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2-Calabi-Yau tilted algebras
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Introduction

These notes follow closely the series of lectures I gave at the workshop
of ICRA 13 in Sao Paulo in July/August 2008, and hence the style is quite
informal. The material is centered around the work in [BIRSm] on the con-
nection between mutation of cluster-tilting objects started in [BMRRT] and
mutation of quivers with potentials investigated in [DWZ1]. It belongs to
the ongoing work on representation theory inspired by the theory of cluster
algebras initiated by Fomin-Zelevinsky [FZ].

There is on one hand the mutation of quivers, which is an essential in-
gredient in the definition of cluster algebras. Then there are two mutations
related to two classes of algebras, which both play an important role in the
theory: the 2-Calabi-Yau-tilted algebras (2-CY-tilted for short) and the Ja-
cobian algebras. They are defined in completely different ways, but are
nevertheless closely related, as the finite dimensional Jacobian algebras are
known to be 2-CY-tilted [A1][K3].

We start with discussing the two classes of algebras in section 1. Then
we explain the different kinds of mutation in section 2. In section 3 we give
examples of triangulated 2-CY categories with cluster-tilting objects, which
are the basis for the definition of 2-CY-tilted algebras. Then we discuss
some basic properties of 2-CY-tilted algebras in section 4. In section 5 we
give the main result on the connection between the two mutations, namely
that they “commute.” As applications we give classes of examples of 2-CY-
tilted algebras which are Jacobian, and we show that certain maps are well
defined.
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1. The relevant classes of algebras

In this section we discuss the two classes of algebras which play an im-
portant role in these notes.

1.1. 2-CY-tilted algebras.

(a) We first need to recall the definitions of 2-CY triangulated categories
and their cluster-tilting objects. Let throughout K be an algebraically
closed field, and C a triangulated K−category which is Hom-finite,
that is, the homomorphism spaces are finite dimensional. Then C is
said to be 2-CY if we have a functorial isomorphism DExt1C (A, B) '
Ext1C (B, A), where D = HomK( ,K) is the duality functor.

(b) Important objects in 2-CY triangulated categories are the cluster-
tilting objects. An object T in C is cluster-tilting if
• Ext1C (T,T ) = 0
• Ext1C (T, X) = 0⇒ X ∈ addT,

where addT denotes the summands of finite direct sums of copies of
T.

The algebras Γ = EndC (T ) for a cluster-tilting object T in a Hom-finite
triangulated 2-CY category C are by definition the 2-CY-tilted algebras.

When the 2-CY category C is a cluster category, that is, a certain orbit
category of the bounded derived category of a hereditary algebra (see sec-
tion 3), the corresponding algebras have been called cluster-tilted algebras.
Their theory was initiated in [BMR2].

1.2. Jacobian algebras. We start with an example of Jacobian algebras,
which were introduced and investigated in [DWZ1].

Example 1.2.1. Let Q be the quiver
1 2

34

a

b

c

d and W = abcd a po-

tential. We take the cyclic derivative ∂a of W with respect to the arrows
in this cycle. This is given by ∂aW = ∂a(abcd) = bcd, ∂b(bcda) = cda,
∂c(cdab) = dab and ∂d(dabc) = abc. Then P(Q,W) = KQ/〈∂xW; x ∈
Q1〉 = KQ/〈bcd, cda, dab, abc〉 is the Jacobian algebra associated with the
quiver with potential (Q,W).

São Paulo J.Math.Sci. 4, 3 (2010), 529–545



2-Calabi-Yau tilted algebras 531

More generally, one starts with a finite quiver with no loops, and denotes
by Qi the paths of length i. Let KQ =

∏
i≥0

KQi and W ∈
∏
i≥2

KQi,cyc, where

Qi,cyc consists of cyclic paths of length i. Then KQ̂/〈∂aW; a ∈ Q1〉 is the
associated Jacobian algebra, where I denotes the closure of the ideal I (see
[DWZ1]).

2. Mutations

We discuss mutations of quivers, of cluster-tilting objects in triangulated
2-CY-categories and of quivers with potential. The first mutation was an
essential ingredient in the definition of cluster algebras in [FZ]. The second
one was developed in [BMRRT] in the context of cluster categories, and
was essential for the categorical modelling of acyclic cluster algebras. The
mutation of quivers with potentials in [DWZ1] has recently been applied to
cluster algebras [DWZ2].

2.1. Mutation of quivers. Let Q be a finite quiver with vertices 1, 2, . . . , n,
and with no loops or 2-cycles. Then for each vertex k in Q there is defined
a new quiver µk(Q) as follows.

• Reverse all arrows entering and leaving the vertex k.
• If there are a arrows from i to k and b arrows from k to j, and c

arrows from i to j and d arrows from j to i (where cd = 0), then
there are ab + c− d arrows from i to j in µk(Q) if ab + c− d ≥ 0, and
otherwise d − c − ab arrows from j to i.

We illustrate with two examples

Example 2.1.1. Let Q be the quiver 1 2 3 . Then µ3(Q) is the quiver
1 2 3.

In this case, and more generally, when we mutate at a sink or a source
of the quiver, then mutation coincides with Bernstein-Gelfand-Ponomarev
reflection.

Example 2.1.2. Let Q be the quiver
4 51 2

3
. Then µ2(Q) is the

quiver
2 4 51

3

.

It is easy to see that µ2(µ2(Q)) = Q, which is a general fact.

São Paulo J.Math.Sci. 4, 3 (2010), 529–545
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2.2. Mutation of cluster-tilting objects. Let C be a Hom-finite triangu-
lated 2-CY-category, and T = T1 ⊕ . . . ⊕ Tn a cluster-tilting object in C ,
where the Ti are indecomposable and Ti ; T j for i , j. Then we have the
following.

Theorem 2.1. (a) For each k = 1, . . . , n, there is a unique indecom-
posable object T ∗k with T ∗k ; Tk, such that T ∗ = T/Tk ⊕ T ∗k is a
cluster-tilting object.

(b) There are triangles Tk
f ′
→ B′k

g′
→ T ∗k → and Tk

f
→ Bk

g
→ Tk → in C ,

where g, g′ are minimal right add(T/Tk)−approximations and f , f ′
are minimal left add(T/Tk)−
approximations.

This was first proved in [BMRRT] for cluster categories, and then in
[GLS1] in the context of preprojective algebras of Dynkin type. In the gen-
eral case it is proved in [IY]. The extra information needed was a new
approach to part (a).

This mutation procedure gives rise to a cluster tilting graph as follows.
The vertices correspond to cluster-tilting objects up to isomorphism, and
there is an edge between two objects related by one mutation. Then each
object has exactly n neighbours. It is not known in general if this graph is
connected when C is connected.

Assume now that the 2-CY triangulated category C has no loops or 2-
cycles, in the sense that the associated 2-CY-tilted algebras have no loops or
2-cycles in their quiver. Consider the following diagram.

T T ∗ = µk(T )

End(T ) End(T ∗)

QT µk(QT )
QT ∗

µk

µk

where QT and QT ∗ denote the quivers of End(T ) and End(T ∗) respectively.
Then we have the following connection between the two mutations

Theorem 2.2. Let C be 2-CY triangulated with no loops or 2-cycles, and
let T = T1 ⊕ . . . ⊕ Tn be a cluster-tilting object in C . Then for k = 1, . . . , n,
we have µk(QT ) = Qµk(T ).
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2-Calabi-Yau tilted algebras 533

This was first proved in [BMR3] in the context of cluster categories, and
it was an important step in the categorification of acylic cluster algebras. It
was shown in [GLS1] in the case of preprojective algebras of Dynkin type,
and in the general case in [BIRSc]. Actually, in the terminology of [BIRSc],
a 2-CY triangulated category with no loops or 2-cycles has a cluster struc-
ture, which means that Theorems 2.1 and 2.2 hold.

A natural question is whether End(T ∗) is uniquely determined by End(T ).
We will return to this problem in the last section.

2.3. Mutation of quivers with potentials. Assume now that Q is a finite
quiver with no loops, and vertices 1, . . . , n. Assume also that the vertex k
does not lie on a 2-cycle, but otherwise the quiver Q may have 2-cycles. Let
W be a potential on Q.

The definition of quivers with potentials (Q,W) in [DWZ1] goes in two
steps:

(Q,W) 7−→ µ̃k(Q,W) = (Q̃, W̃) 7−→ µk(Q,W) = (Q̄, W̄).
We illustrate the definitions on examples, and refer to [DWZ1] for the gen-
eral definition.

Example 2.3.1. Let Q be the quiver 1 2 3a b

c
and W = abc a potential.

We consider first µ̃2(Q,W) = (Q̃, W̃). Then Q̃ is the quiver
1 2∗ 3a∗ b∗

c
[ab]

and W̃ = [ab]c + [ab]b∗a∗. We have here replaced the vertex 2 by another
vertex 2∗, and we have reversed the direction of the arrows involving the
vertex 2. We have further replaced the path ab from 1 to 3, through 2, by a
new arrow [ab] from 1 to 3. In the new potential W̃ we have replaced ab by
[ab] and added a new term [ab]b∗a∗.

Since W̃ has a term [ab]c of length 2, the potential of W̃ is by definition
not reduced. Then we can get rid of the 2-cycle [ab]c in the next step, and
we end up with µ2(Q,W) = (Q̄, W̄), where Q̄ is 1 2∗ 3a∗ b∗ and W̄ = 0.

Example 2.3.2. Let Q be as in Example 2.3.1 and W = abcabc. Then Q̃
is also as in Example 2.3.1, and W̃ = [ab]c[ab]c + [ab]b∗a∗. In this case
there are no terms of length two, so the potential W̃ is reduced, and hence
(Q̄, W̄) = (Q̃, W̃).

Assume now that Q is a finite quiver, with vertices 1, . . . , n and with no
loops or 2-cycles. Then we have the following diagram, similar to the one
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534 Idun Reiten

discussed in part (2.2).
(Q,W) (Q̄, W̄)

P(Q,W) P(Q̄, W̄)

Q µk(Q) = Q̄′

g

µk

µk

Here g is defined by dropping all 2-cycles in the quiver Q̄ to get the quiver
Q̄′. Then we have µk(Q) = Q̄′ by the definition of mutation of quivers with
potentials.

Similar as before we have the following question: Is P(Q̄, W̄) uniquely
determined byP(Q,W)? We will get back to this question in the last section.

3. Classes of 2-CY categories

In this section we discuss some main sources of examples of Hom-finite
triangulated 2-CY categories, starting with the cluster categories (see
[BMRRT]).

3.1. Cluster categories.

3.1.1. Definition: Let Q be a finite quiver without oriented cycles, and let
KQ be the associated path algebra over the field K. Let Db(KQ) be the
bounded derived category of the finitely generated KQ-modules. Then the
cluster category CQ is by definition the orbit category CQ = Db(KQ)/τ−1[1].
Here τ is the AR-translation functor on Db(KQ), which restricts to the AR-
translation in mod KQ for the indecomposable nonprojective KQ-modules.

The category CQ is Hom-finite and triangulated [K1], and we have the
functorial isomorphism DExt1CQ

(A, B) ' Ext1CQ
(B, A), which says that CQ is

2-CY.

3.1.2. Example: We illustrate with the following example.
Let Q be the quiver 1 2 3. Then the AR-quiver of Db(KQ) is as follows

São Paulo J.Math.Sci. 4, 3 (2010), 529–545



2-Calabi-Yau tilted algebras 535

1
2
3

2
3

3

. . .

3[1]

1
2

2

2[1]

2
3 [1]

1

1[1]

1
2 [1]

1
2
3 [1]

1
2
3 [1]

. . .

Here the indecomposable KQ-modules, together with the objects 3[1], 2
3 [1]

and
1
2
3 [1] (the shifts of the indecomposable projectives) form a set of repre-

sentatives of the indecomposable objects in CQ, namely a so-called funda-

mental domain. In CQ the objects 3, 2
3 ,

1
2
3 are identified with the objects

2[1], 1
2 [1],

1
2
3 [1] respectively.

In comparison with KQ the main differences are the following

(i) There are additional indecomposable objects: 3[1], 2
3 [1],

1
2
3 [1].

(ii) There are additional maps: HomKQ(1, 3) = 0,whereas HomCQ(1, 3) =
HomKQ(1, 3) ⊕
HomDb(KQ)(1, τ−1(3[1])) , 0.

3.1.3. Motivation: The introduction of the cluster categories was motivated
by the Fomin-Zelevinsky theory of cluster algebras [FZ], via [MRZ] (see
also [CCS] for another approach to the An case). The development of the
theory of cluster categories was an attempt to “categorify” some of the es-
sential notions and results appearing for cluster algebras, in particular for
the acyclic cluster algebras. These are the ones associated with finite quiv-
ers with no oriented cycles.

One question connected with the categorification of acyclic cluster alge-
bras was to find an appropriate category with a class of objects being the
analogs of the n-element subsets called clusters, where n is the number of
vertices of the associated quiver. The tilting KQ-modules seemed to be nat-
ural candidates, but the problem was that if T = T1 ⊕ . . . ⊕ Tn is a tilting
module, where Ti are the indecomposable modules and Ti ; T j for i , j,
then there may not be some T ∗k ; Tk such that T/Tk ⊕ T ∗k is a tilting module
(see [HU1]). For example for KQ with Q being the quiver 1 2 3, then
T = 3 ⊕

1
2
3 ⊕ 1 is a tilting module. Then there is no indecomposable module

São Paulo J.Math.Sci. 4, 3 (2010), 529–545
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T2 ;
1
2
3 such that 3⊕T ∗2 ⊕ 1 is a tilting module. However, in CQ we have the

candidate T ∗2 = 2
3 [1], provided we have an appropriate definition.

3.1.4. The relevant objects: What turned out to be the appropriate objects
to consider as analogs of clusters in CQ are the union of the tilting KQ′-
modules, viewed as objects in CQ, for all path algebras KQ′ derived equiv-
alent to KQ. An equivalent description is given by the cluster-tilting ob-
jects defined in section 1, which has the advantage that it can be formu-
lated in a more general setting. With the same definition, these were called
Ext-configurations in [BMRRT]. Another equivalent description in the con-
text of cluster categories is T being maximal rigid, used in [GLS1], that is,
Ext1(T,T ) = 0 and T is maximal with this property. The concept of cluster-
tilting also coincides with Iyama’s definition of maximal 1-orthogonal, which
was defined in a more general context.

About the cluster-tilting graph, it is known to be connected in the case of
cluster categories of a connected quiver ([BMRRT], using [HU2]). With the
same definition one can more generally consider cluster categories CH of
a hereditary abelian category H with tilting objects. Then there are addi-
tional situations (tubular case) where the cluster-tilting graph is connected
[BKL].

Since the cluster categories have no loops or 2-cycles [BMRRT][BMR3],
they have a cluster structure by the definition given in section 2.

3.2. Preprojective algebras of Dynkin type. To any finite quiver Q with-
out oriented cycles we have associated a preprojective algebra

∏
(Q), whose

quiver Q̄ is obtained by adding an arrow i
a∗
→ j to the quiver Q whenever

there is an arrow j
a
→ i. Then by definition,

∏
(Q) = KQ̄/(

∑
a∈Q1

aa∗ − a∗a).

Let Λ be the completion of
∏

(Q) with respect to the Jacobson radical. If Q
is Dynkin, then Λ '

∏
(Q) since

∏
(Q) is then a finite dimensional algebra.

For example, if Q is the quiver a b , then Q̄ is the quiver
a b
a∗ b∗ ,

and Λ = KQ/ 〈bb∗ − a∗a, aa∗, b∗b〉 .
For Q Dynkin, the stable category modΛ is known to be a Hom-finite

triangulated 2-CY-category. There are similar results here, formulated in
the setting of the module category modΛ in [GLS1]. In particular, modΛ
has a cluster structure, and the cluster tilting and the maximal rigid objects
coincide.
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2-Calabi-Yau tilted algebras 537

3.3. Examples coming from Coxeter groups. We discuss examples of 2-
CY categories coming from reduced expressions in Coxeter groups (see
[BIRSc] [GLS1] [GLS2]), and we start with some basic definitions.

3.3.1. Reduced expressions: Let Q be a finite quiver with vertices 1, . . . , n
and no oriented cycles. Denote by WQ the associated Coxeter group. It has
generators s1, . . . , sn which are in bijection with the vertices of the quiver,
and the relations are given by s2

i = 1, sis j = s jsi if there is no arrow between
i and j, and sis jsi = s jsis j if there is exactly one arrow between i and j.

Let w ∈ WQ. Then w = sii . . . sit is a reduced expression (or reduced
word) if t is smallest possible. In that case t = l(w) is the length of w.

3.3.2. Associated 2-CY-category: Let the notation be as above, and let w =
si1
. . . sit be a reduced expression. For each j = 1, . . . , n, consider the ideal
I j = Λ(1−e j)Λ in the associated completion of the projective algebra, where
ei denotes the trivial path at the the vertex i. Define I{i1,...,it} = Ii1 . . . Iit . This
is an ideal which does not depend on the reduced expression of w, and hence
we denote it by Iw. Then Λw = Λ/Iw is a finite dimensional K-algebra, and
it is known to be Gorenstein of dimension at most 1. Denote by SubΛw the
subcategory of finitely generated Λw-modules which are contained in a finite
direct sum of copies of Λw. Then the stable category SubΛw is Hom-finite
triangulated 2-CY.

3.3.3. Cluster-tilting objects: Denote by Pi the indecomposable projective
Λ-module associated with the vertex i. For each reduced expression w =
si1 . . . sit we define T{i1,...,it} = Pi1/Ii1 Pi1 ⊕ Pi2/Ii1 Ii2 Pi2 ⊕ . . . Pit/Ii1 . . . Iit Pit ,
which is a cluster-tilting object in SubΛw. Note that we may get many non-
isomorphic cluster-tilting objects for different reduced expressions. We call
them all standard cluster-tilting objects.

Also note that this class of triangulated 2-CY categories contains the clus-
ter categories CQ and the stable categories modΛ, where Λ is the preprojec-
tive algebra of a Dynkin quiver, as special cases (see [BIRSc][GLS2][A1]).

3.4. Generalized cluster categories. Let A be a finite dimensional K-alge-
bra of global dimension at most 2. Associated with A is the orbit category
Db(A)/τ−1[1] formed the same way as when A is the path algebra KQ,which
has global dimension at most 1. This category is not necessarily triangulated.
Then in [A1] the generalized cluster category of A is defined to be the trian-
gulated hull CQ of the orbit category. It is a triangulated category which is
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2-CY when it is Hom-finite [A1]. Further, the algebra A is a cluster-tilting
object in CQ in this case. This clearly generalizes the class of cluster cate-
gories, but it even turns out to contain all the 2-CY triangulated categories
SubΛw. associated with reduced words [A1][ART].

3.5. 2-CY categories associated with Jacobian algebras. For any finite
dimensional Jacobian K-algebra there is constructed in [A1][K2] a trian-
gulated 2-CY-category C with a cluster-tilting object T, where EndC (T ) is
isomorphic to the given Jacobian algebra.

In particular, any finite dimensional Jacobian algebra is 2-CY-tilted.

3.6. Cohen-Macaulay modules. There are also interesting examples of 2-
CY triangulated categories arising from stable categories of maximal Cohen-
Macaulay modules over Gorenstein rings, in particular for 1-dimensional
hypersurfaces. In this case loops and 2-cycles occur frequently (see [BIKR]).

3.7. 2-CY categories as subfactors. There is a general method for con-
structing new 2-CY triangulated categories from given ones [IY] (see also
[BIRSc]).

We state a special case of this procedure, and refer to [IY, 4.9] for a more
general statement.

Let C he a Hom-finite triangulated 2C-category and D an object in C
with Ext1(D,D) = 0. Then B = ⊥D[1] = {X ∈ C : Hom(X,D[1]) = 0}
is a functorially finite extension closed subcategory of C , and the factor
category B/D is a Hom-finite triangulated 2-CY category.

Further, there is a 1 − 1 correspondence between cluster-tilting objects in
C having D as a summand, and cluster-tilting objects in B/D. It is given by
T 7→ T/D.

4. Properties of 2-CY-tilted algebras

In this section we discuss some properties which hold for endomorphism
algebras of cluster-tilting objects in arbitrary Hom-finite triangulated 2-CY-
categories, and some additional properties of cluster-tilted algebras.

4.1. Connection between 2-CY-categories and 2-CY-tilted algebras. The
following result shows that the category of finitely generated modules over a
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2-Calabi-Yau tilted algebras 539

2-CY-tilted algebra can be obtained directly from the triangulated 2-CY cat-
egory it came from. This was first proved for cluster categories in [BMR2],
and in the general case in [KR1].
Theorem 4.1. Let T be the cluster-tilting object in a Hom-finite triangulated
2-CY catergory C . Then we have an equivalence of categories

C /add(τT ) modEndC (T ).HomC (T, )

It is however not known in general if the 2-CY-tilted algebras EndC (T )
determine the category C back again. If the quiver Q of EndC (T ) has no
oriented cycles, then it is known that it comes from the cluster category CQ
[KR2].

4.2. Homological properties. We list some properties of a homological
nature which are taken from [KR1].
Theorem 4.2. Let Γ be a 2-CY-tilted algebra.

(a) Then Γ is Gorenstein of dimension at most 1 (that is, the injective
dimension of Γ is at most 1).

(b) gl.dim.Γ ≤ 1 or gl.dim.Γ = ∞.

Theorem 4.3. The triangulated category SubΓ is 3-CY.

Here a Hom-finite triangulated K-category is said to be n-CY if we have
a functorial isomorphism DHom(A, B) ' Hom(B, A[n]). In particular, since
any finite dimensional Jacobian algebra is 2-CY-tilted (see 3.5), the same
result holds for finite dimensional Jacobian algebras. There is also a short
direct proof of this fact for Jacobian algebras [BIRSm].

4.3. Cluster-titled algebras. We point out two important properties of clus-

ter-tilted algebras.
Theorem 4.4. (a) We obtain all the quivers of cluster-tilted algebras Γ

by starting with the quiver of a tilted algebra Λ and adding an arrow
from i to j for each relation r from j to i in a minimal set of relations
for the tilted algebra.

(b) Actually, we have Γ ' Λ n Ext2(DΛ,Λ).

This was proved in [ABS], with part (1) first proved for finite type in
[BR], and also in some cases in [BRS].

The second property was proved in [BMR1] for finite type, and in [BIRSm]
in the general case.
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Theorem 4.5. The cluster-tilted algebras are uniquely determined by their
quiver.

Note that the corresponding result is not true for tilted algebras since the
algebras given by the quivers with relations and are both
tilted algebras.

5. Some 2-CY-tilted algebras which are Jacobian

An interesting problem is whether any 2-CY-tilted algebra is Jacobian. In
particluar, it would be nice to know if this is the case for all the examples of
triangulated 2-CY categories which are discussed in section 3. This is also
not known in general. But we shall give some such examples in this section,
and show that we get a much larger class by applying the results discussed
in the next section.

5.1. 2-CY-tilted algebras associated with reduced expressions. We have
the following information for some of the special cluster-tilting objects which
we have called standard [BIRSc][BIRSm]. Note that these all lie in the same
component of the cluster-tilting graph [BIRSc].

Theorem 5.1. If T is a standard cluster-tilting object in SubΛw, where w
is a word in the Coxeter group, then End(T ) is Jacobian, and we have an
explicit description of the quivers and the potentials.

We do not give the general definitions, but illustrate with two examples.

Example 5.1.1. Let Q be the quiver
1 2 3

a b and w = s1s2s3s1s2s1.

Let T = T{123121}. Then EndSubΛw
(T ) has the quiver

3

2 2′

1
1∗

1′′

and

EndSubΛw
(T ) has the quiver

p1 1′
a∗a . Here we write the vertices in order

1231′2′1′′, but on different levels to make it easier to draw the picture. For
each edge in the underlying graph of Q we draw corresponding arrows be-
tween the vertices. For 1 2 we draw the arrows 1 2, 2 1′, 1′ 2′, 2′ 1′′,
Here we start with the vertex of type 1 which occurs first, and draw an arrow
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2-Calabi-Yau tilted algebras 541

from the last vertex of type 1 appearing before some vertex of type 2. This
arrow should end in the last vertex of type 2 appearing before the next vertex
of type 1. Then we go on this way for each edge in the underlying graph of
Q to get the first quiver above. To get the second quiver above we drop the
last vertex of each kind in the first quiver.

The potential for the last quiver is a sum of “triangles” obtained by la-
belling the arrow from 2 to 1′ following the arrow 1

a
→ 2 by a∗. Then we

start with aa∗, and go back, here by p, to the start of a, going through ver-
tices of type 1. In this case W = aa∗p.

Then one can show that EndSubΛw
(T ) ' P(Q,W).

Example 5.1.2. Let Q be the quiver

2

1 3
ca

b

,w = s1s2s1s3s1s2s2s3s1s2.

Then we get the quiver
3

2

1

3

2

11

2

1
for EndSubΛw

(T ), where T = T{121312312}, and the quiver

3

2

1

2′

1′′1′p1 p2

a

c

a

c∗

p3
b∗b

a∗

for EndSubΛw
(T ). The potential W is aa∗p2 p1 +a∗ap3 +bb∗p2 +cc∗p3. Then

one can show that EndSubΛw
(T ) ' P(Q,W).

5.2. Generalized cluster categories. Let A be a finite dimensional algebra
of global dimension 2, with quiver Q, and let CA be the associated gener-
alized cluster category. Then the 2-CY-tilted algebra EndCA(A) is Jacobian.
More specifically, for each relation r in a minimal set of relations for A,
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draw an arrow αr from the end vertex to the start vertex of r. If Q̃ is the new
quiver obtained this way, and W =

∑
r

rαr, then A � P(Q̃,W) [K3].

So this way we get one 2-CY-tilted algebra which is Jacobian. Using
the results of the next section [BIRSc], we get that all algebras in the same
component are Jacobian.

6. Connection between the mutations

In this section we state the result on the commuting of the mutation of
cluster-tilting objects and of quivers with potentials. We discuss some inter-
esting consequences of this fact. All this is taken from [BIRSc].

We have the following main result.

Theorem 6.1. Assume that there are no loops in the quiver Q, and no 2-
cycle at the vertex k. Let T be a cluster-tilting object in a Hom-finite trian-
gulated 2-CY category C , and let (Q,W) be a quiver with potential.

If EndC (T ) ' P(Q,W), then EndC (µk(T )) ' P(µk(Q,W)).

In other words, we have the following diagram

(Q,W) T ∗ = µk(Q,W)

P(Q,W) P(µk(Q,W))

T µk(T )

EndC (µk(T ))
'

EndC (T )
α

µk

µk

where we obtain an isomorphism α.

As a first application we can now answer the questions about existence
of well defined maps from section 2.

Corollary 6.2. Let the notation be as above. Then we have the following

(a) The algebra EndC (µk(T )) is determined by the algebra EndC (T ),
and does not depend on the choice of cluster-tilting object T.

(b) The Jacobian algebra P(µk(Q,W)) is determined by the Jacobian
algebra P(Q,W), and does not depend on the choice of potential
(Q,W).
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Another application is the following

Corollary 6.3. Let T be a cluster-tilting object in a Hom-finite triangulated
2-CY category C . If EndC (T ) is a Jacobian algebra, then EndC (T ′) is a Ja-
cobian algebra for any cluster-tilting object T ′ lying in the same component
as T in the cluster-tilting graph for C .

Since there are situations where some 2-CY-tilted algebra is Jacobian, we
can apply Corollary 6.3 to get a much larger class of such examples. We do
not however have an explicit description of the quivers and the potential for
the new 2-CY-tilted algebras.

Corollary 6.4. (a) The 2-CY-tilted algebras belonging to the same clus-
ter-tilting graph as the algebras EndSubΛw

(T ), where T is a stan-
dard cluster-tilting object in SubΛw, are Jacobian.

(b) The 2-CY-tilted algebras belonging to the same cluster-tilting graph
as the 2-CY-tilted algebra EndCA(A), where A is an algebra of global
dimension 2 and CA is the associated generalized cluster category.

Since the cluster-tilting graph for the cluster category of a connected
quiver Q is connected, and KQ is clearly Jacobian, it follows from Corollary
6.4 that any cluster-tilted algebra is Jacobian.
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