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Abstract. We consider representations of quivers in arbitrary
categories and twisted representations of quivers in arbitrary ten-
sor categories. We show that if A is an abelian category, then the
category of representations of a quiver in A is also abelian, and
that the category of twisted linear representations of a quiver is
equivalent to the category of linear (untwisted) representations
of a different quiver. We conclude by discussing how represen-
tations of quivers arise naturally in certain important problems
concerning monads ans sheaves on projective varieties.

1. Introduction

Quivers are a valuable tool in the theory of finite dimensional as-
sociative algebras and their representations. Moreover, linear repre-
sentations of quivers are a beautiful subject in itself, with many in-
teresting connections with other areas. Recently, many authors have
considered representations of quivers in arbitrary categories, see in
particular [8], motivated by the relevance of such concept in algebraic
geometry and mathematical physics. More precisely, representations
of quivers in the category of vector bundles or coherent sheaves on a
projective variety, called quiver bundles or quiver sheaves, unify many
of the vector bundles with extra structure which have been previously
considered in the literature (e.g. Higgs bundles, coherent systems,
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holomorphic triples, etc), see [2, 8]. Several recent papers also con-
sider quiver bundles in connection with string theory, see for instance
[4, 16].

In this paper, we consider representations of quivers in arbitrary
categories and twisted representations of quivers in arbitrary tensor
categories, as well as some applications of these concepts to the study
of certain problems concerning vector bundles over projective vari-
eties.

First, we prove that if A is an additive (abelian) category, then the
category of representations of a quiver in A is also additive (abelian),
showing that the category of representations often inherits some of
the properties of the original category. We also discuss how functors
between categories induce functors between the respective categories
of representations, and show that such induced functors also inherit
properties from the original ones.

Next, we consider twisted representations of quivers in arbitrary
tensor categories, and show that the category of twisted linear repre-
sentations of a quiver is equivalent to the category of linear (untwisted)
representations of a different quiver.

Finally, we turn to one of the original motivations behind this
project by discussing the theory of monads on a projective variety
X from a categorical point of view, and showing that these can be
regarded as representations of a quiver with relation in the category of
vector bundles over X. We then focus on a particular class of sheaves
on projective space, so-called linear sheaves, and show that the cat-
egory of such sheaves is equivalent to a subcategory of the category
of twisted linear representations of a quiver with relations. We look
at examples in which geometric properties of sheaves are translated
into algebraic properties of the corresponding twisted representations,
and vice versa. This leads to a possibly (and hopefully) fruitful ap-
plication of representation theoretical methods to the study of vector
bundles over projective varieties.
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2. Representations of Quivers

Recall that a quiver Q consists of a pair (Q0, Q1) where Q0 is the
set of vertices and Q1 is the set of arrows, and we have two maps
t, h : Q1 → Q0 named tail and head. A path in the quiver is a
sequence of arrows

p = a1a2 · · · an
such that h(ai+1) = t(ai), i = 1, · · · , n− 1.

an // an−1// · · · a2 // a1 //

We say that the path starts in t(an) and ends in h(a1). The path
algebra kQ is the associative algebra generated by all paths of Q with
the product given by concatenation of paths. A relation R in Q is
a sum of paths pi ∈ kQ, R =

∑n
i=1 pi, such that t(pi) = t(pj) and

h(pi) = h(pj), i, j = 1, . . . , n. Given some relations Rj =
∑nj

i=1 p
j
i ,

j = 1, . . . ,m, pji ∈ kQ, the path algebra with relations is given by the
quotient kQ/I, where I is the ideal of kQ generated by the relations
Rj , j = 1, . . . ,m.

2.1. Representations of quivers in additive and abelian cate-
gories. So let A be a category and Q a quiver. Our first goal is to
consider representations of quivers in arbitrary categories. In what
follows, we will omit the usual categorical definitions like additive,
abelian and tensor categories, and functors between them; we refer to
the definitions found in [7, 13].

Definition. A representation of Q in A consists of

• a collection of objects {Vi}, i ∈ Q0;
• a collection of morphisms {ϕa}, a ∈ Q1, where ϕa ∈ HomA(Vt(a),
Vh(a)).

The representations of Q in A is a category that we denote by Rep(Q,A).

It is interesting to observe that the category of representations
Rep(Q,A) inherits some of the properties of the original category
A; in particular, one has the following result.

Theorem 1. If A is additive (abelian) then Rep(Q,A) is also additive
(abelian).
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Proof. We prove that if A is additive, then Rep(Q,A) is additive. To
do that we have to check that Rep(Q,A) satisfies some conditions,
see [7].

(i) Rep(Q,A) has a zero object.
Since A is additive, we can take the object Va = 0 ∈

Obj(A), ∀a ∈ Q1, and ϕa = 0 ∈ HomA(0, 0).
(ii) If X,Y, Z ∈ Obj(R) then HomR(X,Y ) is an abelian group

and

HomR(X,Y )×HomR(Y,Z)→ HomR(X,Z)

is bi-additive.
Let X = (V, φ), Y = (W,ψ) and Z = (U, η) be objects of

R = Rep(Q,A). As HomA(Vi,Wi) is an abelian group for all
i ∈ Q0, HomR(X,Y ) is also an abelian group. It follows that

HomR(X,Y )×HomR(Y,Z)→ HomR(X,Z)

is bi-additive because for each i ∈ Q0, the pairing

HomA(Vi,Wi)×HomA(Wi, Ui)→ HomA(Vi, Ui)

is bi-additive.
(iii) Rep(Q,A) has coproducts.

Let (V, φ) and (W,ψ) be objects of Rep(Q,A). As A is
additive, for all i ∈ Q0, Ui = Vi ⊕Wi is an object of A with
the maps li : Vi → Ui and hi : Wi → Ui.

We want to define the direct sum of (V, φ) and (W,ψ). Con-
sider the diagram

Vt(a)
ca

##G
G

G
G

G

lt(a)
��

φa // Vh(a)

lh(a)
��

Ut(a) //___ Uh(a)

Wt(a)

da

;;w
w

w
w

w
ht(a)

OO

ψa

// Wh(a)

hh(a)

OO

where ca = lh(a) ◦ φa and da = hh(a) ◦ ψa.
By a property of coproducts, there exists an unique mor-

phism
ηa : Ut(a) → Uh(a)
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such that ca = ηalt(a) and da = ηaht(a). Then,

lh(a)φa = ηalt(a) and hh(a)ψa = ηaht(a).

Let (U, η) be the representation Ui = Vi ⊕Wi for i ∈ Q0

and for each a ∈ Q1, ηa : Ut(a) → Uh(a) as above. Then (U, η)
is the direct sum of (V, φ) and (W,ψ) with the morphisms

L = {li}i∈Q0 : (V, φ)→ (U, η) and H = {hi}i∈Q0 : (W,ψ)→ (U, η).

Therefore Rep(Q,A) is an additive category.

If A is abelian, we have to verify other four conditions.

(1) Every morphism has kernel and cokernel.
Let f : (V, φ)→ (W,ψ) be a morphism. We want to define

ker f . As A is abelian, for each i ∈ Q0, fi : Vi → Wi is a
morphism then it has a kernel (V ′i , µi)

µi : V ′i → Vi, with fiµi = 0,∀i ∈ Q0.

For each a ∈ Q1 we have fh(a)(φaµt(a)) = 0 then there is
an unique morphism φ′a : V ′t(a) → V ′h(a) such that φaµt(a) =

µh(a)φ
′
a.

If we set

µ = {µi}i∈Q0 : (V ′, φ′)→ (V, φ)

where V ′ = {V ′i }i∈Q0 and φ′ = {φ′a}a∈Q1 , the diagram com-
mutes

V ′t(a)

µt(a)

��

φ′a // V ′h(a)

µh(a)

��
Vt(a)

φa //

ft(a)
��

Vh(a)

fh(a)
��

Wt(a)
ψa

// Wh(a)

then f ◦µ = 0. One can see that ker f = ((V ′, φ′), µ) is in fact
kernel of f.

Similarly one can see that f has cokernel.
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(2) Every monomorphism is the kernel of its cokernel.
Let f : (V, φ) → (W,ψ) be a monomorphism. Then fi :

Vi →Wi is a monomorphism for each i ∈ Q0 and if (W ′i , ci) =
coker fi we have (Vi, fi) = ker ci, ∀i ∈ Q0. As ch(a)ψa :
Wt(a) → W ′h(a) is such that (ch(a)ψa)ft(a) = 0 there is an

unique ψ′a : W ′t(a) →W ′h(a) with ch(a)ψa = ct(a)ψ
′
a

Vt(a)

ft(a)
��

φa // Vh(a)

fh(a)
��

Wt(a)
ψa //

ct(a)
��

Wh(a)

ch(a)
��

W ′t(a) ψ′a

// W ′h(a)

and then ((W ′, ψ′), c) = coker f . We have (Vi, fi) = ker ci and
therefore ((V, φ), f) = ker c.

(3) Every epimorphism is cokernel of its kernel.
Let f : (V, φ)→ (W,ψ) be an epimorphism. Then for each

i ∈ Q0 fi : Vi → Wi is an epimorphism. As A is abelian
if (V ′i , ki) = ker fi we have fiki = 0,∀i ∈ Q0. As φakt(a) :
V ′t(a) → Vh(a) is such that fh(a)(φakt(a)) = 0 there is an unique

φ′a : V ′t(a) → V ′h(a), a ∈ Q1, such that φakt(a) = kh(a)φ
′
a and

((V ′, φ′), k) = ker f .

V ′t(a)

kt(a)
��

φ′a // V ′h(a)

kh(a)
��

Vt(a)
φa //

ft(a)
��

Vh(a)

fh(a)
��

Wt(a)
ψa

// Wh(a)

We also have (Wi, fi) = coker ki and fi is an epimorphism
therefore ((W,ψ), f) = coker k and follows the result.
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(4) Every morphism can be written as composition of epimor-
phism and monomorphism.

Let f : (V, φ)→ (W,ψ) be a morphism. Since A is abelian
we know that for each i ∈ Q0, fi : Vi → Wi can be written as
fi = higi, where gi : Vi → W ′i is epimorphism and hi : W ′i →
Wi is monomorphism, with W ′i ∈ Obj(A). By a lemma the
diagram

Vt(a)
φa //

ft(a)
��

Vh(a)

fh(a)
��

Wt(a)
ψa

// Wh(a)

commutes, then for each a ∈ Q1 there is an unique

ψ′a : W ′t(a) →W ′h(a)

such that

Vt(a)
φa //

gt(a)
��

Vh(a)

gh(a)
��

W ′t(a)

ht(a)
��

ψ′a // W ′h(a)

hh(a)
��

Wt(a)
ψa

// Wh(a)

commutes, that is, ψ′agt(a) = gh(a)φa and ψaht(a) = hh(a)ψ
′
a.

Then if we take the representation (W ′, φ′) and the morphisms
h = {hi}i∈Q0 : (W ′, ψ′) → (W,ψ) and g : {gi}i∈Q0(V, φ) →
(W,ψ) follows that g is epimorphism, h is monomorphism and
f = h ◦ g.

�

Remark 2. We believe that other standard categorical properties of
A, like the existence of sufficiently many projectives and injectives,
will also be inherited by the category of representations Rep(Q,A).
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If A is an additive category, one can also consider representations
of quivers with relations in A.

Definition. Let A be an additive category, Q a quiver and R =
{R1, . . . ,
Rm} be a set of relations in Q, where Ri =

∑ni
j=1 p

i
j, p

i
j = aij1 · · · aijlj .

A representation (V, φ) in A satisfies the relations if
∑ni

j=1 φpij
= 0

for each i = 1, · · · ,m, where φpij
= φaij1

· · ·φaijlj
.

We denote by Rep((Q,R),A) the category of representations of the
quiver with relations. It is not difficult to see that Rep((Q,R),A) is
a full additive subcategory of Rep(Q,A).

2.2. Induced functors. Let A and B be categories, Q a quiver and
F : A → B a functor. We can define a functor FQ : Rep(Q,A) →
Rep(Q,B) in the following way:

• given an object (V, φ) ∈ Rep(Q,A), FQ((V, φ)) = (W,ψ)
where Wi = F(Vi) ∈ Obj(B), i ∈ Q0, and ψa = F(φa) ∈
HomB(Wt(a), Wh(a)), a ∈ Q1;
• given a morphism f : (V, φ) → (W,ψ), f = {fi}, fi ∈

HomA(Vi,Wi) we define FQ(f) = g, where gi = F(fi) ∈
HomB(F(Vi),F(Wi)), i ∈ Q0.

It turns out that the induced functor FQ also inherits properties of
the functor original F, as in the following Proposition.

Proposition 3. Let F : A → B be a functor.

• If F is an equivalence of categories, then so is the induced
functor FQ for any quiver Q;
• If A and B are abelian categories and F is an exact functor,

then so is the induced functor FQ for any quiver Q.

Proof. First, suppose F is an equivalence of categories. To show that
FQ is equivalence of categories we must see that FQ is fully faithful
and essentially surjective.

Let X = (V, φ) and Y = (W,ψ) be objects of Rep(Q,A), and take
f, g ∈ Hom(X,Y ) such that FQ(f) = FQ(g), with

FQ : Hom(X,Y )→ Hom(F(X),F(Y )).
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Then F(fi) = F(gi),∀i ∈ Q0, fi, gi ∈ Hom(Vi,Wi). Since F is faithful,
fi = gi,∀i ∈ Q0 then f = g therefore FQ is also faithful.

If g ∈ Hom(FQ(X), FQ(Y )) where g = {gi}i∈Q0 , gi ∈
Hom(F (Vi), F (Wi)), since F is full, for each i ∈ Q0 there is a mor-
phism gi ∈ Hom(Vi,Wi) such that F(gi) = gi. Thus F(g) = g where
g = {gi}i∈Q0 , hence FQ is full. We have shown that if F is fully
faithful, then so is FQ.

Let Y = (W,ψ) ∈ Obj(Rep(Q,B)). Since F is essentially sur-
jective, there is an isomorphism λi : Wi → F(Vi),∀i ∈ Q0, Vi ∈
Obj(A). For each a ∈ Q1 consider the map φ′a = λh(a)ψaλ

−1
t(a).

Then φ′a ∈ Hom(F(Vt(a)),F(Vh(a))) and since F is full, there is a map
φa ∈ Hom(Vt(a), Vh(a)) such that F(φa) = φ′a. Let X = (V, φ) where
V = {Vi}i∈Q0 and φ = {φa}a∈Q1 . Then X ∈ Obj(Rep(Q,A)) and
F(X) ' Y with isomorphism λ and so FQ is essentially surjective,
therefore FQ is equivalence of categories.

Now suppose that F is an exact functor and let X = (V, φ), Y =
(W,ψ), Z = (U, λ) be objects of Rep(Q,A), f ∈ Hom(X,Y ) and
g ∈ Hom(Y,Z) such that

0 // X
f // Y

g // Z // 0

is a short exact sequence. Then, for each a ∈ Q1, the following dia-
gram is commutative:

0

��

0

��
Vt(a)

φa //

ft(a)
��

Vh(a)

fh(a)
��

Wt(a)
ψa //

gt(a)

��

Wh(a)

gh(a)

��
Ut(a)

λa //

��

Uh(a)

��
0 0
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Since F is an exact functor, the diagram

0

��

0

��
F(Vt(a))

F(φa) //

F(ft(a))

��

F(Vh(a))

F(fh(a))

��
F(Wt(a))

F(ψa) //

F(gt(a))

��

F(Wh(a))

F(gh(a))

��
F(Ut(a))

F(λa) //

��

F(Uh(a))

��
0 0

is also commutative, then

0 // FQ(X)
FQ(f)

// FQ(Y )
FQ(g)

// FQ(Z) // 0

is a short exact sequence and therefore FQ is an exact functor. �

3. Twisted linear representations of quivers

The concept of twisted representations of quivers was first intro-
duced by Gothen and King [8, p. 88], motivated by certain problems
involving vector bundles with extra structures, like Higgs bundles and
holomorphic triples. Here, we will define twisted representations in
an arbitrary tensor category, and, for representations in the category
of vector spaces over a field, we will relate the category of twisted rep-
resentations of Q with the category of representations of a different
quiver Q̃.

3.1. Twisted representations of quivers.

Definition. Let Q be a quiver and A a tensor category. Fix a collec-
tion M = {Ma}a∈Q1 of objects of A. A right M -twisted representa-
tion of Q consists of

• a collection of objects {Vi | i ∈ Q0};
• a collection of morphisms {ϕa : Vt(a) → Vh(a) ⊗Ma | a ∈ Q1}.
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We also denote the representation by (V, φ). Alternatively, one
could also consider the morphisms {ϕa : Ma⊗Vt(a) → Vh(a) | a ∈ Q1},
leading to the notion of a left M−twisted representation of Q.

A morphism between two twisted representations (V, φ) and (W,ψ)
in A, is a collection of morphisms fi : Vi →Wi, i ∈ Q0, such that the
following diagram commutes for each a ∈ Q1.

Vt(a)

ft(a)
��

φa // Vh(a) ⊗Ma

fh(a)⊗1Ma

��
Wt(a)

ψa

// Wh(a) ⊗Ma

that is,

(fh(a) ⊗ 1Ma) ◦ φa = ψa ◦ ft(a), ∀a ∈ Q1.

We have then a new category of right M−twisted representations
of Q, denoted by RepM (Q,A).

Suppose Q has relations R = {R1, · · · , Rm}, where Ri =
∑ni

j=1 p
i
j ,

and pij = aij1 · · · aijlj . Let M = {Ma}, a ∈ Q1, be a collection of objects

of A, Mpij
= Maij1

⊗Maij2
⊗ . . . ⊗Maijlj

, j = 1, . . . ni, i = 1, . . . ,m

and M̃ =
⊗

a∈Q1
Ma. Given a twisted representation (V, φ) we have

induced maps

φ̃pij
: Vt(pij)

→ Vh(pij)
⊗Mpij

where

φ̃pij
= (φaij1

⊗ 1M
ai
j2

⊗ . . .⊗ 1M
ai
jlj

) ◦ (φaij2
⊗ 1M

ai
j3

⊗ . . .⊗ 1M
ai
jlj

) ◦ . . .

. . . ◦ (φaijlj−1
⊗ 1M

ai
jlj

) ◦ φaijlj
.

If fpij
: Mpij

→ M̃ is the inclusion map and φpij
= (1V

h(pi
j
)
⊗ fpij ) ◦ φ̃pij ,

we have
φpij

: Vt(pij)
→ Vh(pij)

⊗ M̃,

for j = 1, . . . , ni
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A twisted representation (V, φ) satisfies the relations if φpi1
+ . . .+

φpini
= 0, for i = 1, · · · ,m. We have again a new category, the cate-

gory of M−twisted representations of the quiver Q with relations.

3.2. Twisted representations of quivers. Let Q be a quiver, A be
the category of finite dimensional vector spaces over a field k and let
M = {Ma}, a ∈ Q1, be a collection of objects of A. The main result
of this section is to relate, as we mentioned before, the categories of
twisted k-linear representations of a quiver with a category of k-linear
representations of another quiver.

Theorem 4. The category of M−twisted k-linear representations of
Q is equivalent to the category of k-linear representations of Q̃, where
Q̃ is obtained from Q in the following way;

• the set of vertices is the same, that is, Q0 = Q̃0;
• for each arrow a ∈ Q1, Q̃1 possesses m = dimMa arrows,
a1, · · · , am, such that t̃(aj) = t(a) and h̃(aj) = h(a), where

t̃,h̃ are the tail and head maps of Q̃.

Proof. Suppose that Q is Q0 = (1, 2) and Q1 = (a) with t(a) = 1 and
h(a) = 2

1
a // 2 .

Fix Ma a k−vector space, dimMa = m. We show that C =
RepM (Q) is equivalent to D = Rep(Q̃), where Q̃ = (Q̃0, Q̃1) with

Q̃0 = Q0 and Q̃1 = (a1, . . . , am), t(ai) = t(a) and h(ai) = h(a), for
i = 1, . . . ,m.

We construct a functor that is an equivalence of categories. Let
{V,W},
{φ : V →W ⊗Ma} be a representation of Q. Since L(V,W ⊗Ma) '
L(V,W )⊗Ma, if {h1, . . . , hm} is a basis for Ma and φ ∈ L(V,W⊗Ma),
there are φ1, · · · , φm ∈ L(V,W ) such that

φ =

m∑
i=1

φi ⊗ hi. (1)
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Fix an order in the set of arrows between two vertices of the quiver
Q̃ and consider the functor

F : RepM (Q)→ Rep(Q̃)

such that

• for each object X = ({Vt(a), Vh(a)}, φ) ∈ RepM (Q)

F(X) = F({Vt(a), Vh(a)}, φ) = ({Vt(a), Vt(a)}, φ̃)

where φ̃ = {φ1, . . . , φm} are obtained as in (1) and φn is asso-

ciated to the n−th arrow of Q̃;
• for each morphism f = {ft(a), fh(a)} betweenX = ({Vt(a), Vh(a)},
φ) and Y = ({Wt(a),Wh(a)}, ψ)

Vt(a)

ft(a)
��

φ // Vh(a) ⊗Ma

fh(a)⊗1Ma

��
Wt(a)

ψ
// Wh(a) ⊗Ma

we define F(f) = f .

It’s easy to see that f = {ft(a), fh(a)} is a morphism between
the representations ({Vt(a), Vh(a)}, {φ1, . . . , φm}) and ({Wt(a),Wh(a)},
{ψ1, . . . ψm}), and that F is a functor. Now we must show that F is
an equivalence of categories. To see this is sufficient to show that F
is fully faithful functor and essentially surjective, see [7, p. 71].

(1) F : HomC(X,Y ) → HomD(F(X),F(Y )) is injective and sur-
jective. Clearly F is injective. Let g ∈ HomD(F(X),F(Y )),
g = {gi}i∈Q0 such that

ψi ◦ gt(a) = gh(a) ◦ φi, i = 1, . . . ,m.

Then f = {gi}i∈Q0 ∈ HomC(X,Y ) is such that F(f) = g. In
fact

ψgt(a) = (
m∑
j=1

ψj ⊗ hj)gt(a) =
m∑
j=1

((ψj ⊗ hj)gt(a)) =
m∑
j=1

ψjgt(a) ⊗ hj =

m∑
j=1

gh(a)φj ⊗ hj =
m∑
j=1

gh(a)φj ⊗ 1Mahj =
m∑
j=1

(gh(a) ⊗ 1Ma)(φj ⊗ hj) =
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(gh(a) ⊗ 1Ma)(

m∑
j=1

φj ⊗ hj) = (gh(a) ⊗ 1Ma)φ.

Therefore F is fully faithful.
(2) Let Y ∈ Obj(D), Y = (V, φ) where V = {Vt(a), Vh(a)} and

φ = {φ1, . . . , φm} with φj : Vt(a) → Vh(a), j = 1, . . . ,m. Let
X = (V, φ) with

φ =

m∑
j=1

φj ⊗ hj .

Then Y = F(X). Therefore F : C → D is an equivalence of
categories. Since the construction of the proof depends on the
arrow, the proof for the general quiver follows from performing
this construction for each arrow.

�

Remark 5. The particular functor constructed in the proof of the
theorem depend on two choices: the choice of an order in the set of
arrows between two vertices of the quiver Q̃, and the choice of bases
for the vector spaces Ma for each a ∈ Q1. It is reasonable to expect
that different choices lead to naturally isomorphic functors, although
the authors have not been able to establish this claim.

Proposition 6. Let M = {Ma}a∈Q1 be a collection of finite dimen-
sional k−vector spaces. Given M ′ = {M ′a}a∈Q1 a collection of vec-
tor subspaces, M ′a ⊂ Ma, a ∈ Q1, there is a fully faithful functor
F : RepM ′(Q)→ RepM (Q).

Proof. Let C = RepM ′(Q) and D = RepM (Q). Let X = (V, φ) ∈
Obj(C) then φa : Vt(a) → Vh(a) ⊗M ′a for each a ∈ Q1. Let εa : M ′a →
Ma be the inclusion map. Consider the map

φa : Vt(a) → Vh(a) ⊗Ma

given by φa = (1Vh(a)⊗εa)◦φa for each a ∈ Q1. We define the functor
F : C → D

• for X = (V, φ) ∈ Obj(C) we have

F(X) = (V, φ)
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where φa = (1Vh(a) ⊗ εa) ◦ φa, a ∈ Q1;

• if f : X → Y is a morphism and X = (V, φ), Y = (W,ψ) are
objects of C then F(f) = f is a morphism between F(V, φ)
and F(W,ψ).

In fact we must show that the diagram bellow is commutative

Vt(a)
φa //

ft(a)
��

Vh(a) ⊗Ma

fh(a)⊗1Ma

��
Wt(a)

ψa

// Wh(a) ⊗Ma

We have

ψaft(a) = ((1Wh(a)
⊗ εa)ψa)ft(a) = (1Wh(a)

⊗ εa)(ψaft(a))

= (1Wh(a)
⊗ εa)(fh(a) ⊗ 1M ′a)φa

and

(fh(a) ⊗ 1Ma)φa = (fh(a) ⊗ 1Ma)(1Vh(a) ⊗ εa)φa.
Since 1Wh(a)

fh(a) = fh(a)1Vh(a) and εa1M ′a = 1Maεa note that

(1Wh(a)
⊗ εa)(fh(a) ⊗ 1M ′a) = (fh(a) ⊗ 1Ma)(1Vh(a) ⊗ εa)

then

ψaft(a) = (fh(a) ⊗ 1Ma)φa
and F(f) ∈ HomD(F(X),F(Y )).

If g : Y → Z is a morphism where Z = (U, η) then is easy to
see that gf : X → Z is well defined and that F(fg) = F(f)F(g) e
therefore F is a functor.

Now we have to show that F is fully faithful, that is, for each object
X,Y ∈ Obj(C)

F : HomC(X,Y )→ HomD(F(X),F(Y ))

is surjective and injective.
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Let X = (V, φ) and Y = (W,ψ) be objects of RepM ′(Q) and let
g = {gi}i∈Q0 ∈ HomD(F(X),F(Y )). Then the diagram commutes

Vt(a)
φa //

gt(a)

��

Vh(a) ⊗Ma

gh(a)⊗1Ma

��
Wt(a)

ψa

// Wh(a) ⊗Ma

that is,

ψagt(a) = (gh(a) ⊗ 1Ma)φa, ∀a ∈ Q1,

then

((1Wh(a)
⊗ εa)ψa)gt(a) = (gh(a) ⊗ 1Ma)((1Vh(a) ⊗ εa)φa)

and so

(1Wh(a)
⊗ εa)(ψagt(a)) = (gh(a) ⊗ 1Ma)(1Vh(a) ⊗ εa)φa.

Note that

(gh(a) ⊗ 1Ma)(1Vh(a) ⊗ εa) = (1Wh(a)
⊗ εa)(gh(a) ⊗ 1M ′a)

then

(1Wh(a)
⊗ εa)(ψagt(a)) = (1Wh(a)

⊗ εa)((gh(a) ⊗ 1M ′a)φa).

We have that f = {gi}i∈Q1 ∈ HomC(X,Y ) is such that F(f) = g then
F : HomC(X,Y ) → HomD(F(X),F(Y )) is surjective. Clearly F is
injective therefore is fully faithful. �

In the previous Proposition one may choose each M ′a to be a 1-
dimensional subspace of Ma; together with Theorem 4, we have the
following statement.

Corollary 7. Rep(Q) is equivalent to a full subcategory of RepM (Q).
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4. Monads on projective varieties and representations of
quivers

Representations of quivers arise naturally in certain important prob-
lems concerning vector bundles on projective varieties. In this Section,
we will discuss two such examples: first, we observe that monads over
a projective variety X can be regarded as representations of quivers
in the category of vector bundles over X; we then specialize to lin-
ear monads and linear bundles, and show that these form a category
which is equivalent to a certain subcategory of a category of twisted
linear representations.

We must first recall the following definition of an exact subcategory
of an abelian category.

Definition. Let A be an abelian category. A full, additive subcategory
E of A is said to be exact if the following two conditions hold:

(1) E is closed under extensions, i.e. if Y and Z are objects of E,
then any extension of Z by Y is also objects of E;

(2) E is closed under direct summands, i.e. if X is an object of E
and X ' Y ⊕ Z, then Y and Z are also objects of E.

In what follows, we will be particularly interested in the following
quiver with relation

Q =
{
• a−→ • b−→ •

}
R = {ba} ,

which we denote (A3, ba). If X is a projective variety, i.e. a pro-
jective scheme over an algebraically closed field F together with a
given very ample invertible sheaf denoted by OX(1), we setM(X) :=
Rep((A3, ba),Coh(X)), where Coh(X) is the category of coherent
sheaves of OX -modules on X. Let V(X) be the category of locally-free
sheaves on X.

Furthermore, For any coherent sheaf E on X, we set E(k) :=
E ⊗ OX(k) and Hp

∗ (E) := ⊕k∈Z Hp(E(k)). Finally, ωX denotes the
dualizing sheaf on X.

4.1. Monads on projective varieties. We start by recalling the
notion of a Horrocks monad, cf. [1, Definition 2.2] and [14, page 239].

Definition. A monad on X is a complex of locally free sheaves

M• : M0
α−→M1

β−→M2
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such that β is surjective, α is injective. A monad is said to be Hor-
rocks if in addition

(i) M0 = ⊕ri=1 ωX(ki) for ki ∈ Z;
(ii) M2 = ⊕sj=1 OX(lj) for lj ∈ Z;

(iii) H1
∗ (M1) = Hn−1

∗ (M1) = 0.

Remark 8. Notice that the above definition is weaker than [12, Def-
inition 2.1], where the maps β and α are assumed to be locally right-
invertible and locally left-invertible, respectively. In this case, the co-
homology sheaf E = kerβ/im α is only a coherent sheaf (not neces-
sarily locally-free).

A morphism between two monads is simply a morphism of com-
plexes. With these definitions, note that Horrocks monads on a pro-
jective scheme X form a category, denoted H(X). It is easy to see
that H(X) is a full, additive subcategory of M(X), but more is true
when one restricts the class of schemes under consideration.

Definition. A projective variety X ↪→ Pn of pure dimension d is
arithmetically Cohen-Macaulay (ACM) if its homogeneous coordinate
ring S(X) is a Cohen-Macaulay ring.

This is equivalent to saying that H1
∗ (Pn, IX) = 0 (where IX is the

saturated ideal of X) and Hp
∗ (OX) = 0 for every 1 ≤ p ≤ d − 1

[5]. In particular, S(X) = H0
∗ (OX). For instance, every complete

intersection scheme X ⊂ Pn is ACM. Note that if X is ACM, then
Hp
∗ (ωX) = 0 for 1 ≤ p ≤ d−1, by Serre duality. Note also that Hp

∗ (E)
is a graded S(X)-module.

We then have the following proposition.

Proposition 9. The category H(X) of Horrocks’ monads on a non-
singular ACM projective scheme X is an exact subcategory of M(X).

Proof. Consider the following two objects of M(X)

M• : M0
αM−→M1

βM−→M2 andN• : N0
αN−→ N1

βN−→ N2

The direct sum M• ⊕N• is the complex

M0 ⊕N0
αM⊕αN−→ M1 ⊕N1

βM⊕βN−→ M2 ⊕N2 .
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It is easy to see from the definition that if M• ⊕N• is Horrocks, then
M• and N• must also be Horrocks; in other words, H(X) is closed
under direct summands.

To see that H(X) is closed under extensions, assume that M• and
N• as above are two Horrocks monads. An extention of M• by N• is
an object

L• : L0
αL−→ L1

βL−→ L2

of M(X) such that the following diagram is commutative

0

��

0

��

0

��
N0

αN //

g1
��

N1
βN //

h1
��

N2

l1
��

L0
αL //

g2
��

L1
βL //

h2
��

L2

l2
��

M0
αM //

��

M1
βM //

��

M2

��
0 0 0

(2)

in which the columns are exact. Chasing diagrams, one easily shows
that αL is injective, and βL is surjective.

Notice also that Lk is an extension of Mk by Nk. Since X is an
ACM scheme, it follows that the first and last columns split as exact
sequences, giving maps g̃2 : A2 → A and l̃2 : C2 → C such that .
Moreover, L0 = M0 ⊕ N0 and L2 = M2 ⊕ N2, hence L0 and L2 are
also sums of line bundles of the form OX(lj) and ωX(ki), respectively.
Looking at the cohomology sequence associated to the middle column,
it is easy to see that H1

∗ (M1) = H1
∗ (N1) = 0 forces H1

∗ (L1) = 0, while
Hn−1
∗ (M1) = Hn−1

∗ (N1) = 0 forces Hn−1
∗ (L1) = 0.

We check that βLαL = 0; first, notice that any local section σ of L0

can be written as a sum g1(σ1) + g̃2(σ2) with σ1 ∈ N0 and σ2 ∈ M0.
Then

βLαL(σ) = βLαLg1(σ1)+βLαLg̃2(σ2) = l1βNαN (σ1)+l̃2βMαM (σ2) = 0
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since βNαN = βMαM = 0. So the middle row is a Horrocks’ monad,
as desired. �

Additionally, one can show that if X be a nonsingular ACM projec-
tive scheme of dimension n ≥ 3 and, then the functor that associates
each Horrocks’ monad to its cohomology sheaf E = kerβ/im α is
additive, exact and full, cf. [12, Theorem 2.6].

4.2. Linear bundles on projective spaces. The following defini-
tion is motivated by [10], and it generalizes the concept of mathemat-
ical instanton bundle on P2m+1 introduced by Okonek and Spindler
in [15, Definition 1.1].

Definition. A torsion-free coherent sheaf E on Pn (n ≥ 2) is called
linear if it satisfies the following cohomological conditions:

(1) for n ≥ 2, H0(E(−1)) = Hn(E(−n)) = 0;
(2) for n ≥ 3, H1(E(−2)) = Hn−1(E(1− n)) = 0;
(3) for n ≥ 4, Hp(E(k)) = 0, 2 ≤ p ≤ n− 2 and ∀k.

Linear sheaves such that c1(E) = 0 are called instanton sheaves.

Proposition 10. Linear sheaves form an exact subcategory L(Pn) of
Coh(Pn).

Proof. It is easy to see from the Definition that if E1 and E2 are linear
sheaves, then any sheaf F in the exact sequence

0→ E1 → F → E2 → 0

is also linear, so L(Pn) is closed under extensions. Assuming that
F = E1 ⊕ E2, we have that Hp(F (k)) = Hp(E1(k)) ⊕Hp(E2(k)), so
closure under direct summands follows easily. �

Remark 11. Notice that instanton sheaves form an additive subcate-
gory of Coh(Pn) which is closed under extensions, but not closed under
direct summands.

Several properties of linear torsion-free sheaves on projective spaces
are discussed in [10]; see also [11, 12] for properties of linear bundles
over more general algebraic varieties.

Recall that a monad on Pn of the form

0→ V1 ⊗OPn(−1)
α−→ V2 ⊗OPn

β−→ V3 ⊗OPn(1)→ 0 , (3)
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where Vk are vector spaces, is called a linear monad. Moreover, the
cohomology of a linear monad is a torsion-free sheaf if and only if
there is a closed subvariety Σ ⊂ Pn of codimension at least two such
that the localized map α(x) : V1 → V2 is injective for each point
x ∈ (Pn \ Σ), see [10, Proposition 4].

The most relevant fact is the following key result relating linear
sheaves and linear monads, cf. Proposition 2 and Theorem 3 in [10].

Theorem 12. If E is a linear torsion-free sheaf on Pn, then E is
isomorphic to the cohomology of the linear monad:

0 → H1(E ⊗ Ω2
Pn(1))⊗OPn(−1)→ (4)

→ H1(E ⊗ Ω1
Pn)⊗OPn → H1(E(−1))⊗OPn(1)→ 0 .

Conversely, the cohomology of a linear monad is a linear sheaf.

We will also need the following result, which is a special case of [12,
Theorem 2.5]; see also [14, Lemma II.4.1.3].

Lemma 13. If E and F are the cohomology sheaves of two linear
monads V•(E) and V•(F ), respectively, then the map that associates
to each homomorphism of monads the corresponding homomorphism
of cohomology sheaves is bijective.

Now let us turn our attention to the relation between linear sheaves
and twisted representations of the quiver (A3, ba). Indeed, let M =
H0(OPn(1)) and note that the maps α and β above can be regarded
as matrices of linear polynomials, i.e. α ∈ Hom(V1, V2)⊗M and β ∈
Hom(V2, V3)⊗M . Therefore linear monads are in 1-1 correspondence
with twisted representations of the quiver (A3, ba)

V1
M
α

// V2
M

β
// V3

for which the map α is injective and β is surjective as maps of sheaves.
Such representation will be called admissible; it is easy to see that
admissible representations for a full additive subcategory, denoted
denoted A(n), of RepM (A3, ba), the category of all M -twisted rep-
resentations of (A3, ba). It is also worth noticing that the category
RepM (A3, ba) is equivalent to the category of linear representations
of a different quiver with relations, providing a version of Theorem
4 for the quiver with relation (A3, ba). More precisely, consider the
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following quiver, which we denote by Γn:

•
//

...
n+1

//
•

//
...

n+1
//
• (5)

with dimM = n+1 arrows between each vertex. The n+1 arrows from
the first to the second vertices are denoted a0, . . . , an, while the n+ 1
arrows from the second to the third vertices are denoted b0, . . . , bn;
we impose the following relations:

Rk,l : akbl + albk = 0 , k, l = 0, . . . , n . (6)

Let R be the set of all relations Rk,l, k ≤ l.

Proposition 14. The equivalence functor F : RepM (A3)→ Rep(Γn)
constructed in the proof of Theorem 4 induces an equivalence of cate-
gories F : RepM (A3, ba)→ Rep(Γn,R). Moreover, if V = {(V1, V2, V3),
(α, β)} is an admissible M -twisted representation of (A3, ba), then
F(V ) = {(V1, V2, V3), (a0, . . . , an, b0, . . . , bn)} is such that

(1) there exists (µ0, . . . , µn) ∈ Cn+1 such that the map µ0a0+· · ·+
µnan is injective;

(2) the map λ0b0+ · · ·+λnbn is surjective for every (λ0, . . . , λn) ∈
Cn+1.

Proof. Choose homogeneous coordinates [x0 : · · · : xn] in Pn; that
induces a natural of basis for M = H0(OPn(1)), with respect to which
the sheaf maps α and β can be written as follows:

α = a0x0 + · · ·+ anxn and β = b0x0 + · · ·+ bnxn,

A straightforward calculation shows that βα = 0 if and only if akbl +
blak = 0 for each k, l = 0, . . . , n, matching the relations in equation
(6). This concludes the proof of the first statement.

Finally, with the above notation in mind, the two conditions in the
second part of the Proposition are easily seen to be equivalent to the
injectivity of α and the surjectivity of β. �

We are finally in position to prove the main result of this Section.

Theorem 15. A(n) is an exact subcategory of RepM (A3, ba), which
is equivalent to L(Pn).
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Proof. The first statement is clear from the definitions. For the second
statement, we define a functor:

G : A(Γn) −→ L(Pn)

as follows. Given aM -twisted representation V = {(V1, V2, V3), (α, β)}
of (A3, ba), we form the complex of sheaves:

V1 ⊗OPn(−1)
α−→ V2 ⊗OPn

β−→ V3 ⊗OPn(1).

As we mentioned above, V is admissible if and only if the above
complex is a linear monad with torsion-free cohomology sheaf (see
[10, Proposition 4]), and we define G(V ) as its cohomology sheaf. A
morphism between admissible representations will induce a morphism
between the corresponding linear monads, which in turn induces a
morphism between the corresponding linear sheaves.

Now Theorem 12 implies that the functor G is essentially surjective,
while Lemma 13 implies that G is fully faithful. This completes the
proof. �

Theorem 15 allows us to translate geometric properties of sheaves
into algebraic properties of the corresponding quiver representations,
and vice versa. For example, note that the simple representation
of (Γn,R) with dimension vector (0, 1, 0) corresponds, via the above
functor, to the trivial line bundle OPn . The two other simple repre-
sentations of Γn are not admissible.

Furthermore, given a representation R inA(Γn) of dimension vector
(v1, v2, v3), the Chern character of the linear sheaf F(R) is given by:

ch(G(R)) = v2 − v3 · ch(OPn(1))− v1 · ch(OPn(−1)) ;

in particular

rk(G(R)) = v2 − v3 − v1 and c1(G(R)) = v1 − v3 .
Therefore, rank r instanton sheaves correspond to representations
with dimension vectors of the form (c, r + 2c, c). The integer c is
called the charge, of the corresponding instanton sheaf.

It follows from [6, Main Theorem] and the Theorem above that
there exists an admissible representation of dimension vector (v1, v2, v2)
if and only if at least one of the following two conditions hold:

• v2 ≥ 2v3 + n− 1 and v2 ≥ v1 + v3;
• v2 ≥ v1 + v3 + n.
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Finally, the following interesting statement is an easy consequence
of [10, Theorem 22] and Theorem 15 above.

Lemma 16. Every admissible representation R of Γn with dimension
vector (c, n− 1 + 2c, c) where c ≥ 1 is Schurian, i.e. Hom(R,R) = C.

As a next step, it would be interesting to study the possible dimen-
sion vectors of indecomposable M -twisted representations of (A3, ba)
(à la Kac’s theorem), and in this way find the possible rank and charge
of indecomposable instanton sheaves. We also expect to be able to
establish new properties of the moduli spaces of linear sheaves by
considering the moduli spaces of the corresponding quivers represen-
tations.
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