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Abstract. We study a version of the inverse problem of Calculus of
Variations in the context of Vakonomic Mechanics.

1. Introduction

The classical inverse problem of the Calculus of Variations consists in
finding conditions under which a given system of differential equations de-
rives from a variational principle. The origins of this problem date back to
Helmholtz ([6]), in the end of the 19th century, who sought new applica-
tions of the powerful Hamilton-Jacobi method to integrate the equations
of Mechanics. Two major contributions to solve this problem were made
in the last century: the first, by Douglas in the 1930s in his classic papers
([3], [4]); the second, in the 1980s, by Vinogradov ([19], [20]), Tulczyjew
([17]), Anderson ([1]), Tsujishita ([16]) , among others (see references in
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[1]), who geometrized the problem through the introduction of the so-called
variational bicomplex. That is a double complex of differential forms in a
Fréchet manifold of infinite jets of sections of a fibered manifold, one of the
coboundary operators of which is the classical Euler-Lagrange operator of
the Calculus of Variations.

In this paper we study a variation of this problem related to Vakonomic
Mechanics. That is a formulation of the equations of Mechanics, based
on a variational principle, for systems with constraints in the velocities,
introduced by Kozlov in the 1980s (see [7], [8], [9]). The study of this inverse
problem was partially motivated by the recent development of Hamilton-
Jacobi methods for Vakonomic Mechanics, as in [5].

The organization of the paper is as follows. In section 2, we state nota-
tions and definitions. In section 3, we briefly recall the formulation of Vako-
nomic Mechanics. We show that the Vakonomic equations for a mechanical
system endowed with reonomic (i.e. time-dependent) linear constraints in
the velocities and with a non-autonomous Lagrangian may be obtained as
the Euler-Lagrange equations of a modified Lagrangian on the first jet bun-
dle of the annihilator of the constraint manifold; this is a key observation
that allows one to use the variational bicomplex of this bundle in order to
study the inverse problem. Moreover, we show that, under certain regular-
ity conditions on the Lagrangian, the solutions of the Vakonomic equations
are integral curves of the Reeb vector field associated to a cosymplectic
structure; in particular, for autonomous Lagrangians, we reobtain the well
known fact that the Vakonomic equations are Hamiltonian. In section 4,
we study the inverse problem which is the main subject of this paper. Let
M be a smooth finite dimensional manifold. Given a system of mixed first-
and second-order differential equations, we study conditions under which
these equations are the Vakonomic equations induced by a non-autonomous
Lagrangian L defined on R× TM.

2. Notations and Definitions

In this section we fix some notation for jet bundles and we define the
variational bicomplex on the bundle of infinite jets of sections of a fibration.
We particularize the definitions for a fibration π : E→ R over R, where E is
a smooth n-dimensional manifold. The reader is referred to [12] and [1] for
more details on the bundle of infinite jets and the variational bicomplex.

For all k ∈ N, πk : Jkπ → R denotes the bundle of k-jets of sections of π
and, for 0 6 l < k, πk,l : Jkπ → Jlπ denotes the natural projections (where
J0π

.
= E). We call π1 the source projection and π1,0 the target projection

of the 1st jet bundle J1π. Let (t, uα)16α6n be coordinates on an open set
U ⊂ E adapted to the fibration E → R. This coordinate system induce
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coordinates (t, uα(i))16α6n,06i6k on Uk
.
= π−1

k,0U ⊂ Jkπ. We use the notation

u̇α
.
= uα(1) and üα

.
= uα(2), so that (t, uα, u̇α)16α6n and (t, uα, u̇α, üα)16α6n

are coordinates on U1 ⊂ J1π and U2 ⊂ J2π, respectively.

Let s : I ⊂ R → E be a smooth section of π. Given t ∈ I, we denote
by j∞t s the equivalence class of all sections of π defined on a neighborhood
of t whose derivatives of all orders at t coincide with that of s. Such
an equivalence class is called an infinite order jet. We denote by J∞π
the Fréchet manifold of infinite order jets of sections of π; it is a smooth
manifold modelled on the Fréchet space R∞. We denote by (∀ k ∈ Z+)
π∞,k : J∞π → Jkπ and π∞ : J∞π → R the natural projections. The chart
(t, uα)16α6n on U ⊂ E adapted to the fibration E → R induces a chart
(t, uα(i))16α6n,06i<∞ on U∞

.
= π−1

∞,0U ⊂ J∞π.

We say that a smooth function on J∞π has order k ∈ Z+ if it is the
pullback by π∞,k of a smooth function on Jkπ. We say that a smooth
function on J∞π is of finite order if, for some k ∈ Z+, it has order k.
Differential forms on J∞π of finite order are similarly defined. In this
paper, all smooth functions or differential forms on J∞π are assumed to be
of finite order.

There exists a natural bigrading on the R-vector space of differential
forms on J∞π:

Ω∗(J
∞π) = ⊕

06i61, 06j<∞
Ωi,j(J

∞π).

A differential form belongs to Ωi,j(J
∞π) if, locally, on the charts described

above, it is a sum of terms of the form f dti ∧ δuα1

(k1) ∧ · · · ∧ δu
αj
(kj)

, where f

is a smooth function on J∞π and δuα(k)
.
= duα(k) − u

α
(k+1)dt. Such a form is

said to be of type (i, j), or i-horizontal and j-vertical. Given ω ∈ Ωi,j(J
∞π),

its exterior derivative dω belongs to Ωi+1,j(J
∞π)⊕Ωi,j+1(J∞π); we denote

by dhω its projection on the first factor and by dvω its projection on the
second one. We extend dh and dv to Ω∗(J

∞π) by linearity; dh is called
horizontal derivative and dv is called vertical derivative. They are both
anti-derivations on Ω∗(J

∞π) of degree +1 and satisfy dh
2 = 0, dv

2 = 0,
dhdv = −dvdh. Therefore, for each fixed i we obtain a cochain complex(
Ωi,j(J

∞π),dv

)
j>0

— the columns of the so-called variational bicomplex —

and for each fixed j we obtain a cochain complex
(
Ωi,j(J

∞π),dh

)
i>0

— the

lines of the variational bicomplex. The horizontal and vertical derivatives
can be easily computed in coordinates: if f = f(t, uα, uα(1), . . . , u

α
(k)) is a
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smooth function on J∞π, we have:

dhf = Dtf dt

dvf =
n∑

α=1

k∑
j=0

∂f

∂uα(j)
δuα(j),

where Dtf = ∂f
∂t +

∑n
α=1

∑k
j=0

∂f
∂uα

(j)
uα(j+1) is the total derivative of f ;

moreover, dhdt = 0 = dvdt and dhδu
α
(k) = dt ∧ δuα(k+1), dvδu

α
(k) = 0.

The differential forms in Ω1,0(J∞π) are called Lagrangian forms. In co-
ordinates, a Lagrangian form may be written as L dt, where L is a smooth
function on J∞π; the Lagrangian is said to be of order k if L is of order
k, i.e. if L = L(t, uα, uα(1), . . . , u

α
(k)). Such a Lagrangian induces a func-

tional on compactly supported smooth sections of π: s 7→
∫
R

(j∞ s)∗L dt.
A smooth section s of π is said to be an extremal of the functional in-
duced by Ldt if, for any compactly supported variation sτ of s, we have
d
dτ |τ=0

∫
R

(j∞ sτ )∗L dt = 0. A necessary and sufficient condition for s to be

an extremal of the functional induced by Ldt is that the Euler-Lagrange
form ΩL of L be null along j∞ s. The Euler-Lagrange form ΩL is a form in
Ω1,1(J∞π) which, in coordinates, is written as:

ΩL =
n∑

α=1

Eα(L)δuα ∧ dt, (1)

where Eα(L) =
∑k

i=0(−Dt)
i ∂L
∂uα

(i)
for a Lagrangian of order k.

For s > 1, we call the quotient Fs(J∞π)
.
= Ω1,s(J

∞π)/dhΩ0,s(J
∞π)

space of type s functional forms. It may be identified with the subspace of
Ω1,s(J

∞π) which is the image of the interior Euler operator I : Ω1,s(J
∞π)→

Ω1,s(J
∞π). In coordinates, we have I(ω) = 1

s

∑n
α=1 δu

α ∧ Fα(ω), where

Fα(ω)
.
=
∑k

i=0(−Dt)
i[δuα(i)yω] if ω has order k. For s = 1, a differential

form in Ω1,1(J∞π) is a type 1 functional form, also called a source form,
if, and only if, it is locally of the form

∑n
α=1 Pα dt ∧ δuα, where the Pα’s

are smooth functions on J∞π. Thus, from (1), the Euler-Lagrange form
associated to a Lagrangian is a source form, i.e. it belongs to F1(J∞π). We
think of a source form ω ∈ F1(J∞π) of order k as an intrinsic definition of
a system of n differential equations of order k; its solutions are the sections
s of π such that ω vanishes along j∞ s.

The spaces Fs are part of a cochain complex, the so-called Euler-Lagrange
complex of the fibration π : E→ R:
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0 −→ R −→ Ω0,0
dh−→ Ω1,0

E−→ F1 δv−→ F2 δv−→ · · · (2)

where E is the Euler operator Ldt 7→ ΩL given by (1) and δv : Fi → Fi+1

is the vertical derivative induced on functional forms, given by δv
.
= I ◦ dv.

3. Vakonomic Mechanics

We denote by ξ : R ×M → R the trivial bundle and ξ1 : J1ξ → R its
first jet bundle, which is identified with R × TM, where τM : TM → M
denotes the tangent bundle of M. We consider a smooth time-dependent
Lagrangian L : J1ξ → R and a smooth vector sub-bundle Π : D → R ×M
of the target projection ξ1,0 : R × TM → R × M (which stands for the
reonomic linear constraints) and we denote its annihilator in R × T∗M by
Π∗ : D⊥ → R×M. We denote by π : D⊥ → R the natural projection. We
call (M,D ,L) a (linearly) constrained mechanical system. We say that a
smooth section γ : I ⊂ R→ R×M of ξ is compatible with D or horizontal
with respect to D if its prolongation j1 γ lies in D . There are two natural
approaches to formulate equations of motion for constrained mechanical
systems yielding solutions which are compatible with D : (1)nonholonomic
mechanics (see [11], [10], [14] and references therein), known as “mechan-
ics of the straightest paths”, based on d’Alembert-Chetaev’s principle; (2)
Vakonomic Mechanics(see [2], [11], [10], [15] and references therein), known
as “mechanics of the shortest paths”, based on the Hamilton’s principle of
the stationary action. A particular case of the latter is the so-called sub-
Riemannian geometry.

In this section, we briefly recall how the equations of motion in Vako-
nomic Mechanics are formulated and we prove that these equations may
be obtained as the Euler-Lagrange equations of a modified Lagrangian L
defined on J1π, the total space of the first jet bundle of π : D⊥ → R. More-
over, under certain regularity conditions on the Lagrangian L, we show that
the solutions of these equations are the trajectories of a Reeb vector field
associated to a certain cosymplectic structure (see theorem 3.1, below).

The action functional induced by L on compactly supported sections
γ : I ⊂ R → R ×M of ξ, I an open interval, is defined by γ 7→

∫
I L ◦ j1 γ.

We say that a section γ : I ⊂ R → R ×M of π is a vakonomic trajectory
of (M,D ,L) if it is a critical point of the action functional on compactly
supported variations of γ compatible with D . By a compactly supported
variation of γ we mean a smooth map Γ : (−δ, δ)× I → R×M such that,
for all s ∈ (−δ, δ), Γs

.
= Γ(s, ·) : I → R ×M is a section of ξ, Γ0 = γ and

there exists a compact set K ⊂ I such that for all s ∈ (−δ, δ) and all t
outside K, γs(t) = γ(t); we say that such a variation is compatible with
D if, for all s ∈ (−δ, δ), Γs is compatible with D . There are two types
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of vakonomic trajectories (see [10], [15]): the normal, which are associated
to a certain system of Euler-Lagrange equations, and the abnormal, which
correspond to the critical points of the so-called endpoint map. We propose
the following characterization of the normal vakonomic trajectories:

Proposition 3.1. Let L : J1π → R be defined by:

j1t Θ 7→ L(j1t γ) + 〈Θ(t), j1t γ〉, (3)

where γ
.
= Π∗ ◦ Θ and 〈·, ·〉 is the canonical pairing between R × TM and

R×T∗M. Then the normal vakonomic trajectories are projections on R×M
of the solutions of the Euler-Lagrange equations of L .

Proof. Let n = dimM and let (t, qi)16i6n be coordinates on an open set
R× U in R×M. Let (θα)16α6n−r be a basis of D⊥|R×U, where r = rk D .
Let (t, qi, λα) be the induced coordinates on D⊥|R×U. This coordinate
system induces, as described in the previous section, coordinates in Jkπ,
1 6 k 6 ∞. Using these coordinates, L : J1π → R is locally given by
L (t, qi, λα, q̇

i, λ̇α) = L(t, qi, q̇i) +
∑

i,α θ
α
i λαq̇

i, where θαi
.
= 〈θα, ∂

∂qi
〉. A

direct computation then shows that the Euler-Lagrange form of the La-
grangian L dt is ΩL =

∑
i Ei(L )δqi ∧ dt+

∑
α Eα(L )δλα ∧ dt, where:

Ei(L ) =
∂L

∂qi
−Dt

∂L

∂q̇i

Eα(L ) =
∑
i

θαi q̇
i

(4)

It then follows that the equations Ei(L ) = 0 and Eα(L ) = 0 coincide
with the equations for the vakonomic trajectories as defined in [2]. �

Definition 3.2. We say that L is D-regular if FL|D : D → D∗ is a local
diffeomorphism (where FL denotes the fiber derivative of L, i.e. ∀ (t, vq) ∈
R× TM,FL(t, vq)

.
= D(L|R×TqM)(t, vq) ∈ R× T∗qM).

Definition 3.3. The mixed bundle is the Whitney sum D ⊕R×M D⊥. We
define F : J1ξ⊕R×M D⊥ → R × T∗M by (v,Θ)(t,q) 7→ FL(v) + Θ and

F
.
= F |D ⊕R×M D⊥.

It is an immediate consequence of the above definitions that L is D-
regular if, and only if, F is a local diffeomorphism. Let θ be the canonical
contact form on R × T∗M, θL

.
= F

∗
θ, ωL

.
= −dθL + dt ∧ dH, where H :

D ⊕R×M D⊥ → R is given by (v,Θ)(t,q) 7→ L(v) − FL(v) · v. Then, if L is

D-regular, (ωL, dt) is a cosymplectic structure on D ⊕R×M D⊥, where dt is
the canonical volume form on R. Moreover, we have the following:
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Theorem 3.1. If L is D-regular, the normal vakonomic trajectories are in
1-1 correspondence with the integral curves of the Reeb vector field of the
cosymplectic structure (ωL, dt).

Remark 3.4. This is a generalization of the well known fact that, in the
autonomous case and under the same regularity hypothesis, the normal
vakonomic trajectories are integral curves of a Hamiltonian vector field
(see [10], [15]).

Proof. (i) We consider coordinates (t, qi, q̇i) on J1ξ ≡ R×TM and (t, qi, pi)
on R× T∗M induced by coordinates (t, qi) on M. We also consider coordi-
nates (t, qi, λα) on D⊥ as defined in the proof of proposition 3.1, and cor-

responding induced coordinates (t, qi, λα, q
i
(j), λ

(j)
α )16i6n,16α6n−r,16j6k on

Jkπ, for 1 6 k < ∞. These coordinates induce coordinates (t, qi, q̇i, λα)
on J1ξ⊕R×M D⊥; the points in the domain of this chart which belong to
D ⊕R×M D⊥ are those which satisfy

∑
i θ
α
i q̇

i = 0, where θαi
.
= 〈θα, ∂

∂qi
〉.

With respect to these coordinates, we have:

F (t, qi, q̇i, λα) =
∑
i

( ∂L

∂q̇i
(t, qi, q̇i) +

∑
α

θαi λα
) ∂
∂pi

(5)

i.e. F ∗t = t, F ∗qi = qi and F ∗pi = ∂L
∂q̇i

(t, qi, q̇i) +
∑

α θ
α
i λα.

The Euler-Lagrange form is given by

ΩL =
∑
i

Ei(L )δqi ∧ dt+
∑
α

Eα(L )δλα ∧ dt ∈ Ω1,1(J∞π),

where, by (4):

Ei(L ) =
∂L

∂qi
−Dt

∂L

∂q̇i
+
∑
j,α

∂θαj
∂qi

λαq̇
j −Dt{

∑
α

θαi λα} =

=
∂L

∂qi
− ∂2L

∂t∂q̇i
−
∑
j

∂2L

∂qj∂q̇i
q̇j −

∑
j

∂2L

∂q̇j∂q̇i
q̈j+

+
∑
j,α

∂θαj
∂qi

λαq̇
j −

∑
α

(∂θαi
∂t

+
∑
j

∂θαi
∂qj

q̇j
)
λα −

∑
α

θαi λ̇α

Eα(L ) =
∑
i

θαi q̇
i

(6)

A section t ∈ I 7→ Θ(t) =
(
t, qi(t), λα(t)

)
of π is a normal vakonomic tra-

jectory if, and only if, the equations Ei(L ) = 0 and Eα(L ) = 0 are satisfied
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along j∞Θ. Denoting γ
.
= Π∗Θ, it therefore follows that γ : I → R ×M

is compatible with D and d
dt

{
∂L
∂q̇i

(
t, qi(t), q̇i(t)

)
+
∑

α θ
α
i

(
t, qi(t)

)
λα(t)

}
=

∂L
∂qi

(
t, qi(t), q̇i(t)

)
+
∑

j,α

∂θαj
∂qi

(t, qi(t)
)
λα(t)q̇j(t) for 1 6 i 6 n. Thus, defin-

ing Γ
.
= (j1 γ,Θ) : I → D ⊕R×M D⊥, it follows that Γ is an integral curve

of the vector field X ∈ X(D ⊕R×M D⊥) which, in coordinates, is given by:

TF ·X =
∂

∂t
+
∑
i

q̇i
∂

∂qi
+
∑
i

( ∂L

∂qi
+
∑
j,α

∂θαj
∂qi

λαq̇
j
) ∂
∂pi
∈ X(R×T∗M) (7)

That X is globally defined follows from the fact that it is the Reeb vector
field of the of the cosymplectic structure (ωL,dt), as we show in part (ii).

Since TΠ · X = TΠ∗ · TF · X = ∂
∂t +

∑
i q̇
i ∂
∂qi

, it follows that X is

a second order vector field, in the sense that its integral curves are of
the form Φ

.
= (j1 φ, η) : I → D ⊕R×M D⊥, where φ : I → R × M is

compatible with D . Moreover, for any such integral curve, η = pr2 ◦Φ : I →
D⊥ is a normal vakonomic trajectory. We have thus obtained a bijection
Φ 7→ pr2 ◦Φ between the integral curves of X and the normal vakonomic
trajectories.

(ii) We assert that X ∈ X(D ⊕R×M D⊥) is the Reeb vector field of the
cosymplectic structure (ωL, dt), i.e. XyωL = 0 and Xy dt = 1.

Let Ω
.
= −dF ∗θL+dt∧dH ∈ Ω1(J1ξ⊕R×M D), where H : J1ξ⊕R×M D⊥ →

R is given by (v,Θ)(t,q) 7→ L(v) − FL(v) · v. Then ωL is the pullback of Ω

by the inclusion. We assert that, on D ⊕R×M D⊥, XyΩ is null. Since it
is immediate from (7) that Xydt = 1, the proof follows from this asser-
tion. Indeed, a direct computation using (7), (5) and the expressions in
coordinates θ =

∑
i pidq

i and H = L−
∑

i
∂L
∂q̇i

q̇i yields, on D ⊕R×M D⊥:

XyΩ =
∑
i

q̇id
( ∂L

∂q̇i
+
∑
α

θαi λα
)
−
∑
i

( ∂L

∂qi
+
∑
j,α

∂θαj
∂qi

λαq̇
j
)
dqi+

+ d
(
L− ∂L

∂q̇i
q̇i
)
− 〈dH, X〉dt =

=
(∂L

∂t
− 〈dH, X〉

)
dt+

∑
i,α

θαi q̇
idλα
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Another direct computation in coordinates yields ∂L
∂t − 〈dH, X〉 = 0.

Since, for all α,
∑

i θ
α
i q̇

i = 0 on D ⊕R×M D⊥, the assertion is proved and
the thesis follows.

�

4. The Inverse Problem

We consider a source form Ω on F1(J∞π) of order 2 which, on the coor-
dinates introduced in the proof of proposition 3.1, is of the form:∑

i

Pi(t, q
i, q̇i, q̈i, λα, λ̇α)δqi ∧ dt+

∑
i,α

θαi q̇
iδλα ∧ dt, (8)

where θαi
.
= 〈θα, ∂

∂qi
〉.

Definition 4.1. With the notation above, we call Ω a D-source form. The
integral curves of Ω are the sections Θ of π such that Ω vanishes along
j∞Θ.

Proposition 4.2. The definition above is intrinsic, i.e. independent of the
coordinate system.

Proof. Let (t, qi)16i6n be another coordinate system on R×U ⊂ R×M; we
assume these coordinate systems to be related by (t, qi) 7→

(
t, qi(q1, . . . , qn)

)
.

Let (θ
α
)16α6n−k be another basis of D⊥|R×U; we assume θ

α
=
∑

β A
α
βθ

β,

where Aαβ = Aαβ(t, q) is a smooth function on R × U for 1 6 α, β 6 n − k.

The matrix A = (Aαβ) is, then, invertible. Let (t, qi, λα) be the induced co-

ordinates on D⊥|R×U. This coordinate system induces coordinates in Jkπ,
1 6 k 6∞. A direct computation then shows that, in this new coordinate

system, Ω given by (8) transforms into
∑

i P i(t, q
i, q̇

i
, q̈
i
, λα, λ̇α)δqi ∧ dt +∑

i,α θ
α
i q̇

i
δλα ∧ dt, where θ

α
i
.
= 〈θα, ∂

∂qi
〉 and:

P i(t, q
i, q̇

i
, q̈
i
, λα, λ̇α) =

∑
j

Pj
∂qj

∂qi
+
∑
j,α,β,γ

q̇
j
θ
β
j (A−1)αβ

∂Aγα

∂qi
λγ (9)

�

Note that, if Θ is an integral curve of Ω, then the projection of Θ on
R × M is compatible with D and, locally, Θ : t 7→

(
t, qi(t), λα(t)

)
in the

above coordinates is a solution of the system of mixed first- and second-
order equations Pi(t, q

i, q̇i, q̈i, λα, λ̇α) = 0.
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We now consider the following problem: to find necessary and sufficient
conditions for a given D-source form Ω to be the Euler-Lagrange form of a
Lagrangian of the form (3). If that is the case, the integral curves of Ω are
the solutions of the Vakonomic equations of the Lagrangian L.

Definition 4.3. We say that a D-source form Ω is 2-1-affine if, written
in coordinates as (8), for 1 6 i 6 n: (i) the functions Pi are affine in the

variables q̈k, 1 6 k 6 n and λ̇α, 1 6 α 6 n − k; (ii) ∂Pi
∂q̈k

is a function of

(t, q, q̇) and ∂Pi
∂λ̇k

is a function of (t, q).

It follows from (9) that the above definition does not depend on the
coordinate system.

Definition 4.4. Let Ω be a D-source form. We say that Ω is a locally
variational D-source form if, locally, it is the Euler-Lagrange form of a
Lagrangian of the form (3). We say that Ω is globally variational if the
latter condition holds globally on J∞π.

Our main results are stated in the following theorems: in the first one we
describe the D-source forms which are locally variational; in the second one
we show that the topological obstruction for a locally variational D-source
form to be globally variational lies in H2(M).

Theorem 4.1. Let Ω be a D-source form. Then Ω is locally variational
if, and only if, Ω is 2-1-affine and δvΩ = 0, where δv is defined in (2). In
coordinates, if Ω is given by (8), the latter condition reads:

∂Pj
∂qi

=
∂Pi
∂qj

−Dt
∂Pi
∂q̇j

+ D2
t

∂Pi
∂q̈j

−∂Pj
∂q̇i

=
∂Pi
∂q̇j

− 2Dt
∂Pi
∂q̈j

∂Pj
∂q̈i

=
∂Pi
∂q̈j∑

j

∂θαj
∂qi

q̇j =
∂Pi
∂λα

−Dt
∂Pi

∂λ̇α

−θαi =
∂Pi

∂λ̇α

(10)

Proof. The necessity is obvious from (6) and (2). The condition δvΩ = 0 in
coordinates (10) is obtained by a direct computation using the definition of
δv and the canonical form for type 2 functional forms given in [1]; equations
(10) are the classical Helmholtz equations for the source form Ω.
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Conversely, assume that the D-source form Ω is 2-1-affine and δvΩ = 0.
The latter condition implies, by the local exactness of the Euler-Lagrange
complex (2) (see [1]), the existence of a smooth function L locally defined
on J∞π such that Ω is, locally, the Euler-Lagrange form of L . We must
prove that L may be taken of the form (3).

Firstly, we may take L given by the homotopy operator H1 : F1(J∞π)→
Ω1,0(J∞π) defined by the Volterra-Vainberg formula ([21], [18]). Using
coordinates defined in section 2, this homotopy operator is given by:

n∑
α=1

fα δu
α ∧ dt 7→

(∫ 1

0

∑
α

uαfα(t, suα, suα(1), . . . , su
α
(k))ds

)
dt

if the fα’s are smooth functions of order k on J∞π. Thus:

L (t, q, q̇, q̈, λ, λ̇) =

∫ 1

0

∑
i

qiPi(t, sq
i, sq̇i, sq̈i, sλα, sλ̇α)ds+

+

∫ 1

0

∑
i,α

λαθ
α
i (t, sq)sq̇ids

(11)

In order to obtain a Lagrangian of the form (3), we now modify the
lagrangian form Λ

.
= L dt (where L is given by (11)) by the addition

of horizontal derivatives of convenient functions on J∞π; since the Euler
operator E is null on the image of dh : Ω0,0(J∞π) → Ω1,0(J∞π), any such
modified Lagrangian form has the same Euler-Lagrange form Ω.

Let f be a smooth function on J∞π which is the pullback of a smooth
function on J1ξ (we identify R × M ⊂ D⊥ with the null section of Π∗ :
D⊥ → R ×M, so that J1ξ ⊂ J1π); that is, f = f(t, q, q̇). We then have,

in coordinates, dhf = Dtfdt = (∂f∂t +
∑

i
∂f
∂qi

q̇i +
∑

i
∂f
∂q̇i

q̈i)dt. We define

Λ′ = L ′dt
.
= Λ + dhf = (L + Dtf)dt, so that ∂L ′

∂q̈i
= ∂L

∂q̈i
+ ∂f

∂q̇i
. Since

Ω is 2-1-affine, ∂Pi
∂q̈k

is a function of (t, q, q̇), i.e. it is the pullback of a

smooth function on J1ξ; hence, differentiating (11) under the integral sign,
we conclude that ∂L

∂q̈i
is a function of (t, q, q̇). Therefore, we may choose f

so that ∂L
∂q̈i

+ ∂f
∂q̇i

= 0, i.e. L ′ = L ′(t, q, q̇, λ, λ̇).

Let now f ′ be a smooth function on J∞π which is the pullback of a
smooth function on D⊥, that is, f ′ = f ′(t, q, λ), so that dhf

′ = Dtf
′dt =

(∂f
′

∂t +
∑

i
∂f ′

∂qi
q̇i+

∑
α
∂f ′

∂λα
λ̇α)dt. We define Λ′′ = L ′′dt

.
= Λ′+dhf

′ = (L ′+

Dtf
′′)dt, so that L ′′ = L ′′(t, q, q̇, λ, λ̇) and ∂L ′′

∂λ̇α
= ∂L ′

∂λ̇α
+ ∂f ′

∂λα
. Again by

the fact that Ω is 2-1-affine, ∂Pi
∂λ̇α

is a function of (t, q); hence, differentiating
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once more (11) under the integral sign, we conclude that ∂L ′

∂λ̇α
= ∂L

∂λ̇α
is a

function of (t, q). Then we may choose f ′ so that ∂L ′

∂λ̇α
+ ∂f ′

∂λα
= 0, i.e.

L ′′ = L ′′(t, q, q̇, λ).

Then L ′′ has Euler-Lagrange form Ω and ∂L ′′

∂λ̇α
= 0, so that Eα(L ′′) =

∂L ′′

∂λα
− Dt

∂L ′′

∂λ̇α
= ∂L ′′

∂λα
=
∑

i,α θ
α
i q̇

i. The last equation implies that, for

some smooth function L = L(t, q, q̇), we have L ′′ = L +
∑

i,α θ
α
i q̇

iλα, i.e.

L ′′ is a Lagrangian of the form (3).

�

Theorem 4.2. If H2(M) = 0, every locally variational D-source form is
globally variational. On the other hand, if H2(M) 6= 0, there exist locally
variational D-source forms which are not globally variational.

Proof. Let Ω on F1(J∞π) be a locally variational D-source form. Let η
.
=

L′dt ∈ Ω1,0(J∞π), where L′ is the smooth map on J∞π defined by j1t Θ 7→
〈Θ(t), j1t γ〉, where γ

.
= Π∗ ◦ Θ and 〈·, ·〉 is the canonical pairing between

R× TM and R× T∗M. As in the previous proof, we identify R×M ⊂ D⊥

with the null section of Π∗ : D⊥ → R×M, so that Jkξ ⊂ Jkπ for 0 6 k 6∞.
By the previous theorem, we may take an open cover (Uα)α∈A of J∞π such
that, for each α ∈ A, there exists a smooth Lagrangian Lα in J1ξ such that
Ω|Uα is the Euler-Lagrange form of Lαdt+ η. Hence, on each Uα:

E(Lαdt) = Ω− E(η) (12)

Since, for each Uα, Lαdt is a type (1, 0) form on an open subset of
J∞ξ, it follows from (12) that the restriction of Ω − E(η) ∈ F1(J∞π) to
J∞ξ ⊂ J∞π is a source form on J∞ξ which is locally variational. The
total space of the fibration ξ is R×M, which is contractible to M, so that
H2(R×M) ∼= H2(M). Therefore, if H2(M) = 0, we may apply the theory of
[13] (see also [1]) to conclude that Ω−E(η) is a globally variational source
form on J∞ξ. Thus, we may take a globally defined Lagrangian L in J1ξ
such that E(Ldt) = Ω−E(η), i.e. Ω is the Euler-Lagrange form of Ldt+ η,
as asserted.

On the other hand, if H2(R×M) ∼= H2(M) 6= 0, it follows from the main
theorem in [13] that we may take a locally variational source form ω in
J1ξ which is not globally variational. Therefore, taking the pull back of ω
to J1π by Π∗ (which we also denote by ω), we obtain a locally variational
D-source form ω + E(η) which is not globally variational.

�
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