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Abstract. We study a version of the inverse problem of Calculus of
Variations in the context of Vakonomic Mechanics.

1. Introduction

The classical inverse problem of the Calculus of Variations consists in
finding conditions under which a given system of differential equations de-
rives from a variational principle. The origins of this problem date back to
Helmbholtz ([6]), in the end of the 19th century, who sought new applica-
tions of the powerful Hamilton-Jacobi method to integrate the equations
of Mechanics. Two major contributions to solve this problem were made
in the last century: the first, by Douglas in the 1930s in his classic papers
([3], [4]); the second, in the 1980s, by Vinogradov ([19], [20]), Tulczyjew
([I7)), Anderson ([1]), Tsujishita ([I6]) , among others (see references in
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[1]), who geometrized the problem through the introduction of the so-called
variational bicomplex. That is a double complex of differential forms in a
Fréchet manifold of infinite jets of sections of a fibered manifold, one of the
coboundary operators of which is the classical Euler-Lagrange operator of
the Calculus of Variations.

In this paper we study a variation of this problem related to Vakonomic
Mechanics. That is a formulation of the equations of Mechanics, based
on a variational principle, for systems with constraints in the velocities,
introduced by Kozlov in the 1980s (see [7], [§], [9]). The study of this inverse
problem was partially motivated by the recent development of Hamilton-
Jacobi methods for Vakonomic Mechanics, as in [5].

The organization of the paper is as follows. In section [2) we state nota-
tions and definitions. In section 3] we briefly recall the formulation of Vako-
nomic Mechanics. We show that the Vakonomic equations for a mechanical
system endowed with reonomic (i.e. time-dependent) linear constraints in
the velocities and with a non-autonomous Lagrangian may be obtained as
the Euler-Lagrange equations of a modified Lagrangian on the first jet bun-
dle of the annihilator of the constraint manifold; this is a key observation
that allows one to use the variational bicomplex of this bundle in order to
study the inverse problem. Moreover, we show that, under certain regular-
ity conditions on the Lagrangian, the solutions of the Vakonomic equations
are integral curves of the Reeb vector field associated to a cosymplectic
structure; in particular, for autonomous Lagrangians, we reobtain the well
known fact that the Vakonomic equations are Hamiltonian. In section
we study the inverse problem which is the main subject of this paper. Let
M be a smooth finite dimensional manifold. Given a system of mixed first-
and second-order differential equations, we study conditions under which
these equations are the Vakonomic equations induced by a non-autonomous
Lagrangian L defined on R x TM.

2. Notations and Definitions

In this section we fix some notation for jet bundles and we define the
variational bicomplex on the bundle of infinite jets of sections of a fibration.
We particularize the definitions for a fibration 7 : E — R over R, where E is
a smooth n-dimensional manifold. The reader is referred to [12] and [1] for
more details on the bundle of infinite jets and the variational bicomplex.

For all k € IN, 7 : J 7 — R denotes the bundle of k-jets of sections of 7
and, for 0 <1 <k, mpy - JEr — Jir denotes the natural projections (where
07 = E). We call m; the source projection and m1,0 the target projection

of the 1st jet bundle J'7. Let (¢,u%)1<a<n be coordinates on an open set
U C E adapted to the fibration E — R. This coordinate system induce
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coordinates (¢, U%))lgagn@gigk on Uk = w,;éu C Jkr. We use the notation

yes

- (e o « o S o o
u® = ufyy and 4% = ufy, so that (t, u®, 1) 1<a<n and (t,u®, 0%, %) 1<a<n

are coordinates on U' C J'7 and U? C J?m, respectively.

Let s : I C R — E be a smooth section of w. Given t € I, we denote
by j° s the equivalence class of all sections of 7 defined on a neighborhood
of t whose derivatives of all orders at t coincide with that of s. Such
an equivalence class is called an infinite order jet. We denote by J®7
the Fréchet manifold of infinite order jets of sections of 7; it is a smooth
manifold modelled on the Fréchet space R*. We denote by (Vk € Zy)
Mook + J°T — JEm and 7o : J®°m — R the natural projections. The chart
(t,u")1<a<n on U C E adapted to the fibration E — R induces a chart

-1
(t, u%))lgagmogKm on U™ =7 U C J>m.

We say that a smooth function on J*7 has order k € Z, if it is the
pullback by 7 1 of a smooth function on JEr. We say that a smooth
function on J®7 is of finite order if, for some k € Z.,, it has order k.
Differential forms on J®7 of finite order are similarly defined. In this
paper, all smooth functions or differential forms on J°°7 are assumed to be
of finite order.

There exists a natural bigrading on the R-vector space of differential
forms on J*°7:

Q*(Jooﬂ') = D QZ'J(JOOW).

0<e<1, 05 <0

A differential form belongs to €2; ;(J°°7) if, locally, on the charts described

above, it is a sum of terms of the form fdt* A 6u‘()‘,;1) ARRRWA 5u(al§_), where f
J
«

is a smooth function on J*°7 and 5“?}@ = du?‘k) — Uiy
said to be of type (i, j), or i-horizontal and j-vertical. Given w € ; ;(J*7),
its exterior derivative dw belongs to €;41,;(J%°7) ® Q; j41(J°7); we denote
by dnw its projection on the first factor and by d,w its projection on the
second one. We extend dy, and dy to Q.(J°°m) by linearity; dy, is called
horizontal derivative and d, is called wvertical derivative. They are both
anti-derivations on €, (J%°7) of degree +1 and satisfy dy? = 0, d,? = 0,
dpdy = —dydyp. Therefore, for each fixed i we obtain a cochain complex
(Qz‘,j(JOOTF), dv)j>0 — the columns of the so-called variational bicomplex —

and for each fixed j we obtain a cochain complex (€2; ;(J°n), dh)i>0 — the

lines of the variational bicomplex. The horizontal and vertical derivatives
can be easily computed in coordinates: if f = f(t, u®,ulyy, - .,u?k)) is a

dt. Such a form is
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smooth function on J*7, we have:

dpf =D¢fdt
L=y Z
a=1 j=0 ]
where Dyf = 55 + > 0 123 0 au() uli,yy is the total derivative of f;
J
moreover, dhdt = () = d,dt¢t and dhéu(k) =dtA 5u?‘k+1) d 5u(k)

The differential forms in € o(J°°7) are called Lagrangian forms. In co-
ordinates, a Lagrangian form may be written as L dt, where L is a smooth
function on J°°m; the Lagrangian is said to be of order k if L is of order
k,ie. if L = L(t,ua,u?‘l), e ,u?k)). Such a Lagrangian induces a func-
tional on compactly supported smooth sections of m: s +— f]R(j"o s)*Ldt.
A smooth section s of 7 is said to be an extremal of the functional in-
duced by Ldt if, for any compactly supported variation s, of s, we have
% o Jr (% s7)*Ldt = 0. A necessary and sufficient condition for s to be
an extremal of the functional induced by Ldt is that the Euler-Lagrange
form €1, of L be null along j*° s. The Euler-Lagrange form €2y, is a form in
1,1(J°°7) which, in coordinates, is written as:

QL_ZE L)6u® A dt, (1)

where E, (L) = Z o(— Dt) s for a Lagrangian of order k.

For s > 1, we call the quotient F*(J®7m) = Q; ;(J®m)/dnQ,s(J°m)
space of type s functional forms. It may be identified with the subspace of
Q1,5(J°°7) which is the image of the interior Euler operator I : Q s(J®°7) —
1 5(J%°7). In coordinates, we have I(w) = % Yoo ou® A Fo(w), where
Folw) = Zfzo(—Dt)i[du?i)_n w] if w has order k. For s = 1, a differential
form in €y (J%°7) is a type 1 functional form, also called a source form,
if, and only if, it is locally of the form ) "_, P, dt A 6u®, where the P,’s
are smooth functions on J®w. Thus, from , the Euler-Lagrange form
associated to a Lagrangian is a source form, i.e. it belongs to F1(J°°7). We
think of a source form w € F1(J*n) of order k as an intrinsic definition of
a system of n differential equations of order k; its solutions are the sections
s of m such that w vanishes along j*°

The spaces F? are part of a cochain complex, the so-called Fuler-Lagrange
complex of the fibration 7 : E — R:
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0—>IR,—>QO,0&>Q170£>3~1&)3~2£>”- (2)

where E is the Fuler operator Ldt — €y, given by and 6, : ' — Fitl
is the vertical derivative induced on functional forms, given by d, = I od,.

3. Vakonomic Mechanics

We denote by £ : R x M — R the trivial bundle and & : J'¢ — R its
first jet bundle, which is identified with R x TM, where 7y : TM — M
denotes the tangent bundle of M. We consider a smooth time-dependent
Lagrangian L : J'¢ — R and a smooth vector sub-bundle I : 2 — R x M
of the target projection &9 : R x TM — R x M (which stands for the
reonomic linear constraints) and we denote its annihilator in R x T*M by
II* : 2+ = R x M. We denote by 7 : 2+ — R the natural projection. We
call (M, 2,L) a (linearly) constrained mechanical system. We say that a
smooth section v: I C R — R x M of £ is compatible with & or horizontal
with respect to 9 if its prolongation j!~ lies in 2. There are two natural
approaches to formulate equations of motion for constrained mechanical
systems yielding solutions which are compatible with Z: (1)nonholonomic
mechanics (see [I1], [10], [14] and references therein), known as “mechan-
ics of the straightest paths”, based on d’Alembert-Chetaev’s principle; (2)
Vakonomic Mechanics(see [2], [11], [10], [I5] and references therein), known
as “mechanics of the shortest paths”, based on the Hamilton’s principle of
the stationary action. A particular case of the latter is the so-called sub-
Riemannian geometry.

In this section, we briefly recall how the equations of motion in Vako-
nomic Mechanics are formulated and we prove that these equations may
be obtained as the Euler-Lagrange equations of a modified Lagrangian .Z
defined on J'7, the total space of the first jet bundle of 7 : 2+ — R. More-
over, under certain regularity conditions on the Lagrangian L, we show that
the solutions of these equations are the trajectories of a Reeb vector field
associated to a certain cosymplectic structure (see theorem below).

The action functional induced by L on compactly supported sections
v: I CR — R x M of & I an open interval, is defined by v — fILojlv.
We say that a section v : I C R — R x M of 7 is a vakonomic trajectory
of (M, 2,L) if it is a critical point of the action functional on compactly
supported variations of v compatible with . By a compactly supported
variation of v we mean a smooth map I' : (—=4,6) x I — R x M such that,
for all s € (—0,0), I's =T'(s,:) : I — R x M is a section of £, 'y = v and
there exists a compact set K C [ such that for all s € (—6,0) and all ¢
outside K, v,(t) = v(t); we say that such a variation is compatible with
7 if, for all s € (=6,6), I's is compatible with . There are two types
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of vakonomic trajectories (see [10], [15]): the normal, which are associated
to a certain system of Euler-Lagrange equations, and the abnormal, which
correspond to the critical points of the so-called endpoint map. We propose
the following characterization of the normal vakonomic trajectories:

PROPOSITION 3.1. Let £ : J'm — R be defined by:

jt © = L(ji 7) + (0(t), 3t ), (3)
where v = I1* 0 © and (-,-) is the canonical pairing between R x TM and

R XxT*M. Then the normal vakonomic trajectories are projections on R x M
of the solutions of the Euler-Lagrange equations of £ .

Proof. Let n = dim M and let (,¢%)1<i<, be coordinates on an open set
R x U in R x M. Let (8%)1<a<n_r be a basis of 2" |grxy, where r = 1k 2.
Let (t,q%, \q) be the induced coordinates on Z+|gyy. This coordinate
system induces, as described in the previous section, coordinates in J*r,
1 < k < oco. Using these coordinates, .Z : J'7 — R is locally given by
ZL(t,q", Moy @', Aa) = Llt,¢',¢") + 2, , 08 Xad’, where 0 = (0%, 52). A
direct computation then shows that the Euler-Lagrange form of the La-
grangian Zdt is Qg = Y, Ei{(L)d¢* Adt + Y, Ea(L)A A dt, where:
aq* g

Eo(L) =674

%

It then follows that the equations E;(.Z) = 0 and E,(.Z) = 0 coincide
with the equations for the vakonomic trajectories as defined in [2]. (]

Ei(2)
(4)

DEFINITION 3.2. We say that L is P-regular if FL|y : 9 — 2% is a local
diffeomorphism (where FL denotes the fiber derivative of L, i.e. V (t,v,) €
R x TM,FL(t,vq) = D(L|RquM)(t,vq) € R x T:;M).

DEFINITION 3.3. The mixed bundle is the Whitney sum 2 Grxm 9+, We
define F : J'®rxm 2+ — R x T*M by (v,0)(t,q) = FL(v) + © and
F i F’-@@RXM-@L'

It is an immediate consequence of the above definitions that L is Z-
regular if, and only if, F'is a local diffeomorphism. Let 6 be the canonical
contact form on R x T*M, 0, = F 0, wy, = —df;, + dt A dH, where H :
P Brxm 2+ — R is given by (v,0)t,q + L(v) — FL(v) - v. Then, if L is

D-regular, (wr,,dt) is a cosymplectic structure on 2 ®rym 2+, where dt is
the canonical volume form on R. Moreover, we have the following:
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THEOREM 3.1. If L is @-regular, the normal vakonomic trajectories are in
1-1 correspondence with the integral curves of the Reeb vector field of the
cosymplectic structure (wr,, dt).

Remark 3.4. This is a generalization of the well known fact that, in the
autonomous case and under the same regularity hypothesis, the normal
vakonomic trajectories are integral curves of a Hamiltonian vector field
(see [10], [15]).

Proof. (i) We consider coordinates (¢, ¢*, qz) on J1¢ =R x TM and (¢, ¢*, p;)
on R x T*M induced by coordinates (¢,¢’) on M. We also consider coordi-
nates (£,¢", A\o) on 2+ as defined in the proof of proposition and cor-

responding induced coordinates (¢, qi,Aa,qéj),)\g))lgign,lgagn_mgjgk on
JEr, for 1 < k < oo. These coordinates induce coordinates (t, ¢, ¢*, \a)
on J' @rym Z; the points in the domain of this chart which belong to
9 ©rxm P are those which satisfy Y, 0%¢" = 0, where 6% = (9, -2 o ).
With respect to these coordinates, we have:

F(t7qi7qi,/\a)=Z(§ (t,q',4") +29“ ap

aqi (taq 7q ) +Za01a>\a
The Euler-Lagrange form is given by

= Ei(L)0¢ Ndt+ > Ea(L)6Aa Adt € Q1 (J%T),

()

ie. F*t =t, F*¢" = ¢' and F*p;, =

where, by (4)):

8L
Bi(2) = 5 Z aJ Aot —Dt{Z"?M} =

oL oL
= o¢ otoq Z 3q38q ¥ - Z aqfﬁq P
00 .
+§aq§ Aan—Z —gﬂm
=> 074

A section t € I — O(t) = (t,¢'(t), Aa(t)) of 7 is a normal vakonomic tra-
jectory if, and only if, the equations E;(.Z) = 0 and E,(-¢) = 0 are satisfied

(6)
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along j*° ©. Denoting v = H*@, it therefore follows that ’y I - RxM

is compatible with & and % (t q'(t), 4" (1)) + >, 02 (. ¢"(t)) Aa(t)} =
A . 862

g; (t,ql(t),ql(t)) + ijoc aq]i (t,q (t)))\a( )q ( ) for 1 < i < n. Thus, defin-

ing ' = (j17,0) : I = 2DRrxm 27, it follows that I' is an integral curve

of the vector field X € X(Z ®rxm Z*) which, in coordinates, is given by:

_ 0 ) 00%
TF-X = (%+;q 5 +Z Z 8J Aad’)

5p; € XRXTM) (7)

That X is globally defined follows from the fact that it is the Reeb vector
field of the of the cosymplectic structure (wr,,dt), as we show in part (ii).

Since TII- X = TII* . TF - X = 2 +3,¢ 8?1 it follows that X is
a second order vector field, in the sense that its integral curves are of
the form ® = (j*é,n) : I — Z2@rxm 2+, where ¢ : I — R x M is
compatible with 2. Moreover, for any such integral curve, n = pryo® : [ —
2+ is a normal vakonomic trajectory. We have thus obtained a bijection
® +— pryo® between the integral curves of X and the normal vakonomic
trajectories.

(ii) We assert that X € X(Z @®rxm Z1) is the Reeb vector field of the
cosymplectic structure (wr,dt), i.e. X swp, =0 and X.dt = 1.

Let Q = —dF*0p+dtAdH € Q1 (J' Brxm 2), where H : J1 Grum 2+ —
R is given by (v,0),q) + L(v) — FL(v) - v. Then wy, is the pullback of
by the inclusion. We assert that, on 2 Grxm 2+, X2 is null. Since it

is immediate from ( . ) that X dt = 1, the proof follows from this asser-
tion. Indeed, a direct computa‘mon using 1 , and the expressmns in

coordinates 6 = >, p;dg" and H=L -}, 5

_ -1 oL any 8L 80? 7 %
X_IQ—%:qd(aq E:e Z 9 +§ 3 Xad’)dg'+
o —
+d(L—8—q,Z.q)—<dH,X>dt_
0L o
= (5, — (A X))dt+ 2 07¢'dAg

ZOt
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Another direct computation in coordinates yields 68% — (dH, X) = 0.

Since, for all a, Y, 084" = 0 on P Brxm 2+, the assertion is proved and
the thesis follows.

O

4. The Inverse Problem

We consider a source form Q on F1(J%°7) of order 2 which, on the coor-
dinates introduced in the proof of proposition [3.1] is of the form:

> Pt q' ¢’ Aas Aa)dt AdE+ Y02 50 A dt, (8)

(e

where 65 = (6, 8?11‘ ).

DEFINITION 4.1. With the notation above, we call ) a Z-source form. The

integral curves of € are the sections © of m such that Q) vanishes along
i e.

PROPOSITION 4.2. The definition above is intrinsic, i.e. independent of the
coordinate system.

Proof. Let (t,G")1<i<n be another coordinate system on R x U C R x M; we
assume these coordinate systems to be related by (¢, ¢*) + (t, 3 (q,. .., q”))
Let (@a)lgagn_k be another basis of Z1|g; we assume " = ZB Ag&ﬂ,
where A% = Ag(t, q) is a smooth function on R x U for 1 < o, 5 < n — k.
The matrix A = (Ag) is, then, invertible. Let (¢,q’, Ao) be the induced co-
ordinates on @J‘|qu- This coordinate system induces coordinates in J¥7,
1 <k < oo. A direct computation then shows that, in this new coordinate
system, ) given by transforms into >, P; (t,@i,ﬁi,éi,xa,xa)éﬁi Adt +
D gféi(ﬁa A dt, where 0} = (§°, (,%) and:
o . j , v
Pt g5 5 ) :ijg‘;. + ézjef(Al)g%;l? X (9)
J JouBry

O

Note that, if © is an integral curve of {2, then the projection of © on
R x M is compatible with Z and, locally, © : ¢t — (t,q'(t), \a(t)) in the
above coordinates is a solution of the system of mixed first- and second-
order equations P;(t,q%, ¢, G, Aoy Aa) = 0.
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32 Waldyr M. Oliva and Glaucio Terra

We now consider the following problem: to find necessary and sufficient
conditions for a given Z-source form €2 to be the Euler-Lagrange form of a
Lagrangian of the form . If that is the case, the integral curves of {2 are
the solutions of the Vakonomic equations of the Lagrangian L.

DEFINITION 4.3. We say that a Z-source form  is 2-1-affine if, written
in coordinates as , for 1 <i < n: (i) the functions P; are affine in the
variables %, 1 < k <n and Ay, 1 < a < n—k; (ii) OB 4o g function of

dgk
(t.q,d) and 55

is a function of (t,q).

It follows from @ that the above definition does not depend on the
coordinate system.

DEFINITION 4.4. Let Q) be a D-source form. We say that Q) is a locally
variational Z-source form if, locally, it is the FEuler-Lagrange form of a

Lagrangian of the form . We say that Q is globally variational if the
latter condition holds globally on J*°m.

Our main results are stated in the following theorems: in the first one we
describe the Z-source forms which are locally variational; in the second one
we show that the topological obstruction for a locally variational Z-source
form to be globally variational lies in H2(M).

THEOREM 4.1. Let Q be a Z-source form. Then Q is locally variational
if, and only if, Q) is 2-1-affine and 6,2 = 0, where d, is defined in . In
coordinates, if Q) is given by , the latter condition reads:

oP; 0P OP; 5 OF;
- = — —D - + D :
aq' dqi taqj T b B
oP; 0P P,
—— =— —2D .
o 0@ T
oP; 0P
oGt Ol (10)
90c . .
7 _or om
- q* 0 o
e OB
"0

Proof. The necessity is obvious from (@ and . The condition §,2 = 0 in
coordinates is obtained by a direct computation using the definition of
dy and the canonical form for type 2 functional forms given in [I]; equations
are the classical Helmholtz equations for the source form (2.
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Conversely, assume that the Z-source form ) is 2-1-affine and 6,€) = 0.
The latter condition implies, by the local exactness of the Euler-Lagrange
complex (2)) (see [1]), the existence of a smooth function . locally defined
on J°°m such that € is, locally, the Euler-Lagrange form of .. We must
prove that .2 may be taken of the form .

Firstly, we may take .Z given by the homotopy operator H! : F1(J®7) —
Q1,0(J°7) defined by the Volterra-Vainberg formula ([2I], [18]). Using
coordinates defined in section [2] this homotopy operator is given by:

n 1
Z fa du® A dt — (/0 Z u® fo(t, su®, su?l), ol suf‘k))ds)dt
a=1 a

if the f,’s are smooth functions of order k on J*w. Thus:

1
L(t,q,G,4, A A) = / > q'Pilt,sq', 54, 54, 5Aar sha)ds+
0

1
+/ Z)\QQf(t,sq)sqids
0 (e

In order to obtain a Lagrangian of the form , we now modify the
lagrangian form A = Zd¢ (where £ is given by (11])) by the addition
of horizontal derivatives of convenient functions on J°°m; since the Euler
operator E is null on the image of dy, : Q00(J°7) — Q1,0(J>®7), any such
modified Lagrangian form has the same Euler-Lagrange form 2.

(11)

Let f be a smooth function on J*7 which is the pullback of a smooth
function on J'¢ (we identify R x M C 2+ with the null section of II* :
P+ — R x M, so that J'¢ € J'7); that is, f = f(t,q,¢). We then have,
in coordinates, dyf = Defdt = (% + 32, 9L 4i + 57, 97 giydt. We define

N = Z'dt = A+duf = (£ + Def)dt, so that 35 = Sk + 2L Since
Q is 2-l-affine, 2& is a function of (t,q,q), i.e. it is the pullback of a

’ aqk
smooth function on J'¢; hence, differentiating under the integral sign,

we conclude that gg is a function of (t, ¢, q). Therefore, we may choose f

so that g;-i- + g({i =0,ie L =Lt q¢NN).
Let now f’ be a smooth function on J*°7 which is the pullback of a
smooth function on 2+, that is, f' = f'(t,q,\), so that dyf’ = Dy f'dt =

(U 32, 9 iy, 2 Do)dt. We define A” = .2"dt = N +dy f' = (L' +

7 8q1
D¢ f")dt, so that Z" = £"(t,q,4, A\, \) and %W = g";’ﬂ/ + %. Again by
the fact that Q is 2-1-affine, 22 is a function of (t,q); hence, differentiating

e
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once more (|11) under the integral sign, we conclude that gf) L = % is a
function of (¢,¢). Then we may choose f’ so that +3 8f =0, ie.

L' =2L"(t,q,4,N).
Then £ has Euler-Lagrange form Q and 2£° = 0, so that E,(.2") =

O
%’f " Dy, ‘9".% Y= ag "= =D a0 j'. The last equation implies that, for
some smooth functlon L =L(t q,q), we have Z" =L + >,  0%¢ i A, i€
£" is a Lagrangian of the form .
[l

THEOREM 4.2. If H>(M) = 0, every locally variational 9-source form is
globally variational. On the other hand, if H>(M) # 0, there exist locally
variational P-source forms which are not globally variational.

Proof. Let © on F1(J%°r) be a locally variational Z-source form. Let n =
L/dt € Q1,(J®n), where L/ is the smooth map on J*7 defined by j; © ~
(O(t),ji 7v), where v = II* 0 © and (-,-) is the canonical pairing between
R x TM and R x T*M. As in the previous proof, we identify R x M ¢ 2+
with the null section of IT* : - — R x M, so that J*¢ C JFr for 0 < k < oo.
By the previous theorem, we may take an open cover (Uy)qeca of J%7 such
that, for each o € A, there exists a smooth Lagrangian L, in J'¢ such that
Qly,, is the Euler-Lagrange form of L,dt 4+ 7. Hence, on each Uy,:

E(Ladt) = Q — E(n) (12)

Since, for each U,, L,dt is a type (1,0) form on an open subset of
J°¢, it follows from that the restriction of Q — E() € F*(J®r) to
J®¢ C J°7 is a source form on J®¢ which is locally variational. The
total space of the fibration £ is R x M, which is contractible to M, so that
H2(R x M) = H2(M). Therefore, if H>(M) = 0, we may apply the theory of
[13] (see also [1]) to conclude that 2 — E(n) is a globally variational source
form on J®¢. Thus, we may take a globally defined Lagrangian L in J'¢
such that E(Ldt) = Q — E(n), i.e.  is the Euler-Lagrange form of Ldt + 7,
as asserted.

On the other hand, if H2(R x M) = H2(M) # 0, it follows from the main
theorem in [13] that we may take a locally variational source form w in
J1¢ which is not globally variational. Therefore, taking the pull back of w
to Jlm by II* (which we also denote by w), we obtain a locally variational
P-source form w + E(n) which is not globally variational.

O
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