism a(u, v1, v2) → a(u′, v′1, v

′
2). It gives rise to

an epivalence C → Λ-mod, where Λ is the path algebra of the quiver
• // • ((

66 • . It is known to be wild. Therefore, T8 is wild as
well. �
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