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Abstract. In this note we describe how to approximate some classes
of singular equations by nonsingular equations. We obtain a solution to
each nonsingular problem and estimates guaranteeing that the limiting
function is a solution of the original problem.

1. Introduction

The following problem was studied in [5]
—Au = X{u>0}( —u B + )\up) in
u =20 on 0N
0<f<land0<p<l1.

(1)

Theorem 1.1. There exists a maximal solution for every A > 0. There is
constant \* > 0 such that for A > \* the mazimal solution is positive. And
for A < X*, the mazimal solution vanishes on a set of positive measure.

We solve problem (1) by perturbing the equation as —Au + W =

AuP. The solutions u. \, v pointwise and
1
[uao+ [ Zo<a [ @)
Q {u>0} U Q
Vi € C?(Q), ¢ >0, ¢ = 0 on 0.
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There are two approaches to show that u is indeed a solution of (1).
Relation (2) tells us that v is a maximal subsolution. We then regularize

1-5
it and show that u € C"1%7 and indeed solves the problem (1). In doing

this, we need to obtain a local estimate |Vu| < Cu™2z in Q' CC Q. One of
the main ingredients is the following Harnack type lemma.

Lemma 1.2. For every ball B,(p) C € there are constants co,7 > 0 de-
pending only on n and B such that if

7[ u > corﬁ, then u(x) > T][ u  a.e. in By s(p)
9Br(p) 9Bx(p)

The second approach relies on an estimate for u. by the maximum prin-
1—

1-8
ciple, namely |Vu.| < Cucs? in Q' CC Q. The idea to obtain such an

2
estimate is to define v = \Vluf‘l ©?, where ¢ is the first eigenfunction of the
Uu,

Laplacian with zero boun(fary condition. The function v has a maximum
at zo € Q, and then Av(xp) < 0. If the estimate is not true, it is possible to
take a constant C' > 0 independently of € such that supv > C and by com-
putation Awv(zg) > 0, a contradiction. Using the estimate and multiplying
the equation by an adequate test function, we let ¢ — 0 in the equation to
get a weak solution.

The next problem was studied in [7]
—Au = X{y>0} ( log u + )\up) in
u=20 on 02

Both approaches described above work in this case and an analogous re-
sult to Theorem 1.1 holds true. The estimate obtained for the maximal
subsolution (which is shown to be a solution) is |Vu| < Cu in ' CC Q
and v € O, a better regularity than the one for (1). This is roughly
explained by the fact that log u is less singular than —1/u®. The estimate
by maximum principle is |Vu.| < Cu. in ' CC Q.

2. Fully nonlinear elliptic equations

We proceed to discuss in more detail the following fully nonlinear prob-
lem which was addressed in a work in progress with E. Teixeira [8]. We
consider

F(D*u) = G (z,u,|Vul?) in

u = f on 0
with f € C1*(0Q) and G: @ x R xR — R a C* function. Following [3], we
define F': Sym(d x d) — R and assume F'(0) = 0. The uniform ellipticity
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reads as follows: I\, A, 0 < A < A such that
FM+N) < F(M) + AINT| = AN, YM,N € Sym(d x d).

In order to state our Lipschitz estimate, let ¢: (0,00) — R be such
that hII_l) inf ¢(s) > 0. We define the asymptotic behavior of ¢ passing 0,
k:(0,1) = (0,00) by k(e) :=inf{s: ¢(s) > —¢}.

Theorem 2.1. Let u € C3(2) be a solution. Define
o(lpl) = inf 22G@ PP~ |DaGlaw 1pP)| I
() G?(x,u, [pl?)

assume S 1= 1|1r‘n info(|p|) > 0. Then max |Vu| < C, where C depends only

ond, A\, A, ||f|lcr.« and the asymptotzc behavior of o passing 0.

The proof runs by defining v = |Vu|>. We compute D; ;v and use the
equation. Since v has a maximum at xzg € (), we use the asymptotic
behavior to conclude the estimate. It is not a proof by contradiction.

Specializing the function G we study the problem

{F(DQU) = BI (|Vu?) in Q 3)

u = f on 01,

where 3: R — R and I': [0,00) — R are C1“ functions. We have two
consequences of Theorem 2.1.

F(T)

Corollary 2.2. If inf, ﬁ(( W S o and — +00 as T — 400, then

u)?
max |Vu| < C.
Q

Corollary 2.3. If 8 is nondecreasing, || + |8'] > 0 and liniian(T) > 0,
then max |[Vu| < C.
Q

Definition: u is a viscosity subsolution in € if F(D?u) > ¢ in the viscosity
sense in Q if, that is, for every zg € Q, V,, neighborhood, ¢ € C%(V,,),
u < @ in Vi, u(ro) = ¢(x0), then F(D?*p(x0)) > g(xo).

Definition: u is a viscosity supersolution in  if F(D?u) < g in the viscosity
sense in Q) if, that is, for every z¢ € Q, V,, neighborhood, ¢ € C?(V,,),
u > @ in Vyy, u(zg) = ¢(x0), then F(D?*p(xg)) < g(zo). It is possible to
refrase this definition with ¢ being a quadratic function.

A viscosity solution is a continuous function » which is a subsolution and
a supersolution.
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Definition: a continuous function u satisfies F/(D?u) = +oc at a point Xy
if 4 cannot be touched from above by a smooth function at Xj.

The idea behind the above definition relies in the fact that if u(z) = |z,
then Au = (n — 1)/|z| in the distributional sense. We could say that
Au(0) = +oo. In the light of the viscosity theory, given an arbitrary

positive number K, Pk (z) = %|X | touches u at 0 from below. Indeed,

P(0) = u(0) and in 0 < |z| < %, we have u(z) > Pg(z). Thus, “Au(0) >
K for every K.

Definition: a continuous function wu is a viscosity solution in the topological
sense if it satisfies F'(D?u) = 4+oc0 at a point Xj.

The approach to solve (3) is by considering again a perturbed problem

{FDR) = B (Vef) im0 (@)

u = f on

Using Corollary 2.2 we derive existence of a Lipschitz viscosity solution
in the topological sense for

Jul (5)
u = f on 01,

with ¢ > 1, T' > 0, T" superlinear and F' concave. In this case c(u) = 1/uf
for u > e and B¢(u) = € for u < —e. Between —e and e, Sc(u) is a fourth
order polinomial. Since (¢(u) is not monotone, Perron’s method should be
adapted by adding a term ku in both sides of the equation. This gives a
solution u. to (4). The estimate of Theorem 2.1 allows us to let u. — u,
thus obtaining a viscosity solution of (5).

{F(DZu) = lrqvep) m o

Another existence of viscosity solution result can be obtained using
Corollary 2.3 for the problem

{F(D%) = X0y ([Vul?) in Q (6)
u = f on S

In this case . is defined as follows. Let p be a smooth function supported
in [0,1], p > 0 in (0,1) and normalized as to [, p = 1. We define

s/e p 1 —s/e p 1
s [ emar—g [ a5+

which satisfy the assumptions of Corollary 2.3.

Equations similar to (5) and (6) have been treated in [4, 6]. The solutions
of the equations may exhibit a free boundary, whose regularity can be
studied with techniques from [1].
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Another problem that could be treated with our techniques is

{F(DQU) - in Q (7)

[ufe

u = f on 02
where 0 < ¢ < 1 and F' is concave. There is a viscosity solution in the

1—
pointwise topological sense. Moreover, u € C’l’ﬁg, the regularity of the
first problem (1).

In the proof we use a version of Theorem 2.1 and ideas from the proof
of existence of solution to problem (5). Here f¢ is the same used to solve
(5) and is not monotone.

3. Examples and comparison to our results

In problem (5) we have shown existence of solution to

1
F(D?u) = —|Vu> in Q
|ul?
u = f on 0f)
if ¢ > 1. There is a result in [2] saying that
1
Au = —|Vul2—h in Q
|ul?
u = 0 on 0f)

has a > 0, % 0 solution if and only if ¢ < 2, provided ¢ > 0 and A is smooth
and positive at every compact subset of .

By problem (7) we know that
1
F(D*u) = — in Q
|ul?
u = f on 0Q
has a solution if 0 < ¢ < 1, remember f > 0. The first problem (1)
1
Au = — in Q
|ul?
u = 0 on 0f)
has no positive solution if 0 < ¢ < 1. Notice that
—Ay = X{u>0}( —u 14 )\) in
u=0 on 02

has no solution if ¢ > 1.
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But by problem (6)

F(D?u) = X{us0y in €
u = f on 0f)

has a solution.
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