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Center Manifolds – Optimal Regularity for
Nonuniformly Hyperbolic Dynamics 1

Luis Barreira and Claudia Valls

Abstract. For sufficiently small perturbations with continuous deriva-
tive, we show how to establish the optimal regularity of invariant center
manifolds when the linear equation admits a nonuniform exponential
trichotomy. We also consider the general case of exponential growth
rates given by an arbitrary function. This includes the usual exponen-
tial behavior as a very special case. Our proof uses the fiber contraction
principle to establish the regularity property. We note that the argu-
ment also applies to sufficiently small linear perturbations, without
further changes.

1. Introduction

It is widely recognized that center manifold theorems are powerful tools
in the analysis of the behavior of nonhyperbolic dynamical systems. For
example, let us consider the dynamics generated by the differential equation

u′ = A(t)u+ f(t, u), (1)

and let us assume that f(t, 0) = 0 for every t. One can ask wether the
behavior of the solutions of equation (1) in a neighborhood of zero somehow
imitates the behavior of those of the linear equation

u′ = A(t)u. (2)

This is certainly the case when equation (2) admits an exponential di-
chotomy. Indeed, by the Grobman–Hartman theorem, locally the two dy-
namics are topologically conjugate. On the other hand, when equation (2)
has some elliptic directions one can still establish the existence of invari-
ant center manifolds that are tangent to the subspace generated by these
directions. However, the situation is not so simple anymore. Namely, the
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behavior on a center manifold substantially depends on the nonlinear per-
turbation, and in general the behavior of the dynamics on the manifold
need not imitate the behavior on the subspace. On the other hand, this
behavior essentially determines the stability of the system. We note that
one is still able to show that along the hyperbolic directions locally the two
dynamics are topologically conjugate, that is, one can partially linearize
the nonlinear dynamics, namely along the hyperbolic directions.

Accordingly, the study of center manifolds plays a crucial role in deter-
mining the stability of solutions of a differential equation. Namely, when
equation (2) has no unstable directions, all solutions converge exponentially
to the center manifold. Therefore, the stability of the system is completely
determined by the behavior on the center manifold. Thus, one often con-
siders a reduction to the center manifold, and determines the quantitative
behavior on it. This has also the advantage of reducing the dimension
of the system. We refer the reader to the book [6] for details and refer-
ences. In particular, using normal forms there is also the possibility of an
appropriate description of the possible bifurcations. We note that since
one needs to approximate the center manifolds to sufficiently high order,
it is also important to discuss their smoothness, and to understand how to
approximate them up to a given order.

We concentrate in this paper on the study of the smoothness of invariant
center manifolds for nonautonomous differential equations. In its classical
formulation, the center manifold theorem applies to flows for which the
linear equation (2) admits a uniform exponential trichotomy. In particular,
this means that the exponential estimates for the solutions are assumed to
be independent of the initial time. The study of center manifolds can be
traced back to the works of Pliss [19] and Kelley [15]. A very detailed expo-
sition in the case of autonomous equations is given in [20], adapting results
in [22]. See also [16, 21] for the case of equations in infinite-dimensional
spaces. We refer the reader to [8, 9, 10, 20] for more details and further
references. It is difficult to give an original reference for the first published
version of a center manifold theorem in the nonautonomous case. Cer-
tainly, the modifications that are necessary to pass from autonomous to
nonautonomous systems are not substantial. In contrast, our main goal is
to weaken the condition concerning the existence of a uniform exponential
trichotomy, to include a nonuniform exponential behavior. In this case the
partial hyperbolicity can be spoiled exponentially along each solution as the
initial time changes. We note that a principal motivation for weakening the
assumption of uniform exponential behavior for equation (2) is that almost
all trajectories of a smooth dynamical system preserving a finite invariant
measure have a linear variational equation with a nonuniform exponential
trichotomy (see [3] for more details and further references).
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As it is already mentioned above, we consider the general case of nonuni-
form exponential behavior. In this respect, our results are also a contri-
bution to the theory of nonuniform hyperbolicity. We refer to [1] for a
detailed exposition of the theory, which goes back to the landmark works
of Oseledets [17] and particularly Pesin [18]. Since then it became an im-
portant part of the general theory of dynamical systems and a principal tool
in the study of stochastic behavior. We note that the nonuniform hyper-
bolicity conditions can be expressed in terms of the Lyapunov exponents.
Among the most important properties due to nonuniform hyperbolicity is
the existence of stable and unstable invariant manifolds, and their abso-
lute continuity property established by Pesin. The theory also describes
the ergodic properties of dynamical systems with a finite invariant mea-
sure absolutely continuous with respect to the volume, and it expresses the
Kolmogorov–Sinai entropy in terms of the Lyapunov exponents by Pesin’s
entropy formula. In another direction, combining the nonuniform hyperbol-
icity with the nontrivial recurrence guaranteed by the existence of a finite
invariant measure, the fundamental work of Katok revealed a very rich and
complicated orbit structure, including an exponential growth rate for the
number of periodic points measured in terms of the topological entropy,
and the approximation of the entropy of an invariant measure by uniformly
hyperbolic horseshoes. We refer to the book [1] for details and references.

To the best of our knowledge, the first center manifold theorem on the
existence of smooth center manifolds in the context of nonuniform expo-
nential behavior was obtained in [2], where we established the Ck regularity
of the center manifolds. We note however that this is not an optimal result
since we require the top Ck derivative of the perturbation to be Lipschitz.
This observation is the main motivation for the present work, and our main
aim is precisely to obtain the optimal smoothness of the center manifolds.
For simplicity of the exposition we consider only the C1 case. The case of
higher smoothness can also be considered although at the expense of rather
involved computations, which essentially require a convenient framework in
order to obtain the required estimates. Incidentally, in [2] our proof of the
Ck smoothness of the manifolds uses a single fixed point problem in an
appropriate complete metric space. We use a result in [13], going back to a
lemma of Henry in [14], which precisely allows us to establish the existence
and simultaneously the regularity of the center manifolds using a single
fixed point problem, instead of needing an additional fixed point problem
for each higher-order derivative. Essentially, the result says that the closed
unit ball in the space Ck,δ of functions of class Ck with Hölder continu-
ous kth derivative with Hölder exponent δ is closed with respect to the
C0-topology. This allows us to consider contraction maps solely using the
supremum norm instead of needing any norm involving also the derivatives.
See [11] for a related approach in the particular case of uniform exponential
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behavior. In order to obtain the required estimates, we need sharp bounds
for the derivatives of the central component of the solutions, and for the
derivatives of the vector field along a given graph. For this we use a mul-
tivariate version of the Faà di Bruno formula in [12] for the derivatives of
a composition.

Here we use an entirely different approach, which allows us to obtain
the optimal smoothness of the center manifolds. Namely, we use the fiber
contraction principle together with an elaboration of an argument sketched
in [7] (although now in the nonuniform setting and for arbitrary growth
rates) to establish the continuity of fiber contraction. This last step turns
out to be the main technical difficulty of the proof. We briefly recall the
fiber contraction principle. Given metric spaces X and Y = (Y, dY ), we say
that a transformation S : X × Y → X × Y of the form

S(x, y) = (T (x), A(x, y))

for some functions T : X → X and A : X × Y → Y is a fiber contraction if
there exists λ ∈ (0, 1) such that

dY (A(x, y), A(x, ȳ)) ≤ λ dY (y, ȳ)

for every x ∈ X and y, ȳ ∈ Y . We also say that a fixed point x0 ∈ X of T
is attracting if for every x ∈ X we have Tn(x)→ x0 when n→∞.

Proposition 1 (Fiber contraction principle). If S is a continuous fiber
contraction, x0 ∈ X is an attracting fixed point of T , and y0 ∈ Y is a fixed
point of A(x0, ·), then (x0, y0) is an attracting fixed point of S.

We also follow partially arguments in [5] although now for arbitrary
growth rates. Namely, we consider linear equations as in (1) that may ex-
hibit central, stable and unstable behavior with respect to arbitrary growth
rates ecρ(t) determined by an arbitrary function ρ. The usual exponential
behavior is included as a very special case when ρ(t) = t. These arbitrary
growth rates include for example situations in which all Lyapunov expo-
nents of equation (1) are infinite (either +∞ or −∞). Finally, we note that
we have already established the existence of Lipschitz center manifolds for
arbitrary growth rates in [4], and so we simply refer to that paper in the
Lipschitz part of proof.

2. Setup

Let A : R→Mp be a C1 function, where Mp is the set of p× p matrices.
We consider the initial value problem

u′ = A(t)u, u(s) = us (3)

for each s ∈ R and us ∈ X = Rp. Its unique solution is defined for ev-
ery t ∈ R, and we write it in the form u(t) = T (t, s)us, where T (t, s) is
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the associated linear evolution operator. Now we introduce the notion of
exponential trichotomy, considering both nonuniform exponential behav-
ior, and growth rates given by an arbitrary function ρ. More precisely,
given a strictly increasing differentiable function ρ : R → R, we say that
equation (3) admits a ρ-nonuniform exponential trichotomy if there exist
continuous functions P,Q1, Q2 : R → Mp, such that P (t), Q1(t) and Q2(t)
are projections for each t ∈ R satisfying

P (t) +Q1(t) +Q2(t) = Id,

and

P (t)T (t, s) = T (t, s)P (s), Qi(t)T (t, s) = T (t, s)Qi(s), i = 1, 2

for every t, s ∈ R, and there exist constants

a < c ≤ c < b and ε,D > 0, (4)

such that for every t ≥ s we have

‖T (t, s)P (s)‖ ≤ Dec(ρ(t)−ρ(s))+ε|ρ(s)|,

‖T (t, s)−1Q2(t)‖ ≤ De−b(ρ(t)−ρ(s))+ε|ρ(t)|,
(5)

and for every t ≤ s we have

‖T (t, s)P (s)‖ ≤ De−c(ρ(s)−ρ(t))+ε|ρ(s)|,

‖T (t, s)−1Q1(t)‖ ≤ Dea(ρ(s)−ρ(t))+ε|ρ(t)|.
(6)

In this case we define center, stable and unstable subspaces for each s ∈
R by

E(s) = P (s)X and Fi(s) = Qi(s)X, i = 1, 2.

Setting ρ(t) = t we recover the notion of nonuniform exponential trichotomy
(see [3]). We present an example taken from [4].

Example 1. Take β > δ > 0. For each t ∈ R \ {0} let

A(t) =

δ
(

cos t−1

2
√
|t|
−
√
|t| sin |t|

)
0 0

0 −a(t) 0
0 0 a(t)

 ,

where

a(t) =
1

2
√
|t|
b(|t|) +

√
|t|b′(|t|)− δ

2
√
|t|

sin |t| − δ
√
|t| cos t

for some C1 function b : R+
0 → R such that

lim
t→0+

b(t)√
t

= 0, b|[1,∞) = β,
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and b′(t) > 0 for every t ∈ (0, 1). Setting A(0) = 0 we obtain a continuous
function R 3 t 7→ A(t). Then equation (3) admits a nonuniform exponential
trichotomy for which the constant ε in (4) cannot be taken equal to zero.

We also consider a C1 function f : R×X → X. We assume that f(t, 0) =
0 for every t ∈ R, and that there exists δ > 0 such that∥∥∥∥∂f∂u (t, u)

∥∥∥∥ ≤ δρ′(t)e−3ε|ρ(t)| (7)

for every t ∈ R and u ∈ X. In addition, we assume that f(t, u) = 0 for
every t ∈ R and u ∈ X with ‖u‖ ≥ c, for some constant c > 0. Given s ∈ R
and

us = (ξ, η1, η2) ∈ E(s)× F1(s)× F2(s),

we denote by

(x(t), y1(t), y2(t)) = (x(t, s, us), y1(t, s, us), y2(t, s, us)),

with values in E(t)× F1(t)× F2(t), the unique solution of the initial value
problem

u′ = A(t)u+ f(t, u), u(s) = us, (8)

which is equivalent to

x(t) = T (t, s)ξ +

∫ t

s
P (t)T (t, s)f(τ, x(τ), y1(τ), y2(τ)) dτ,

yi(t) = T (t, s)ηi +

∫ t

s
Qi(t)T (t, s)f(τ, x(τ), y1(τ), y2(τ)) dτ, i = 1, 2.

One can show that each solution is defined for every t ∈ R. Moreover,
u(t) = 0 is a solution of equation (8). For each τ ∈ R we write

Ψλ
τ (s, us) = (s+ τ, x(s+ τ, s, us), y1(s+ τ, s, us), y2(s+ τ, s, us)).

This is the flow generated by the autonomous equation

t′ = 1, u′ = A(t)u+ f(t, u).

3. Existence of center manifolds

We formulate and prove our main result in this section. It establishes
the existence of C1 center manifolds for equation (8), or more precisely for
the origin of equation (8). We emphasize that this is the optimal regularity.

The center manifolds are obtained as graphs over the center subspaces.
We first describe the class of functions of which we consider the graphs.
Let also X be the space of continuous functions

φ = (φ1, φ2) :
{

(s, ξ) ∈ R×X : ξ ∈ E(s)
}
→ X,
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such that φ(s, 0) = 0,

φ(s, E(s)) ⊂ F1(s)× F2(s),

and
‖φ(s, ξ)− φ(s, ξ̄)‖ ≤ ‖ξ − ξ̄‖ (9)

for every s ∈ R and ξ, ξ̄ ∈ E(s). We can easily verify that X is a complete
metric space with the distance

d(φ, ψ) = sup

{
‖φ(s, ξ)− ψ(s, ξ)‖

‖ξ‖
: s ∈ R and ξ ∈ E(s) \ {0}

}
. (10)

Given φ ∈ X, we define

Vφ =
{

(s, ξ, φ(s, ξ)) : (s, ξ) ∈ R× E(s)
}
. (11)

The following is our main result.

Theorem 1. Let A and f be C1 functions. If the equation u′ = A(t)u
admits a ρ-nonuniform exponential trichotomy with

c− b+ ε < 0 and a− c+ ε < 0,

f(t, 0) = f(t, u) = 0 for every t ∈ R and u ∈ X with ‖u‖ ≥ c, for some
constant c > 0, and condition (7) holds, then provided that δ is sufficiently
small there exists a unique φ ∈ X such that

Ψτ (Vφ) = Vφ for every τ ∈ R. (12)

Moreover:

1. the function ξ 7→ φ(s, ξ) is of class C1 for each s ∈ R, and Vφ is a
C1 manifold;

2. if (∂f/∂u)(t, 0) = 0 for every t ∈ R, then

(∂φ/∂ξ)(s, 0) = 0 and T(s,0)Vφ = R× E(s) (13)

for every s ∈ R;
3. for each s ∈ R and ξ, ξ̄ ∈ E(s), we have

‖Ψt−s(s, ξ, φ(s, ξ))−Ψt−s(s, ξ̄, φ(s, ξ̄))‖

≤
{

2De(c+2δD)(ρ(t)−ρ(s))+ε|ρ(s)|‖ξ − ξ̄‖, t ≥ s,
2De(−c+2δD)(ρ(s)−ρ(t))+ε|ρ(s)|‖ξ − ξ̄‖, t ≤ s.

(14)

Proof. We note that property (12) is equivalent to the identities

x(t) = T (t, s)ξ +

∫ t

s
P (t)T (t, τ)f(τ, x(τ), φ(τ, x(τ))) dτ,

φi(t, x(t)) = T (t, s)φi,λ(s, ξ) +

∫ t

s
Qi(t)T (t, τ)f(τ, x(τ), φ(τ, x(τ))) dτ

(15)
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for every i = 1, 2, and t ∈ R. The following statement establishes the
existence of a solution of the first equation in (15) for each given φ.

Lemma 1. For each φ ∈ X and (s, ξ) ∈ R × E(s) there exists a unique
continuous function

xφ :
{

(s, ξ) ∈ R×X : ξ ∈ E(s)
}
→ X

with xφ(s, ξ) = ξ and xφ(t, ξ) ∈ E(t) for each t ∈ R, satisfying the first
identity in (15) for every t ∈ R. Moreover,

‖xφ(t, ξ)‖ ≤
{

2De(c+2δD)(ρ(t)−ρ(s))+ε|ρ(s)|‖ξ‖, t ≥ s,
2De(−c+2δD)(ρ(s)−ρ(t))+ε|ρ(s)|‖ξ‖, t ≤ s.

Lemma 1 follows from [4, Lemmas 1 and 2] (setting φ = ψ and ξ̄ = 0 in
the second lemma). Since

Ψt−s(s, ξ, φ(s, ξ)) =
(
t, xφ(t, ξ), φ(t, xφ(t, ξ))

)
,

the inequalities in (14) follow readily from Lemma 1 and (9).

We have also the following estimates.

Lemma 2 ([4, Lemma 2]). For every φ, ψ ∈ X, s ∈ R and ξ, ξ̄ ∈ E(s), we
have

‖xφ(t, ξ)− xφ(t, ξ̄)‖+ ‖xφ(t, ξ)− xψ(t, ξ)‖

≤


De(c+2δD)(ρ(t)−ρ(s))+ε|ρ(s)|

×
(
‖ξ − ξ̄‖+ 1

2e
4δD(ρ(t)−ρ(s))‖ξ‖d(φ, ψ)

)
, t ≥ s,

De(−c+2δD)(ρ(s)−ρ(t))+ε|ρ(s)|

×
(
‖ξ − ξ̄‖+ 1

2e
4δD(ρ(t)−ρ(s))‖ξ‖d(φ, ψ)

)
, t ≤ s.

We notice that xφ is the unique solution of the equation

x′ = A(t)x+ P (t)f(t, x, φ(t, x)) (16)

with initial condition x(s) = ξ. By Lemma 2 and the continuous depen-
dence of the solutions of a differential equation on the initial conditions,
the function (t, φ, s, ξ) 7→ xφ(t, ξ) is continuous.

Now we consider the two remaining equations in (15), and we rewrite
them in a more convenient form.

Lemma 3. For every sufficiently small δ > 0, given φ ∈ X the following
properties are equivalent:

São Paulo J.Math.Sci. 5, 1 (2011), 1–22
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1. for every s, t ∈ R, ξ ∈ E(s), and i = 1, 2 we have

φi(t, xφ(t, ξ)) = T (t, s)φi(s, ξ)

+

∫ t

s
Qi(t)T (t, τ)f(τ, xφ(τ, ξ), φ(τ, xφ(τ, ξ))) dτ ;

2. for every s ∈ R and ξ ∈ E(s) we have

φ1(s, ξ) =

∫ s

−∞
Q1(s)T (τ, s)−1f(τ, xφ(τ, ξ), φ(τ, xφ(τ, ξ))) dτ,

φ2(s, ξ) = −
∫ ∞
s

Q2(s)T (τ, s)−1f(τ, xφ(τ, ξ), φ(τ, xφ(τ, ξ))) dτ.

(17)

We can then show that there is a unique function φ satisfying the two
identities in (17).

Lemma 4 ([4, Lemma 4]). Provided that δ is sufficiently small, there exists
a unique φ ∈ X such that (17) holds for every s ∈ R and ξ ∈ E(s).

The function φ in Lemma 4 is the unique fixed point of a contraction
operator T in the space X. Namely, the operator is given by

(Tφ)(s, ξ) =

(∫ s

−∞
Q1(s)T (τ, s)−1f(τ, xφ(τ, ξ), φ(τ, xφ(τ, ξ))) dτ,

−
∫ ∞
s

Q2(s)T (τ, s)−1f(τ, xφ(τ, ξ), φ(τ, xφ(τ, ξ))) dτ

) (18)

for each φ ∈ X.

Now we establish the C1 regularity of the map ξ 7→ φ(s, ξ) for each
s ∈ R. This is the most delicate part of the proof (and this would still
be the case without a nonuniform exponential behavior or an arbitrary
function ρ). The strategy is to consider operators obtained from taking
formally the derivative with respect to ξ in the two equations in (17),
and then show that these have fixed points in an appropriate space of
continuous functions. The final step is to show that these fixed points are
indeed obtained from derivating φ, and thus φ must be of class C1. The
main difficulty that prevents one to show that the new operators considered
together with T in (18) are contractions is that we would need further
regularity assumptions on f , and thus we would loose the optimal regularity
of the center manifold. Instead we use the fiber contraction principle, which
requires weaker assumptions. Nevertheless, one still needs to establish the
continuity of the fiber contraction. This turns out to be the main technical
difficulty of the proof.
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We consider the space F of continuous functions

Φ:
{

(s, ξ) ∈ R×X : ξ ∈ E(s)
}
→
∐
s∈R

L(s),

where L(s) is the family of linear transformations from E(s) to F1(s) ×
F2(s), such that Φ(s, ξ) ∈ L(s) for every (s, ξ) ∈ R× E(s), with

‖Φ‖ := sup
{
‖Φ(s, ξ)‖ : (s, ξ) ∈ R× E(s)

}
≤ 1. (19)

We also consider the subset F0 ⊂ F composed of the functions Φ ∈ F such
that Φ(s, 0) = 0 for every s ∈ R. Clearly, F and F0 are complete metric
spaces with the distance induced by the norm in (19).

We define a linear operator

A(φ,Φ) = (A1(φ,Φ), A2(φ,Φ))

for each (φ,Φ) ∈ X× F by

A1(φ,Φ)(s, ξ)

=

∫ s

−∞
Q1(s)T (τ, s)−1

(
∂f

∂x
(yφ(τ))W (τ) +

∂f

∂y
(yφ(τ))Φ(zφ(τ))W (τ)

)
dτ,

(20)

and

A2(φ,Φ)(s, ξ)

= −
∫ ∞
s

Q2(s)T (τ, s)−1

(
∂f

∂x
(yφ(τ))W (τ) +

∂f

∂y
(yφ(τ))Φ(zφ(τ))W (τ)

)
dτ,

(21)

where (x, y) ∈ E(τ)× (F1(τ)× F2(τ)), with the notation

yφ(t) = (t, xφ(t, ξ), φ(t, xφ(t, ξ))) and zφ(t) = (t, xφ(t, ξ)),

and where the linear operators

W (t) = Wφ,Φ,ξ(t) : E(s)→ E(t)

are determined by the identities

W (t) = P (t)T (t, s)

+

∫ t

s
P (t)T (t, τ)

(
∂f

∂x
(yφ(τ))W (τ) +

∂f

∂y
(yφ(τ))Φ(zφ(τ))W (τ)

)
dτ

(22)

for t ∈ R. It follows from the continuity of the solutions of a differential
equation with respect to parameters, and the continuity of the functions
(t, φ, s, ξ) 7→ xφ(t, ξ), φ, and Φ, that the function (t, φ, s, ξ) 7→ Wφ,Φ,ξ(t) is
also continuous.
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Lemma 5. The operator A is well-defined, and A(X× F) ⊂ F.

Proof of the lemma. Set

B1 =

∫ s

−∞

∥∥∥∥Q1(s)T (τ, s)−1

(
∂f

∂x
(yφ(τ))W (τ)+

∂f

∂y
(yφ(τ))Φ(zφ(τ))W (τ)

)∥∥∥∥ dτ,
and

B2 =

∫ ∞
s

∥∥∥∥Q2(s)T (τ, s)−1

(
∂f

∂x
(yφ(τ))W (τ)+

∂f

∂y
(yφ(τ))Φ(zφ(τ))W (τ)

)∥∥∥∥ dτ.
It follows from (6) and (7) that

B1 ≤ 2δD

∫ s

−∞
ρ′(τ)ea(ρ(s)−ρ(τ))+ε|ρ(τ)|−3ε|ρ(τ)|‖W (τ)‖ dτ

= 2δD

∫ s

−∞
ρ′(τ)ea(ρ(s)−ρ(τ))−2ε|ρ(τ)|‖W (τ)‖ dτ.

(23)

Furthermore, it follows from (5) and (7) that

B2 ≤ 2δD

∫ ∞
s

ρ′(τ)e−b(ρ(τ)−ρ(s))+ε|ρ(τ)|−3ε|ρ(τ)|‖W (τ)‖ dτ

= 2δD

∫ ∞
s

ρ′(τ)e−b(ρ(τ)−ρ(s))−2ε|ρ(τ)|‖W (τ)‖ dτ.
(24)

On the other hand, by (22) and again (7), for t ≥ s we have

‖W (t)‖ ≤ Dec(ρ(t)−ρ(s))+ε|ρ(s)|

+ 2δD

∫ t

s
ρ′(τ)ec(ρ(t)−ρ(τ))+ε|ρ(τ)|−3ε|ρ(τ)|‖W (τ)‖ dτ.

(25)

Setting Γ(t) = e−c(ρ(t)−ρ(s))‖W (t)‖ we obtain

Γ(t) ≤ Deε|ρ(s)| + 2δD

∫ t

s
ρ′(τ)e−2ε|ρ(τ)|Γ(τ) dτ

≤ Deε|ρ(s)| + 2δD

∫ t

s
ρ′(τ)Γ(τ) dτ.

It follows from Gronwall’s lemma that

Γ(t) ≤ Deε|ρ(s)|e2δD(ρ(t)−ρ(s)),

and thus,

‖W (t)‖ ≤ Deε|ρ(s)|e(c+2δD)(ρ(t)−ρ(s)), t ≥ s. (26)

Proceeding in a similar manner, we find that

‖W (t)‖ ≤ Deε|ρ(s)|e(−c+2δD)(ρ(s)−ρ(t)), t ≤ s. (27)
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Indeed, by (22) and again (7), for t ≤ s we have

‖W (t)‖ ≤ De−c(ρ(s)−ρ(t))+ε|ρ(s)|

+ 2δD

∫ s

t
ρ′(τ)e−c(ρ(τ)−ρ(t))+ε|ρ(τ)|−3ε|ρ(τ)|‖W (τ)‖ dτ.

Setting Γ(t) = ec(ρ(s)−ρ(t))‖W (t)‖ we obtain

Γ(t) ≤ Deε|ρ(s)| + 2δD

∫ s

t
ρ′(τ)e−2ε|ρ(τ)|Γ(τ) dτ

≤ Deε|ρ(s)| + 2δD

∫ s

t
ρ′(τ)Γ(τ) dτ.

By Gronwall’s lemma we have

Γ(t) ≤ Deε|ρ(s)|e2δD(ρ(s)−ρ(t)),

and thus, inequality (27) holds.

It follows from (27) and (23) that

B1 ≤ 2δD2

∫ s

−∞
ρ′(τ)e(a−c+ε+2δD)(ρ(s)−ρ(τ)) dτ

=
2δD2

|a− c+ ε+ 2δD|
< 1,

(28)

provided that δ is sufficiently small. Furthermore, it follows from (26)
and (24) that

B2 ≤ 2δD2

∫ ∞
s

ρ′(τ)e(−b+c+ε+2δD)(ρ(τ)−ρ(s)) dτ

=
2δD2

|−b+ c+ ε+ 2δD|
< 1,

(29)

provided that δ is sufficiently small. This shows that A(φ,Φ) is well-defined.
Again for δ sufficiently small, it follows from (28) and (29) that

‖A(φ,Φ)(s, ξ)‖ ≤ B1 +B2 < 1

for every (s, ξ) ∈ R× E(s). This shows that A(X× F) ⊂ F. �

When (∂f/∂u)(t, 0) = 0 for every t ∈ R, since xφ(t, 0) = 0 for φ ∈ X
and t ∈ R, it follows from (20) and (21) that A(φ,Φ)(s, 0) = 0 for every
(φ,Φ) ∈ X× F0 and s ∈ R. Therefore, in this case, A(X× F0) ⊂ F0.

Now we consider the transformation S : X× F → X× F defined by

S(φ,Φ) = (Tφ,A(φ,Φ)),

with the operator T as in (18).
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Lemma 6. For every sufficiently small δ > 0, the operator S is a fiber
contraction.

Proof of the lemma. Given s ∈ R, ξ ∈ E(s), φ ∈ X, and Φ,Ψ ∈ F, let

WΦ = Wφ,Φ,ξ and WΨ = Wφ,Ψ,ξ.

Setting α = ‖Φ−Ψ‖, we obtain

‖A1(φ,Φ)(s, ξ)−A1(φ,Ψ)(s, ξ)‖

≤ D
∫ s

−∞
ea(ρ(s)−ρ(τ))+ε|ρ(τ)|

∥∥∥∥∂f∂xWΦ +
∂f

∂y
ΦWΦ −

∂f

∂x
WΨ −

∂f

∂y
ΨWΨ

∥∥∥∥ dτ
≤ δD

∫ s

−∞
ρ′(τ)ea(ρ(s)−ρ(τ))−2ε|ρ(τ)|(‖WΦ −WΨ‖+ ‖ΦWΦ −ΨWΨ‖

)
dτ

≤ δD
∫ s

−∞
ρ′(τ)ea(ρ(s)−ρ(τ))−2ε|ρ(τ)|

×
(
‖WΦ −WΨ‖+ ‖Φ‖ · ‖WΦ −WΨ‖+ α‖WΨ‖

)
dτ

≤ δD
∫ s

−∞
ρ′(τ)ea(ρ(s)−ρ(τ))−2ε|ρ(τ)|(2‖WΦ −WΨ‖+ α‖WΨ‖

)
dτ, (30)

and similarly,

‖A2(φ,Φ)(s, ξ)−A2(φ,Ψ)(s, ξ)‖

≤ D
∫ ∞
s

e−b(ρ(τ)−ρ(s))+ε|ρ(τ)|
∥∥∥∥∂f∂xWΦ +

∂f

∂y
ΦWΦ −

∂f

∂x
WΨ −

∂f

∂y
ΨWΨ

∥∥∥∥ dτ
≤ δD

∫ ∞
s

ρ′(τ)e−b(ρ(τ)−ρ(s))−2ε|ρ(τ)|(‖WΦ −WΨ‖+ ‖ΦWΦ −ΨWΨ‖
)
dτ

≤ δD
∫ ∞
s

ρ′(τ)e−b(ρ(τ)−ρ(s))−2ε|ρ(τ)|(2‖WΦ −WΨ‖+ α‖WΨ‖
)
dτ,

where for simplicity we have omitted the arguments inside the integrals.
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In an analogous manner to that in (25) and using (26), for t ≥ s we have

‖WΦ(t)−WΨ(t)‖

≤ 2δD

∫ t

s
ρ′(τ)ec(ρ(t)−ρ(τ))+ε|ρ(τ)|−3ε|ρ(τ)|‖WΦ(τ)−WΨ(τ)‖ dτ

+ δD‖Φ−Ψ‖
∫ t

s
ρ′(τ)ec(ρ(t)−ρ(τ))+ε|ρ(τ)|−3ε|ρ(τ)|‖WΨ(τ)‖ dτ

≤ 2δDec(ρ(t)−ρ(s))

∫ t

s
ρ′(τ)e−c(ρ(τ)−ρ(s))−2ε|ρ(τ)|‖WΦ(τ)−WΨ(τ)‖ dτ

+ δD2ec(ρ(t)−ρ(s))‖Φ−Ψ‖
∫ t

s
ρ′(τ)e−(c+ε)(ρ(τ)−ρ(s))e(c+2δD)(ρ(τ)−ρ(s)) dτ

= 2δDec(ρ(t)−ρ(s))

∫ t

s
ρ′(τ)e−c(ρ(τ)−ρ(s))−2ε|ρ(τ)|‖WΦ(τ)−WΨ(τ)‖ dτ

+ δD2ec(ρ(t)−ρ(s))‖Φ−Ψ‖
∫ t

s
ρ′(τ)e−(ε−2δD)(ρ(τ)−ρ(s)) dτ.

Setting

Γ(t) = e−c(ρ(t)−ρ(s))‖WΦ(t)−WΨ(t)‖,
we thus obtain

Γ(t) ≤ δD2

ε− 2δD
‖Φ−Ψ‖+ 2δD

∫ t

s
ρ′(τ)Γ(τ) dτ,

provided that δ is sufficiently small. It follows from Gronwall’s lemma that

‖WΦ(t)−WΨ(t)‖ ≤ δD2

ε− 2δD
‖Φ−Ψ‖e(c+2δD)(ρ(t)−ρ(s)). (31)

Proceeding in a similar manner we find that for t ≤ s,

‖WΦ(t)−WΨ(t)‖ ≤ δD2

ε− 2δD
‖Φ−Ψ‖e(−c+2δD)(ρ(s)−ρ(t)). (32)

By (26) and (31), it follows from (30) that

‖A1(φ,Φ)(s, ξ)−A1(φ,Ψ)(s, ξ)‖

≤ K1δ‖Φ−Ψ‖
∫ s

−∞
ρ′(τ)e(a−c+ε+2δD)(ρ(s)−ρ(τ)) dτ

≤ K1δ

|a− c+ ε+ 2δD|
‖Φ−Ψ‖,

(33)
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for some constant K1 > 0, provided that δ is sufficiently small. Similarly,
by (27) and (32),

‖A2(φ,Φ)(s, ξ)−A2(φ,Ψ)(s, ξ)‖

≤ K2δ‖Φ−Ψ‖
∫ ∞
s

ρ′(τ)e(c−b+ε+2δD)(ρ(τ)−ρ(s)) dτ

≤ K1δ

|c− b+ ε+ 2δD|
‖Φ−Ψ‖,

(34)

provided that δ is sufficiently small. By (33) and (34), eventually making
δ sufficiently smaller, the operator S becomes a fiber contraction. �

Finally, we establish the continuity of the fiber contraction.

Lemma 7. For every sufficiently small δ > 0, the operator S is continuous.

Proof of the lemma. Setting

Wφ = Wφ,Φ,ξ and Wψ = Wψ,Φ,ξ,

we obtain

‖A1(φ,Φ)(s, ξ)−A1(ψ,Φ)(s, ξ)‖

≤ D
∫ s

−∞
ea(ρ(s)−ρ(τ))+ε|ρ(τ)|

×
∥∥∥∥∂f∂x (yφ(τ))Wφ(τ) +

∂f

∂y
(yφ(τ))Φ(zφ(τ))Wφ(τ)

− ∂f

∂x
(yψ(τ))Wψ(τ)− ∂f

∂y
(yψ(τ))Φ(zψ(τ))Wψ(τ)

∥∥∥∥ dτ,
and

‖A2(φ,Φ)(s, ξ)−A2(ψ,Φ)(s, ξ)‖

≤ D
∫ ∞
s

e−b(ρ(τ)−ρ(s))+ε|ρ(τ)|

×
∥∥∥∥∂f∂x (yφ(τ))Wφ(τ) +

∂f

∂y
(yφ(τ))Φ(zφ(τ))Wφ(τ)

− ∂f

∂x
(yψ(τ))Wψ(τ)− ∂f

∂y
(yψ(τ))Φ(zψ(τ))Wψ(τ)

∥∥∥∥ dτ.
São Paulo J.Math.Sci. 5, 1 (2011), 1–22
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It follows from (7) and (27) that

‖A1(φ,Φ)(s, ξ)−A1(ψ,Φ)(s, ξ)‖

≤ D
∫ s

−∞
ea(ρ(s)−ρ(τ))+ε|ρ(τ)|

∥∥∥∂f
∂x

(yφ(τ))− ∂f

∂x
(yψ(τ))

∥∥∥ · ‖Wφ(τ)‖ dτ

+D

∫ s

−∞
ea(ρ(s)−ρ(τ))+ε|ρ(τ)|

∥∥∥∂f
∂x

(yψ(τ))
∥∥∥ · ‖Wφ(τ)−Wψ(τ)‖ dτ

+D

∫ s

−∞
ea(ρ(s)−ρ(τ))+ε|ρ(τ)|

×
∥∥∥∂f
∂y

(yφ(τ))− ∂f

∂y
(yψ(τ))

∥∥∥ · ‖Φ(zφ(τ))Wφ(τ)‖ dτ

+D

∫ s

−∞
ea(ρ(s)−ρ(τ))+ε|ρ(τ)|

×
∥∥∥∂f
∂y

(yψ(τ))
∥∥∥ · ‖Φ(zφ(τ))− Φ(zψ(τ))‖ · ‖Wφ(τ)‖ dτ

+D

∫ s

−∞
ea(ρ(s)−ρ(τ))+ε|ρ(τ)|

×
∥∥∥∂f
∂y

(yψ(τ))
∥∥∥ · ‖Φ(zψ(τ))‖ · ‖Wφ(τ)−Wψ(τ)‖ dτ,

and thus,

‖A1(φ,Φ)(s, ξ)−A1(ψ,Φ)(s, ξ)‖

≤ D2e2ε|ρ(s)|
∫ s

−∞
e(−c+2δD−ε+a)(ρ(s)−ρ(τ))

∥∥∥∂f
∂x

(yφ(τ))− ∂f

∂x
(yψ(τ))

∥∥∥ dτ
+ δD

∫ s

−∞
ρ′(τ)ea(ρ(τ)−ρ(s))−2ε|ρ(τ)|‖Wφ(τ)−Wψ(τ)‖ dτ

+D2e2ε|ρ(s)|
∫ s

−∞
e(−c+2δD−ε+a)(ρ(s)−ρ(τ))

∥∥∥∂f
∂y

(yφ(τ))− ∂f

∂y
(yψ(τ))

∥∥∥ dτ
+ δD2

∫ s

−∞
ρ′(τ)e(−c+2δD+ε+a)(ρ(s)−ρ(τ))−ε|ρ(τ)|‖Φ(zφ(τ))− Φ(zψ(τ))‖ dτ

+ δD

∫ s

−∞
ρ′(τ)ea(ρ(s)−ρ(τ))−2ε|ρ(τ)|‖Wφ(τ)−Wψ(τ)‖ dτ
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≤ 2D2e2ε|ρ(s)|
∫ s

−∞
e(−c+2δD−ε+a)(ρ(s)−ρ(τ))

∥∥∥∂f
∂u

(yφ(τ))− ∂f

∂u
(yψ(τ))

∥∥∥ dτ
+ 2δD

∫ s

−∞
ρ′(τ)ea(ρ(s)−ρ(τ))−2ε|ρ(τ)|‖Wφ(τ)−Wψ(τ)‖ dτ

+ δD2

∫ s

−∞
ρ′(τ)e(−c+2δD+ε+a)(ρ(s)−ρ(τ))−ε|ρ(τ)|‖Φ(zφ(τ))− Φ(zψ(τ))‖ dτ.

(35)

Moreover, given γ > 0 there exists σ > 0 (independent of s and ξ) such
that, setting η = ρ−1(ρ(s)− ρ(σ)),

2D2e2ε|ρ(s)|
∫ η

−∞
e(−c+2δD−ε+a)(ρ(s)−ρ(τ))

∥∥∥∂f
∂u

(yφ(τ))− ∂f

∂u
(yψ(τ))

∥∥∥ dτ
≤ 4δD2

∫ η

−∞
ρ′(τ)e(−c+2δD+ε+a)(ρ(s)−ρ(τ)) dτ

=
4δD2e(−c+2δD+ε+a)ρ(σ)

|−c+ 2δD + ε+ a|
< γ,

(36)

2δD

∫ η

−∞
ρ′(τ)ea(ρ(s)−ρ(τ))−2ε|ρ(τ)|‖Wφ(τ)−Wψ(τ)‖ dτ

≤ 4δD2

∫ η

−∞
ρ′(τ)e(−c+2δD+ε+a)(ρ(s)−ρ(τ)) dτ < γ,

(37)

and

δD2

∫ η

−∞
ρ′(τ)e(−c+2δD+ε+a)(ρ(s)−ρ(τ))−ε|ρ(τ)|‖Φ(zφ(τ))− Φ(zψ(τ))‖ dτ

≤ 2δD2

∫ η

−∞
ρ′(τ)e(−c+2δD+ε+a)(ρ(s)−ρ(τ)) dτ < γ.

(38)

Now we consider the integrals from η to s. For this, setting p = ρ(s)−ρ(τ)
we consider the functions

B(p, φ)(s, ξ) =
2D2e2ε|ρ(s)|e(−c+2δD−ε+a)p

ρ′(ρ−1(ρ(s)− p))
· ∂f
∂u

(yφ(ρ−1(ρ(s)− p))),

C(p, φ)(s, ξ) = 2δDeap−2ε|ρ(s)−p|Wφ(ρ−1(ρ(s)− p)),
D(p, φ)(s, ξ) = δD2e(−c+2δD+ε+a)p−ε|ρ(s)−p|Φ(zφ(ρ−1(ρ(s)− p)))
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for each p ∈ [0, ρ(σ)] and φ ∈ X. By (35), it is sufficient to show that the
map

φ 7→
∫ ρ(σ)

0

[
B(p, φ) + C(p, φ) +D(p, φ)

]
dp

is continuous. Since the functions Φ,

(t, φ, s, ξ) 7→ xφ(t, ξ), and (t, φ, s, ξ) 7→Wφ,Φ,ξ(t)

are continuous, the functions

(p, φ, s, ξ) 7→ B(p, φ)(s, ξ), C(p, φ)(s, ξ), D(p, φ)(s, ξ) (39)

are also continuous. Furthermore, by (7) and (27), for each p ∈ [0, ρ(σ)]
and φ ∈ X we have

‖B(p, φ)‖ ≤ 2δD2e(−c+2δD+ε+a)p−ε|ρ(s)−p| ≤ 2δD2e−ε|ρ(s)−p|,

‖C(p, φ)‖ ≤ 2δD2e(−c+2δD+ε+a)p−ε|ρ(s)−p| ≤ 2δD2e−ε|ρ(s)−p|,

‖D(p, φ)‖ ≤ δD2e(−c+2δD+ε+a)p−ε|ρ(s)−p| ≤ δD2e−ε|ρ(s)−p|,

with the norm ‖·‖ in (19). In particular, B(p, φ), C(p, φ), and D(p, φ) are
in F provided that δ is sufficiently small. We first note that there exists
R > 0 such that

‖B(p, φ)(s, ξ)−B(p, ψ)(s, ξ)‖ ≤ 4δD2e−ε|ρ(s)−p| < γ,

‖C(p, φ)(s, ξ)− C(p, ψ)(s, ξ)‖ ≤ 4δD2e−ε|ρ(s)−p| < γ,

‖D(p, φ)(s, ξ)−D(p, ψ)(s, ξ)‖ ≤ 4δD2e−ε|ρ(s)−p| < γ

for every |s| > R, p ∈ [0, ρ(σ)], and ξ ∈ E(s). It remains to consider
the case when |s| ≤ R. Given s ∈ R and (φ, ψ) ∈ X × E(s), due to the
continuity in (39) there exists δ > 0 such that

‖B(p, φ)(s, ξ)−B(q, ψ)(s̄, ξ̄)‖ < γ

whenever d(φ, ψ) < δ and ‖(p, s, ξ) − (q, s̄, ξ̄)‖ < δ. Since u 7→ f(t, u)
vanishes for ‖u‖ ≥ c, it is sufficient to establish the desired continuity for
ξ inside a certain ball in E(s), possibly depending (continuously) on p and
s. This shows that it is sufficient to consider ξ in some compact set K. We
can cover [0, ρ(σ)] × [−R,R] × K with a finite number of open balls Bi,
i = 1, . . . , r centered at points in this set, such that

‖B(p, φ)(s, ξ)−B(p̄, ψ)(s̄, ξ̄)‖ < γ

whenever d(φ, ψ) < δi and (p, s, ξ), (p̄, s̄, ξ̄) ∈ Bi, for i = 1, . . . , r and some
numbers δi > 0. Therefore,

‖B(p, φ)(s, ξ)−B(p, ψ)(s, ξ)‖ < γ
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whenever d(φ, ψ) < δ = min{δ1, . . . , δr}, for every p ∈ [0, ρ(σ)], |s| ≤ R,
and ξ ∈ K. This shows that

sup
|s|≤R

sup
ξ∈K
‖B(p, φ)(s, ξ)−B(p, ψ)(s, ξ)‖ ≤ γ

whenever d(φ, ψ) < δ and p ∈ [0, ρ(σ)]. Similar arguments apply to C(p, φ)
and D(p, φ). Together with (36), (37), and (38) this implies that φ 7→
A1(φ,Φ) is continuous.

Similarly, it follows from (7) and (26) that

‖A2(φ,Φ)(s, ξ)−A2(ψ,Φ)(s, ξ)‖

≤ D
∫ ∞
s

e−b(ρ(τ)−ρ(s))+ε|ρ(τ)|
∥∥∥∂f
∂x

(yφ(τ))− ∂f

∂x
(yψ(τ))

∥∥∥ · ‖Wφ(τ)‖ dτ

+D

∫ ∞
s

e−b(ρ(τ)−ρ(s))+ε|ρ(τ)|
∥∥∥∂f
∂x

(yψ(τ))
∥∥∥ · ‖Wφ(τ)−Wψ(τ)‖ dτ

+D

∫ ∞
s

e−b(ρ(τ)−ρ(s))+ε|ρ(τ)|

×
∥∥∥∂f
∂y

(yφ(τ))− ∂f

∂y
(yψ(τ))

∥∥∥ · ‖Φ(zφ(τ))Wφ(τ)‖ dτ

+D

∫ ∞
s

e−b(ρ(τ)−ρ(s))+ε|ρ(τ)|

×
∥∥∥∂f
∂y

(yψ(τ))
∥∥∥ · ‖Φ(zφ(τ))− Φ(zψ(τ))‖ · ‖Wφ(τ)‖ dτ

+D

∫ ∞
s

e−b(ρ(τ)−ρ(s))+ε|ρ(τ)|
∥∥∥∂f
∂y

(yψ(τ))
∥∥∥

× ‖Φ(zψ(τ))‖ · ‖Wφ(τ)−Wψ(τ)‖ dτ.
Proceeding in a similar manner to that for A1 we find that φ 7→ A2(φ,Φ)
is continuous, and thus φ 7→ A(φ,Φ) is also continuous. This shows that
the fiber contraction S is continuous (we already know that the operator
T in (18) is a contraction, and thus it is also continuous). �

To establish the C1 regularity, we proceed with an auxiliary statement.

Lemma 8. If φ is of class C1 in ξ, then Tφ is of class C1 in ξ, and

∂(Tφ)/∂ξ = A(φ, ∂φ/∂ξ). (40)

Proof of the lemma. Since φ is of class C1 in ξ, the function y defined by
y(t, ξ) = xφ(t, ξ) is also of class C1 (the right-hand side of (16) is of class
C1, and thus the solutions are C1 in the initial conditions). Furthermore,
for Φ = ∂φ/∂ξ the solution of equation (22) is given by W (t) = ∂y/∂ξ.
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Therefore, repeating arguments in the proof of Lemma 5 we can apply
Leibnitz’s rule to obtain

A(φ, ∂φ/∂ξ)(s, ξ)

=

(∫ s

−∞

∂

∂ξ

[
Q1(s)T (τ, s)−1f(τ, xφ(τ, ξ), φ(τ, xφ(τ, ξ)))

]
dτ,

−
∫ ∞
s

∂

∂ξ

[
Q2(s)T (τ, s)−1f(τ, xφ(τ, ξ), φ(τ, xφ(τ, ξ)))

]
dτ

)
=
(
∂(Tφ)/∂ξ

)
(s, ξ),

for every s ∈ R and ξ ∈ E(s). �

We consider the pair (φ1,Φ1) = (0, 0) ∈ X × F. Clearly, Φ1 = ∂φ1/∂ξ.
We define recursively a sequence (φn,Φn) ∈ X× F by

(φn+1,Φn+1) = S(φn,Φn) = (Tφn, A(φn,Φn)). (41)

Assuming that φn is of class C1 in ξ with Φn = ∂φn/∂ξ, it follows from
Lemma 8 that φn+1 = Tφn is of class C1 in ξ, and by (40) we have

∂φn+1/∂ξ = ∂(Tφn)/∂ξ = A(φn,Φn) = Φn+1. (42)

Now let φ0 be the unique fixed point of T , and let Φ0 be the unique fixed
point of Ψ 7→ A(φ0,Ψ). By Proposition 1 the sequences φn and Φn con-
verge uniformly respectively to φ0 and Φ0 on bounded subsets. It follows
from (42) that φ0 is of class C1 in ξ, and that

∂φ0/∂ξ = Φ0 (43)

(we recall that if a sequence fn of C1 functions converges uniformly, and
the sequence f ′n of its derivatives also converges uniformly, then the limit
of fn is of class C1, and its derivative is the limit of f ′n).

Now we assume that (∂f/∂u)(t, 0) = 0 for every t ∈ R. Since the pair
(φ1,Φ1) = (0, 0) is in X × F0, and S(X × F0) ⊂ X × F0, the sequence
(φn,Φn) defined in (41) is also in X×F0. Therefore, Φ0(s, 0) = 0 for every
s ∈ R, and it follows from (43) that in this case (∂φ0/∂ξ)(s, 0) = 0 for every
s ∈ R. �

Finally, we show that the set Vφ in (11) is a C1 manifold. We already
know that the function ξ 7→ φ(s, ξ) is of class C1 for each fixed s ∈ R. We
define a map

F = Fs : R× E(s)→ R×X
by

F (t, ξ) = Ψt(s, ξ, φ(s, ξ)).

São Paulo J.Math.Sci. 5, 1 (2011), 1–22



Center Manifolds – Optimal Regularity for Nonuniformly Hyperbolic Dynamics 21

Since A and f are of class C1, the map

R× R×X 3 (t, s, v) 7→ Ψt(s, v)

is also of class C1, and the same happens with F . We can easily verify that
F is injective, and thus it is a parametrization of class C1 of Vφ. When
(∂f/∂u)(t, 0) = 0 for every t ∈ R, the first identity in (13) yields the second
one.
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