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FCUL and CMAF
Portugal

E-mail address: jbuescu@ptmat.fc.ul.pt

A. C. Paixão
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Abstract. In this paper we present an overview of the implications of
our previously derived results for positive definite kernels on the gen-
eral theory of positive definite functions. We begin by exploring the
consequences of a set of differential inequalities on the global behaviour
of a smooth positive definite function of one real variable. Then we pro-
pose a natural extension of this study to the complex variable case and
derive consequences of positive definiteness for meromorphic functions.

1. Positive definite functions

The purpose of this paper is to present a survey of some consequences
of previously derived results on the theory of positive definite kernels for
the field of positive definite functions. This a review paper; detailed proofs
may be found where indicated.
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156 J. Buescu and A. C. Paixão

We deal mostly with issues of global regularity and analiticity of positive
definite functions and with the development of a coherent theory of positive
definiteness of functions of a complex variable. To this end, a brief review
of the properties of real variable positive definite functions relevant for our
purposes will be performed below.

A function f : R → C is positive definite if
n∑

j,k=1

f(xj − xk)ξj ξk ≥ 0 (1.1)

for every choice of x1, . . . xn ∈ R and ξ1, . . . , ξn ∈ C; that is, if every square
matrix [f(xj − xk)]nj,k=1 is positive semidefinite.

Let us state what we shall call the basic properties of positive definite
functions:

(1) f(0) ≥ 0;
(2) f(−x) = f(x) for all x ∈ R;
(3) |f(x)|2 ≤ f(0)2.

These arise simply from consideration of the cases n = 1, 2 in (1.1). It
will be useful for future reference to stress that no hypothesis on f besides
positive definiteness is necessary for these basic properties to hold. In
particular, no regularity assumptions, not even continuity of f , are required.

Positive definite functions have for long been known to satisfy the fol-
lowing characterization.

Theorem 1.1 (Bochner). A continuous function φ : R → C is positive
definite if and only if it is the Fourier transform of a finite positive measure
µ on R, that is

φ(x) =
∫ +∞

−∞
e−itx dµ(t). (1.2)

From the Bochner integral representation (1.2) the definition of positive
definite function (1.1) is easily derived. We stress that, for real variable
functions, (1.2) and (1.1) are equivalent. The Bochner representation is
the most expedite way to prove that a function is positive definite, as is
the case of the following examples:

(1) f1(x) = cos(ax);
(2) f2(x) = e−|x|;
(3) f3(x) = 1

1+x2 ;
(4) f4(x) = max(0, 1− |x|);
(5) f5(x) = e−x2

.
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2. Positive definite kernels

In order to establish a new family of properties of positive definite func-
tions, it will be essential to consider them from another point of view.

Given a set E, a positive definite matrix in the sense of Moore (see e.g.
Moore [21], Aronszajn [1]) is a function k : E × E → C such that

n∑
j,k=1

k(xj , xk) ξj ξk ≥ 0 (2.1)

for all n ∈ N, (x1, · · · , xn) ∈ En and (ξ1, · · · , ξn) ∈ Cn; that is, all finite
square matrices M of elements mij = k(xi, xj), i, j = 1, . . . , n, are positive
semidefinite.

From (2.1), it is easily shown that a positive definite matrix in the sense
of Moore has the following properties:

(1) k(x, y) = k(y, x) for all x, y ∈ E;
(2) k(x, x) ≥ 0 for all x ∈ E;
(3) |k(x, y)|2 ≤ k(x, x) k(y, y) for all x, y ∈ E.

Since these k frequently appear as kernels of positive definite integral oper-
ators on I ⊆ R, they are more commonly known as positive definite kernels,
and we shall henceforth refer to them as such. We shall refer to properties
(1) – (3) above as the basic properties of positive definite kernels, noting
again that also here these properties hold without any regularity hypotheses
on k.

We remark that the theorem of Moore-Aronszajn ([1], [21]) provides
an equivalent characterization of positive definite kernels as reproducing
kernels, of which the most widely studied is the classical Bergman kernel.
Since we shall not need this approach we omit a more detailed discussion.

The following definition is useful in the study of differential properties
of positive definite kernels k defined in I ⊂ R.

Definition 2.1. Let I ⊂ R be an open interval. A function k : I2 → C is
said to be of class Sn(I2) if, for every m1 = 0, 1, . . . n and m2 = 0, 1, . . . n,

the partial derivatives
∂m1+m2

∂ym2∂xm1
k(x, y) exist and are continuous in I2.

Class Sn(I2) is thus the weakest differentiability class where equality of
all mixed partial derivatives up to order n in each variable is ensured.

The next two results have been proved in various degrees of generality
[5, 6, 7].
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Theorem 2.2. Let I ⊆ R be an interval and k(x, y) be a positive definite
kernel of class Sn(I2). Then, for all 0 ≤ m ≤ n,

km(x, y) ≡ ∂2m

∂ym∂xm
k(x, y)

is a positive definite kernel of class Sn−m(I2).

Theorem 2.3. Let I ⊆ R be an interval and k(x, y) be a positive definite
kernel of class Sn(I2). Then, for all integers m1, m2 with 0 ≤ mi ≤ n, i =
1, 2, and all x, y ∈ I we have∣∣∣∣ ∂m1+m2

∂ym2∂xm1
k(x, y)

∣∣∣∣2 ≤ ∂2m1

∂ym1∂xm1
k(x, x)

∂2m2

∂ym2∂xm2
k(y, y). (2.2)

In [5, 6, 7] these results have been proved directly, using appropriate
finite difference matrices and the positive semidefiniteness condition (2.1).
We should observe however that both results admit proofs in the more ab-
stract setting of the associated reproducing kernel Hilbert space; indeed,
Theorem 2.3 may be interpreted as a generalized Cauchy-Schwartz inequal-
ity in this setting. These results have useful applications in the theory of
integral equations: for instance, they supply an appropriate integrability
condition and ensure compactness for positive operators on unbounded do-
mains, as well as allowing for refinements in the eigenvalue distribution of
such operators [6, 8].

Positive definite kernels and positive definite functions are closely related.
Indeed, if f : R → C is a positive definite function, then k(x, y) = f(x−y) is
a positive definite kernel in R, as is clear from the corresponding definitions.

This very simple observation allows us to derive immediately the basic
properties (1) – (3) of positive definite functions described in § 1 from
the corresponding basic properties (1) – (3) for positive definite kernels.
This relation has, however, deeper consequences: results valid for positive
definite kernels translate into corresponding properties of positive definite
functions. To be specific, the counterparts of Theorems 2.2 and 2.3 for
positive definite functions have been established in [9] under the appropriate
assumptions and are stated below.

Proposition 2.4. Let f : R → C be a positive definite function and suppose
f is of class C2n in some neighborhood of the origin for some positive integer
n. Then f ∈ C2n(R) and for all integers m with 0 ≤ m ≤ n, the function
fm ≡ (−1)mf (2m) is positive definite.

This property, derived in [9] by the above correspondence, is well-known,
even in somewhat more general settings (see e.g. [22], pg 140). It may
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be derived for instance from Bochner’s representation (1.2) by formally
differentiating an even number of times under the integral sign [13].

The counterpart of Theorem 2.3 gives rise to a two-parameter family of
differential inequalities for positive definite functions.

Proposition 2.5. Let f : R → C be a positive definite function and suppose
f is of class C2n in some neighborhood of the origin for some positive integer
n. Then f ∈ C2n(R) and for all integers m1,m2 with 0 ≤ mi ≤ n, i = 1, 2
and every x ∈ R we have

|(−1)m2f (m1+m2)(x)|2 ≤ (−1)m1+m2 f (2m1)(0) f (2m2)(0). (2.3)

Remark 2.6. Since both (−1)m1 f (2m1) and (−1)m2 f (2m2) are positive defi-
nite functions by Proposition 2.4, the right hand side of (2.3) is necessarily
non-negative, thus ensuring that the corresponding inequality is meaning-
ful.

3. Global properties of differentiable PDFs

It is possible to show that the case n = 3 in (1.1) implies that, if f is
continuous in a neighbourhood of the origin, then it is uniformly continuous
in R (see e.g. [3], Corollary 1.4.10). We shall see that this result is in some
sense prototypical of positive definite functions: condition (1.1) implies
some sort of local-to-global “propagation of regularity” from (a neighbor-
hood of) the origin to R, of which this is the C0 case. These propagation
of regularity results are well-known, although exact priorities have been
difficult to assign.

Theorem 3.1 (propagation of regularity). Let f be a positive definite func-
tion. Suppose f is of class C2k in a neighbourhood of the origin. Then f
is C2k(R).

The most direct route to prove this result is probably to use the Bochner
representation (1.2) and the methods of Harmonic Analysis; see e.g. Dono-
ghue [14]. We thus see that the propagation of continuity mentioned above
is just the k = 0 case of this theorem.

Two remarks are in order. In the first place, notice that the propaga-
tion of differentiability only occurs for even-order derivatives. In fact, it is
shown in [9] that even-order derivatives play a determining role for posi-
tive definite functions, in contrast to odd-order derivatives. In the second
place, the analogous result holds for C∞ functions; indeed, it holds for the
analytic case, as can be seen in e.g. [4, 16]. These results have been re-
cently extended to quasianalytic classes of positive definite functions and
distributions and more elaborate classes of differentiability [11, 12, 20]. The
basic phenomenon is however the same: regularity in a neighbourhood of
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the origin propagates as the corresponding regularity to the whole of R.
The positivity condition (1.1) may thus be seen as effectively coupling the
local behavior at the origin with the global behavior.

One of the basic properties of positive definite functions described in §1 is
that |f(x)| ≤ f(0) for every x ∈ R, which implies that f vanishes identically
if f(0) = 0. The next result, which is a consequence of Proposition 2.5,
may be viewed as the extension of this property for differentiable positive
definite functions.

Theorem 3.2. Let f : R → C be a positive definite function and suppose
f is of class C2n in a neighborhood of the origin for some non-negative
integer n. If f (2m)(0) = 0 for some non-negative integer m ≤ n, then f is
constant on R.

Proof. See [9]. �

Remark 3.3. Trivially, a constant function is positive definite if and only
if it is non-negative, so the constant in the above theorem must be non-
negative.

Remark 3.4. Notice that for the special case n = 0, the statement of the
theorem follows from basic property (3) in §1.

Remark 3.5. An immediate consequence of Theorem 3.2 is that the only
positive definite polynomials are the non-negative constants.

Remark 3.6. The positive definite function f(x) = (1 + x2)−1 supplies a
simple example of the fact that no analog of Theorem 3.2 exists for odd-
order derivatives.

Implications of the differential inequalites (2.2) on the global analiticity
of a positive definite function will be stated in the next Theorem. For
this purpose, it will be useful to recall the following characterization of
real-analytic functions.

Lemma 3.7. Let f be a real function in C∞(I) for some open interval I.
Then f is real analytic if and only if, for each α ∈ I, there are an open
interval J , with α ∈ J ⊂ I, and constants C > 0 and R > 0 such that the
derivatives satisfy

|f (k)(x)| ≤ C
k!
Rk

∀x ∈ J.

Proof. This is a standard result; see e.g. [18], Proposition 1.2.12. �

Remark 3.8. Although for convenience the result is stated for real functions,
it extends in the obvious way to the present context of complex-valued
functions of a real variable.
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Theorem 3.9. Let f : R → C be a positive definite function and suppose f
is of class C∞ in a neighborhood of the origin. Then, if there exist positive
constants M and D such that

0 ≤ (−1)nf (2n)(0) ≤ D
(2n)!
M2n

(3.1)

for every non-negative integer n, we have:

i) f is analytic in R;

ii) Let l = lim sup 2n

√
|f (2n)(0)|

(2n)!
. Then l < ∞. Defining h = 1/l if l 6=

0 and h = ∞ if l = 0, there exist α, β ∈ [h, +∞] such that f extends
holomorphically to the complex strip {z ∈ C : −α < z < =(z) < β},
where α and β are maximal with this property. Moreover, if h < ∞,
f cannot be holomorphically extended to both the points z = ih and
z = −ih simultaneously, implying in particular that h = min{α, β}.

Proof. See [9]. �

Remark 3.10. Observe that if equality in the left hand side of (3.1) holds
for some n, then f is constant by Theorem 3.2. In this case every statement
above holds trivially.

Remark 3.11. Theorem 3.9 derives its conclusions from direct application
of the inequalities provided by Proposition 2.5 to positive definite functions
satisfying a suitable set of hypotheses on the existence and growth of even
order derivatives at the origin. There exist in the literature results closely
related to these, which have been obtained under different assumptions
and through the use of distinct methods. We mention, in particular, those
stated in [3] and [19] where the assertions ii) in Theorem 3.9 under the
(stronger) hypothesis that f is analytic in a neighbourhood of the origin.

Incidentally, these results may be used together with the conclusions of
part i) of Theorem 3.9 to refine the statements of part ii) of the Theorem,
namely by adding the fact that the holomorphic extension of f to the
maximal strip must present singularities at both points z = −iα and z = iβ
whenever α or β are finite.

4. From real to complex variables

As stated at the outset, one of the purposes of this paper is to present
a coherent theory of complex-variable positive definite functions. The ap-
propriate definition of positive definiteness is not a priori obvious in the
complex setting (see e.g. [7] for a basic discussion). Some light into this
problem is however shedded by the following considerations.
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A real-analytic positive definite function f : R → C (for instance, a
function in the conditions of Theorem 3.9) extends holomorphically to a
horizontal strip of the complex plane A = {z ∈ C : −α < =(z) < β}, with
α, β > 0, as described above. It is also possible to show [3] that in this
case the Bochner integral representation (1.2) extends holomorphically to
the whole strip A by the integral representation

f(z) =
∫ +∞

−∞
e−itz dµ(t).

Using this representation one may easily conclude that f(z) satisfies
n∑

i,j=1

f(zi − zj)ξi ξj ≥ 0 (4.1)

for all n ∈ N and for any collections {zi}i=1,...,n ⊂ C such that zi − zj ∈ A
for all i, j = 1, . . . , n and {ξi}i=1,...,n ∈ C.

Let Ω = {z ∈ C : −α
2 < =(z) < β

2 }. Defining k(z, u) = f(z − u), it
is immediate to observe that k is a sesquianalytic function (i.e., separately
analytic in z and anti-analytic in u) in Ω2. Then, with the above definition,
condition (4.1) assumes the form

n∑
i,j=1

k(zi, zj) ξi ξj ≥ 0 (4.2)

for all n ∈ N, {ξi}i=1,...,n ∈ C and {zi}i=1,...,n ⊂ Ω. Thus k is a holomorphic
positive definite kernel in Ω. These kernels are known in the functional
analytic setting, for historical reasons, as holomorphic reproducing kernels.
We shall use both terminologies interchangeably, depending on the context.

Holomorphic reproducing kernels satisfy the following basic properties,
corresponding to their real counterparts in § 2 (see e.g. [7]):

(1) k(z, u) = k(u, z) for all z, u ∈ Ω;
(2) k(z, z) ≥ 0 for all z ∈ Ω;
(3) |k(z, u)|2 ≤ k(z, z) k(u, u) for all z, u ∈ Ω.

Notice that, as in the real case, these properties follow directly from
(4.2), with no requirements on regularity of k. This fact suggests that,
if we define positive definiteness in the complex plane starting from (4.1),
holomorphy of f , and thus sesquiholomorphy of k, should not be a priori
requirements.

In fact, if sesquiholomorphy of k holds, much stronger statements are
valid. The following differential properties of holomorphic reproducing ker-
nels are proved in [7] in the context of several complex variables, C2n.
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Since only the case n = 1 will be used in this paper, the corresponding
results (stated there as Theorem 3.4, Corollary 3.5 and Theorem 3.6) will
be adapted to this case.

Theorem 4.1. Let Ω ⊂ C be an open set and k : Ω2 → C be a holomorphic
reproducing kernel on Ω. Then, for any positive integer m ∈ N,

km(z, u) ≡ ∂2m

∂um∂zm
k(z, u)

is a holomorphic reproducing kernel on Ω.

Proof. See [7]. �

Corollary 4.2. Let Ω ⊂ C be an open set and k : Ω2 → C be a holomorphic
reproducing kernel on Ω. Then for all z, u ∈ Ω and all m ∈ N we have

∂2m

∂um ∂zm
k(z, z) ≥ 0 and∣∣∣∣ ∂2m

∂um ∂zm
k(z, u)

∣∣∣∣2 ≤ ∂2m

∂um∂zm
k(z, z)

∂2m

∂um ∂zm
k(u, u).

Theorem 4.3. Let Ω ⊂ C be an open set and k : Ω2 → C be a holomorphic
reproducing kernel on Ω. Then for all m1, m2 ∈ N and all z, u ∈ Ω we have∣∣∣∣ ∂m1+m2

∂um2 ∂zm1
k(z, u)

∣∣∣∣2 ≤ ∂2m1

∂um1 ∂zm1
k(z, z)

∂2m2

∂um2 ∂zm2
k(u, u). (4.3)

Proof. See [7]. �

Notice that the second inequality in Corollary 4.2 is an automatic con-
sequence (basic property (3)) of positive definiteness of km, and is simulta-
neously the special case m1 = m2 = m in (4.3).

Remark 4.4. We observe that the statement of Theorems 4.1, 4.3 and Corol-
lary 4.2 differ from the corresponding results in [7] in the fact that the
former are stated for open sets while the latter were stated for domains. A
simple analysis of the proofs of Theorems 4.1, 4.3 and Corollary 4.2 shows
that these results are purely local and connectedness is irrelevant, so that
the results above are valid as stated here.

In the next section we shall define what is meant by a complex variable
positive definite function exploring precisely this relationship with holo-
morphic reproducing kernels.
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5. Complex variable positive definite functions

We begin by presenting a definition which will prove extremely useful in
what follows.

Definition 5.1. A set S ⊂ C is called a codifference set if there exists a
set Ω ⊂ C such that S may be written as

S = Ω− Ω ≡ {z ∈ C : ∃ z1, z2 ∈ Ω : z = z1 − z2}. (5.1)

If S is a codifference set and Ω ⊂ C is as in Definition 5.1, we shall say
that S = codiff(Ω). Note that the set operation used in (5.1) is not the
usual set difference.

If S = codiff(Ω) with Ω 6= ∅, it follows easily from Definition 5.1 that
S has nonempty intersection with the imaginary axis, is symmetric with
respect to it and Ω is not uniquely determined by S. Simple examples of
codifference sets include the hereby called horizontal strips defined by

S(r, α1, α2) = {z = a + bi ∈ C : |a| < r, α1 < b < α2}

with r, α1, α2 positive real or infinite. It is readily seen that S(r, α1, α2) =
codiff(S(r/2, α1/2, α2/2)). It is also easily seen that codifference sets need
not be simply connected or even connected [10].

Definition 5.2. A function f : C → C is said to be positive definite in S ⊂
C if, for every n ∈ N and every finite collection {zk}k=1,...,n such that zi −
zj ∈ S for all i, j = 1, . . . , n (or, equivalently, such that codiff{zk}k=1,...,n ⊂
S), we have

n∑
i,j=1

f(zi − zj) ξi ξj ≥ 0

for every collection of ξi ∈ C.

Remark 5.3. We stress once more that Definition 5.2 does not require any
regularity on the function f , not even continuity. The properties of positive
definite functions we prove throughout this section are valid in this setting.

Holomorphic extensions of real-analytic positive definite functions ob-
tained by complex analytic extension of the Bochner representation, as in
(4.1), provide examples of complex positive definite functions on a strip
containing the real axis in C. A very different phenomenon occurs with the
function f(z) = 1

cosh(πz
2

) . This function is positive definite in any horizontal
strip of the form

sn = S(∞, 4n− 1, 4n + 1) = {z ∈ C : (4n− 1)i < z < (4n + 1)i, n ∈ Z}.
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In fact, f admits the well-known integral representation (see e.g. [17])

f(z) =
1

cosh
(

πz
2

) =
∫ ∞

−∞

1
cosh t

e−izt dt (5.2)

on the strip s0 = S(∞,−1, 1) = {z ∈ C : |=z| < 1}, which implies that it
is positive definite on s0. However, the function f is periodic of period 4i
and therefore positive definite in every strip sn, even though the integral
representation (5.2) is divergent outside S0. This is a phenomenon not un-
like holomorphic extension of functions defined by power series outside the
circle of convergence. Of course, as previously observed, all the horizontal
strips sn are codifference sets.
Remark 5.4. It is interesting to note the following fact. Let f be a positive
definite function in S ⊂ C and suppose S contains a horizontal line {z ∈ C :
z = x + ib, x ∈ R} for some b ∈ R. Define F : R → C by F (x) = f(x + ib).
It is then easily seen that

∑n
i,j=1 F (xi − xj) ξi ξj ≥ 0 for any collections

{xk}k=1,...,n ⊂ R and {ξk}k=1,...,n ⊂ C, n ∈ N, and therefore F is a positive
definite function on R. On the other hand, if S contains the imaginary
axis and we define G(x) = f(ix) we get, for the same collections, the
related condition

∑n
i,j=1 G(xi + xj) ξi ξj ≥ 0. In a more abstract, group-

theoretic approach, this condition is referred to as positive-definiteness in
the semigroup sense, while the usual condition of positive-definiteness (1.1)
corresponds to positive-definiteness in the group sense; see e.g. [2].

Two basic properties of complex variable positive definite functions may
be easily derived from Definition 5.2.
Proposition 5.5 (Positivity on the imaginary axis). Suppose that f is
positive definite in S. Then f(ib) ≥ 0 for all ib ∈ codiff(S), where b ∈ R.

Proof. See [10]. �

Thus, consideration of order 1 matrices allows us to conclude that f is
real and non-negative in every point of the imaginary axis.
Proposition 5.6 (Basic inequalities on the complex plane). Suppose that
f is positive definite in S. Let a, b, β ∈ R and suppose that S contains the
points a + bi, −a + bi, (b + β)i and (b− β)i. Then

f(−a + bi) = f(a + bi); (5.3)

|f(a + bi)|2 ≤ f(i(b + β)) f(i(b− β)) (5.4)

Proof. See [10]. �

Complex positive definite functions defined on codifference sets are, to
a large extent, controlled by their behaviour on the imaginary axis, as
illustrated by the following results.
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Lemma 5.7. Suppose S is a set of complex numbers such that S∩=(z) = i I
for some real interval I, and let f : S → C be a positive definite function.
Then:

(1) if f(iu) = 0 for some u ∈ I, then f(ic) = 0 for all c ∈ int(I);
(2) if f(iu) 6= 0 for every u ∈ I, then g = log f is mid-point convex on

iI, that is

g

(
ib1 + ib2

2

)
≤ g(ib1) + g(ib2)

2

for every b1, b2 ∈ I.

Proof. See [10]. �

Remark 5.8. Convexity of g = log f on the imaginary axis seems to have
been first proved by Dugué [15] under the assumption that f is holomorphic.
As shown in this lemma, midpoint convexity of g on the imaginary axis
always holds without any assumptions on regularity of f .

Theorem 5.9. Suppose S is an open codifference set and let f : S → C be
a positive definite function. If f has a zero on every connected component
of S ∩ =(z), then f vanishes identically on S.

Proof. See [10]. �

6. Meromorphic positive definite functions

As already suggested in §4, positive definite functions are related with
positive definite kernels in two complex variables in the following way. Sup-
pose f is positive definite in S ⊂ C and that V = {(z, u) ∈ C2 : z−u ∈ S}.
Then k(z, u) ≡ f(z−u) defines a function k : V → C. Let Ω ∈ C such that
Ω2 ⊂ V or, equivalently, that codiff(Ω) ⊂ S. If {zk}k=1,...,n ⊂ Ω for n ∈ N,
it follows that codiff{zk}k=1,...,n ⊂ codiff(Ω) ⊂ S. Therefore

n∑
i,j=1

k(zi, zj) ξi ξj ≥ 0 (6.1)

for all ξi ∈ C, i = 1, . . . , n, and k is a positive definite kernel in Ω.
Suppose now that S and Ω are open sets and that f is holomorphic in

S. Then k is sesquiholomorphic in Ω2 and is thus a holomorphic positive
definite kernel in Ω.

This relation between complex positive definite functions and complex
positive definite kernels allows us to establish important results about the
former derived from known results about the latter.
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Theorem 6.1. Let S ⊂ C be an open set and suppose that f : S → C is
positive definite and holomorphic in S. Then fm(z) ≡ (−1)m f (2m)(z) is a
positive definite function in S for every m ∈ N.

Proof. See [10]. �

Theorem 6.2. Let S ⊂ C be an open set and suppose that f : S → C
is a holomorphic positive definite function. Suppose that S contains the
points a+ bi, −a+ bi, (b+β)i and (b−β)i for a, b, β ∈ R. Then, for every
non-negative integers m1, m2 we have

|f (m1+m2)(a + bi)|2 ≤ (−1)m1+m2 f (2m1)(i(b + β)) f (2m2)(i(b− β)). (6.2)

Proof. See [10]. �

Remark 6.3. Observe that the case m1 = m2 = 0 in (6.2) is just inequality
(5.4) in Proposition 5.6, which as noted at the time requires no regularity
on f . So in fact inequalities (6.2) may be thought of as the generalization
of the basic property of positive definite functions stated in (5.4) to the
holomorphic case.

These results may now be used to prove the following complex variable
version of Theorem 6.1.

Theorem 6.4. Suppose S is an open codifference set and let f : S → C
be a positive definite holomorphic function. If f (2m)(ib) = 0 for some non-
negative integer m and some b ∈ R with z = ib ∈ S, then f is constant on
the open connected component of S containing ib.

Proof. See [10]. �

Remark 6.5. As with previous results in this section, this result may be
viewed as an extension to the holomorphic setting of a basic property of
positive definite functions. In fact, the special case m = 0 of Theorem 6.4
is Theorem 5.9 which, as stated at the time, is valid without imposing any
regularity on f .

The next results illustrate the effect of positivity on the existence and
location of the poles of a meromorphic function. In what follows we denote
the domain of a complex function by D(f).

Theorem 6.6. Let Ω ⊂ C be an open set and let S = codiff(Ω). Sup-
pose f is meromorphic in S and positive definite in S ∩D(f). Then f is
holomorphic in S.

Proof. See [10]. �
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Remark 6.7. Suppose that f is meromorphic in a horizontal strip
S(r, α1, α2) = {a + bi ∈ C : |a| < r, α1 < b < α2}, with r, α1, α2 posi-
tive real or infinite. If f is positive definite in S ∩D(f), it follows from the
fact that S is a codifference set and Theorem 6.6 that f is holomorphic in
S.

Corollary 6.8. Suppose f is meromorphic in C and positive definite in its
domain. Then f is entire.

Proof. Immediate from Remark 6.7 when r, α1 and α2 are infinite. �

If f is meromorphic in C and analytic at z ∈ D(f), we shall henceforth
denote the radius of convergence of the Taylor series of f about z by r(z).
The well-known dependence of r(z) on the growth rate of the derivatives of
f at z allows us to derive the following result from the differential inequal-
ities (6.2).

Lemma 6.9. Let f be a meromorphic function in C. Suppose f is positive
definite in S ∩D(f) for some open set S ⊂ C and that ±a + bi, b ± βi ∈
S ∩D(f) for some a, b, β ∈ R. Then

r2(a + bi) ≥ r((b + β)i) r((b− β)i). (6.3)

Two distinct consequences of this lemma may now be stated.

Theorem 6.10. Let S ⊂ C be an open set containing z = ib, b ∈ R.
Suppose f is meromorphic in C and positive definite on S ∩D(f). If f has
no poles on the imaginary axis, then f is entire.

Proof. See [10]. �

Theorem 6.11. Let L(b0) be the horizontal line defined by L(b0) = {z ∈
C : z = a + ib0}, for b0 ∈ R, and let f be a meromorphic function in C.
Suppose f is positive definite in S∩D(f) and that L(b0) ⊂ S∩D(f). Then
f has no poles on the strip S = {z = a+bi ∈ C : a ∈ R and |b−b0| < r(b0)}.
If r(b0) < +∞, then at least one of i(b± r(b0)) is a pole of f .

Proof. See [10]. �

The work described in this paper suggests several lines of future research.
For instance, do the poles of a positive definite function f on the imagi-
nary axis determine the existence, location and order of other poles? A
preliminary result suggests that much can be said along those lines [3],
possibly beginning with the study of horizontal strips and their boundaries
as special cases of codifference sets.
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