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Abstract. In this note we describe how to approximate some classes
of singular equations by nonsingular equations. We obtain a solution to
each nonsingular problem and estimates guaranteeing that the limiting
function is a solution of the original problem.

1. Introduction

The following problem was studied in [5]{
−∆u = χ{u>0}

(
− u−β + λup

)
in Ω

u = 0 on ∂Ω
(1)

0 < β < 1 and 0 < p < 1.

Theorem 1.1. There exists a maximal solution for every λ > 0. There is
constant λ∗ > 0 such that for λ > λ∗ the maximal solution is positive. And
for λ < λ∗, the maximal solution vanishes on a set of positive measure.

We solve problem (1) by perturbing the equation as −∆u + u
(u+ε)1+β

=

λup. The solutions uε ↘ u pointwise and∫
Ω
u(−∆ϕ) +

∫
{u>0}

1

uβ
ϕ ≤ λ

∫
Ω
upϕ, (2)

∀ϕ ∈ C2(Ω), ϕ ≥ 0, ϕ = 0 on ∂Ω.
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There are two approaches to show that u is indeed a solution of (1).
Relation (2) tells us that u is a maximal subsolution. We then regularize

it and show that u ∈ C1, 1−β
1+β and indeed solves the problem (1). In doing

this, we need to obtain a local estimate |∇u| ≤ Cu
1−β
2 in Ω′ ⊂⊂ Ω. One of

the main ingredients is the following Harnack type lemma.

Lemma 1.2. For every ball Br(p) ⊂ Ω there are constants c0, τ > 0 de-
pending only on n and β such that if

−
∫
∂Br(p)

u ≥ c0r
2

1+β , then u(x) ≥ τ−
∫
∂Br(p)

u a.e. in Br/2(p)

The second approach relies on an estimate for uε by the maximum prin-

ciple, namely |∇uε| ≤ Cu
1−β
2

ε in Ω′ ⊂⊂ Ω. The idea to obtain such an

estimate is to define v = |∇uε|2

u1−βε
ϕ2

1, where ϕ1 is the first eigenfunction of the

Laplacian with zero boundary condition. The function v has a maximum
at x0 ∈ Ω, and then ∆v(x0) ≤ 0. If the estimate is not true, it is possible to
take a constant C > 0 independently of ε such that sup v > C and by com-
putation ∆v(x0) > 0, a contradiction. Using the estimate and multiplying
the equation by an adequate test function, we let ε→ 0 in the equation to
get a weak solution.

The next problem was studied in [7]{−∆u = χ{u>0}
(

log u+ λup
)

in Ω

u = 0 on ∂Ω

Both approaches described above work in this case and an analogous re-
sult to Theorem 1.1 holds true. The estimate obtained for the maximal
subsolution (which is shown to be a solution) is |∇u| ≤ Cu in Ω′ ⊂⊂ Ω
and u ∈ C1,1, a better regularity than the one for (1). This is roughly
explained by the fact that log u is less singular than −1/uβ. The estimate
by maximum principle is |∇uε| ≤ Cuε in Ω′ ⊂⊂ Ω.

2. Fully nonlinear elliptic equations

We proceed to discuss in more detail the following fully nonlinear prob-
lem which was addressed in a work in progress with E. Teixeira [8]. We
consider {

F (D2u) = G
(
x, u, |∇u|2

)
in Ω

u = f on ∂Ω

with f ∈ C1,α(∂Ω) and G : Ω×R×R→ R a C1 function. Following [3], we
define F : Sym(d × d) → R and assume F (0) = 0. The uniform ellipticity
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reads as follows: ∃λ,Λ, 0 < λ ≤ Λ such that

F (M+N ) ≤ F (M) + Λ‖N+‖ − λ‖N−‖, ∀M,N ∈ Sym(d× d).

In order to state our Lipschitz estimate, let φ : (0,∞) → R be such
that lim inf

s→∞
φ(s) ≥ 0. We define the asymptotic behavior of φ passing 0,

κ : (0, 1)→ (0,∞) by κ(ε) := inf{s : φ(s) > −ε}.

Theorem 2.1. Let u ∈ C3(Ω) be a solution. Define

σ(|p|) := inf
(x,u)

DuG(x, u, |p|2)|p|2 −
∣∣DxG(x, u, |p|2)

∣∣ |p|
G2(x, u, |p|2)

assume S := lim inf
|p|→∞

σ(|p|) ≥ 0. Then max
Ω
|∇u| ≤ C, where C depends only

on d, λ, Λ, ‖f‖C1,α and the asymptotic behavior of σ passing 0.

The proof runs by defining v = |∇u|2. We compute Di,jv and use the
equation. Since v has a maximum at x0 ∈ Ω, we use the asymptotic
behavior to conclude the estimate. It is not a proof by contradiction.

Specializing the function G we study the problem{
F (D2u) = β(u)Γ

(
|∇u|2

)
in Ω

u = f on ∂Ω,
(3)

where β : R → R and Γ: [0,∞) → R are C1,α functions. We have two
consequences of Theorem 2.1.

Corollary 2.2. If infu
β′(u)
β(u)2

> −∞ and Γ(τ)
τ → +∞ as τ → +∞, then

max
Ω
|∇u| ≤ C.

Corollary 2.3. If β is nondecreasing, |β| + |β′| > 0 and lim inf
τ→∞

Γ(τ) > 0,

then max
Ω
|∇u| ≤ C.

Definition: u is a viscosity subsolution in Ω if F (D2u) ≥ g in the viscosity
sense in Ω if, that is, for every x0 ∈ Ω, Vx0 neighborhood, ϕ ∈ C2(Vx0),
u ≤ ϕ in Vx0 , u(x0) = ϕ(x0), then F (D2ϕ(x0)) ≥ g(x0).

Definition: u is a viscosity supersolution in Ω if F (D2u) ≤ g in the viscosity
sense in Ω if, that is, for every x0 ∈ Ω, Vx0 neighborhood, ϕ ∈ C2(Vx0),
u ≥ ϕ in Vx0 , u(x0) = ϕ(x0), then F (D2ϕ(x0)) ≤ g(x0). It is possible to
refrase this definition with ϕ being a quadratic function.

A viscosity solution is a continuous function u which is a subsolution and
a supersolution.
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Definition: a continuous function u satisfies F (D2u) = +∞ at a point X0

if u cannot be touched from above by a smooth function at X0.

The idea behind the above definition relies in the fact that if u(x) = |x|,
then ∆u = (n − 1)/|x| in the distributional sense. We could say that
∆u(0) = +∞. In the light of the viscosity theory, given an arbitrary
positive number K, PK(x) = K

2n |X|
2 touches u at 0 from below. Indeed,

P (0) = u(0) and in 0 < |x| < 1
K , we have u(x) > PK(x). Thus, “∆u(0) ≥

K” for every K.

Definition: a continuous function u is a viscosity solution in the topological
sense if it satisfies F (D2u) = +∞ at a point X0.

The approach to solve (3) is by considering again a perturbed problem{
F
(
D2uε

)
= βε(uε)Γ

(
|∇uε|2

)
in Ω

uε = f on ∂Ω.
(4)

Using Corollary 2.2 we derive existence of a Lipschitz viscosity solution
in the topological sense for{

F (D2u) =
1

|u|q
Γ
(
|∇u|2

)
in Ω

u = f on ∂Ω,
(5)

with q ≥ 1, Γ ≥ 0, Γ superlinear and F concave. In this case βε(u) = 1/uq

for u > ε and βε(u) = ε for u < −ε. Between −ε and ε, βε(u) is a fourth
order polinomial. Since βε(u) is not monotone, Perron’s method should be
adapted by adding a term ku in both sides of the equation. This gives a
solution uε to (4). The estimate of Theorem 2.1 allows us to let uε → u,
thus obtaining a viscosity solution of (5).

Another existence of viscosity solution result can be obtained using
Corollary 2.3 for the problem{

F (D2u) = χ{u>0}Γ
(
|∇u|2

)
in Ω

u = f on ∂Ω.
(6)

In this case βε is defined as follows. Let ρ be a smooth function supported
in [0, 1], ρ > 0 in (0, 1) and normalized as to

∫
R ρ = 1. We define

βε(s) :=
1

2

∫ s/ε

0
ρ(τ)dτ − 1

2

∫ −s/ε
0

ρ(τ)dτ +
1

2
+ ε,

which satisfy the assumptions of Corollary 2.3.

Equations similar to (5) and (6) have been treated in [4, 6]. The solutions
of the equations may exhibit a free boundary, whose regularity can be
studied with techniques from [1].
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Another problem that could be treated with our techniques is{
F (D2u) =

1

|u|q
in Ω

u = f on ∂Ω
(7)

where 0 < q < 1 and F is concave. There is a viscosity solution in the

pointwise topological sense. Moreover, u ∈ C
1, 1−q

1+q , the regularity of the
first problem (1).

In the proof we use a version of Theorem 2.1 and ideas from the proof
of existence of solution to problem (5). Here βε is the same used to solve
(5) and is not monotone.

3. Examples and comparison to our results

In problem (5) we have shown existence of solution to{
F (D2u) =

1

|u|q
|∇u|2 in Ω

u = f on ∂Ω

if q ≥ 1. There is a result in [2] saying that{
∆u =

1

|u|q
|∇u|2 − h in Ω

u = 0 on ∂Ω

has a ≥ 0, 6≡ 0 solution if and only if q ≤ 2, provided q > 0 and h is smooth
and positive at every compact subset of Ω.

By problem (7) we know that{
F (D2u) =

1

|u|q
in Ω

u = f on ∂Ω

has a solution if 0 < q < 1, remember f ≥ 0. The first problem (1){
∆u =

1

|u|q
in Ω

u = 0 on ∂Ω

has no positive solution if 0 < q < 1. Notice that{
−∆u = χ{u>0}

(
− u−q + λ

)
in Ω

u = 0 on ∂Ω

has no solution if q ≥ 1.
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But by problem (6){
F (D2u) = χ{u>0} in Ω

u = f on ∂Ω

has a solution.
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