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Abstract. In this paper we relate several objects from quite diverse
areas of mathematics. Closed meanders are the configurations which
arise when one or several disjoint closed Jordan curves in the plane
intersect the horizontal axis transversely. The question of their con-
nectivity also arises when evaluating traces in Temperley-Lieb algebras.
The variant of open meanders is closely related to the detailed dynam-
ics of Sturm global attractors, i.e. the global attractors of parabolic
PDEs in one space dimension; see the groundbreaking work of Fusco
and Rocha [FuRo91]. Cartesian billiards have their corners located on
the integer Cartesian grid with corner angles of ±90 degrees. Billiard
paths are at angles of ±45 degrees with the boundaries and reflect at
half-integer coordinates. We indicate and explore some close connec-
tions between these seemingly quite different objects.

1. Introduction

A simple closed meander is a closed differentiable Jordan curve which is
transverse, i.e. nowhere tangent, to the horizontal x-axis in the Euclidean
plane; see [Ar88, ArVi89] and figure 1.2(a). A closed multi-meander, just
called a meander henceforth, consists of finitely many mutually disjoint
simple closed meanders. See figure 1.3(a). We assume each Jordan compo-
nent to intersect the axis at least twice; a Jordan component with exactly

247



248 B. Fiedler and P. Castañeda

Figure 1.1. (a) Meandering patterns on a palaeolithic
bracelet dated 15,000 to 18,000 B.C.; see [Gi98], p. 26,
Abb. 38. (b) Meandering patterns of entrails of animal sac-
rifice, Babylonian 1,200 B.C.; see [KB70], p. 214, Abb. 90.

two intersections is called a circle. Open meanders are a variant where the
Jordan curves are not assumed to be closed, but of finite and transverse
intersection with the x-axis.

The intricacies of meander patterns have fascinated mankind, ever since
prehistoric times. As examples we mention snake patterns on palaeolithic
bracelets, ∼ 15,000 B.C. [Gi98], Babylonian omina based on meander pat-
terns of entrails, ∼ 1,200 B.C. [KB70], see figure 1.1, or labyrinthine mean-
ders found in the so-called Nestor Palace, Pylos, ∼ 1,200 B.C., and in the
floor design of the Cathedral of Chartres, ∼ 1,200 A.D. [Sa03], alike.

Merging the two loose ends of a simple open meander into the two loose
ends of the x-axis, respectively, we have a special case of a closed curve
with finitely many transverse self-intersections: the Gauss word problem
[Ga1840]; see also section 5.2. More recently, the combinatorics of stamp
(now: protein) folding, relations to Termperley-Lieb algebras and statistical
physics, and singularity theory have been pursued. See for example the
inspiring surveys of Di Francesco et al [dFGG97, dFG05], and section 5.3.

Simple open meanders also arise in descriptions of global attractors of
parabolic reaction-advection-diffusion equations of the form

ut = uxx + f(x, u, ux) , (1.1)

say on the unit interval 0 < x < 1 with Neumann boundary conditions
ux = 0 at x = 0, 1. Groundbreaking work by Fusco and Rocha [FuRo91]
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Figure 1.2. (a) A simple, i.e. connected, closed rainbow
meander. (b) A corresponding transitive plane Cartesian
billiard. The numbered dots in (a) mark intersection points
with the x-axis and, in (b), corresponding reflection points
on the boundary of the associated billiard.

has introduced a permutation characterization of meanders arising from
the shooting approach to the equilibrium problem

0 = uxx + f(x, u, ux) . (1.2)

Indeed, the horizontal u-axis in the (u, ux) phase space of (1.2) corresponds
to Neumann boundary conditions, say at x = 1. See also (5.2), (5.3)
below for further detail. The meander curve arises as the image of this
axis, starting from “time” x = 0, when arriving at x = 1 by the ODE
evolution of (1.2). Intersections of the meander with the horizontal u-
axis, at x = 1, indeed correspond to equilibria of (1.1). Transverse, i.e.
nontangent, intersections correspond to hyperbolic equilibria. See [BrCh84,
Ro91, Ro94, Ro07, SmTrWa80] for a detailed account, and [FiSc02, FiRo09]
for survey information.

A Cartesian billiard consists of a compact region B in the Euclidean xy-
plane with polygonal boundary such that each side of the polygon is either
horizontal or vertical, and of integer length. See figures 1.2(b), 1.3(b). The
corners of the polygon can then be assumed to lie on the standard lattice
Z2 = Z×Z. As paths in the Cartesian billiard we consider piecewise linear
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Figure 1.3. (a) A closed rainbow (multi-) meander with
two connected components; one distinguished by dashed
arches. (b) A corresponding nontransitive plane Cartesian
billiard; one flight path distinguished by dashed lines.

flights in B of the form

y ± x = c ∈ Z + 1
2 . (1.3)

Subdividing the integer polygon sides into segments of length 1, we thus see
how reflection occurs at the half-integer midpoints of the integer boundary
segments.

If all flights (1.3) in a Cartesian billiard B define a single closed path,
then we call B transitive; see for example figure 1.2(b) above. A rectangle
B is transitive if, and only if, its sides p, q are co-prime; see section 6. For
an example of a nontransitive billiard see figure 1.3(b) and, according to
section 6, any p× q rectangle with sides which are not co-prime.

In the present paper we explore how meanders are related to Cartesian
billiards. In particular we investigate several constructions relating mean-
ders to billiards in such a way that simple meanders correspond to transitive
billiards.

The remaining part of this introduction is organized as follows. We
begin with some background and perspective on meanders in subsection
1.1. Cartesian billiards are formalized, and rotated by 45◦, in 1.2. We
formulate our main results in subsection 1.3 and outline the remaining
paper in 1.4.
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1.1. Meanders. We collect some terminology and notation concerning me-
anders, i.e. closed multi-meanders M with simple closed Jordan compo-
nents Mi.

Like each component Mi, the meander M possesses an even number
2N of intersections with the horizontal x-axis. Indeed each intersection is
transverse, i.e. nontangential, and hence switches sides with respect to the
axis. Up to homeomorphism we may assume the intersection points to be
at x = 1, . . . , 2N , and the meander curves Mi to consist of 2N hemicircle
arches with the intersection points as end points: N arches above and N
below the axis.

Each of the N arches ak above the axis can also be viewed as a matching
pair ( ) of an opening parenthesis “ ( ” and a closing one “ ) ”. The usual
rules for opening and closing parentheses are equivalent to the mutual non-
intersection of the upper arches ak. The number of such arch configurations
ak above the axis is therefore the N -th Catalan number

CN =
1

N + 1

�
2N

N

�
. (1.4)

Similarly, the N arches bk below the axis possess CN configurations, and
we obtain a total of CN

2 different meanders, for 2N intersections.
We recall that a circle is a configuration with one upper arch a matching

one lower arch b: we obtain a meander component Mi which possesses only
2 intersections with the axis. The only meander with N = 1, for example,
consists of a single circle. We call a meander circle-free, if it does not
contain any circle component.

Following [dFGG97], we call a meander a rainbow if all lower arches bk
are nested. In other words the k-th lower arch bk joins the intersection
points k and 2N + 1 − k, for k = 1, . . . , N . We call a rainbow meander
cleaved if none of the upper arches ak joins any intersection point i ≤ N to
any intersection point j > N . Obviously N is even, for cleaved rainbows.
Moreover all cleaved rainbows are circle-free.

1.2. Cartesian billiards. For technical convenience in the proofs below
we rotate our previous description of a plane Cartesian billiard B by 45◦.
This makes the billiard flights (1.3) horizontal and vertical, respectively,
but produces polygonal boundaries of slopes ±1 in the xy-plane.

We describe the billiard boundary by the graphs of two continuous func-
tions: the upper boundary β+ and the lower boundary β−. Let N ≥ 2. We
require β±: [0, N ] → R to be piecewise linear, for noninteger arguments,
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252 B. Fiedler and P. Castañeda

Figure 1.4. (a) The simple closed meander M of figure
1.2(a). (b) A transitive billiard B with boundaries β±, N =
5, and associated meander M = Φ(B). Note how horizon-
tal flights at half-integer constant y in B correspond to the
N = 5 upper arches in M , and vertical flights at half-integer
constant x correspond to the N = 5 lower rainbow arches.

and to satisfy for all 0 ≤ i < N

β+(0) = β−(0) = 0 ; (1.5)

β+(i) ≥ β−(i) ; (1.6)

β+(i) = β−(i) =⇒ β+(i± 1) 6= β−(i± 1) ; (1.7)

β+(i + 1) = β+(i)± 1 and β−(i + 1) = β−(i)± 1 ; (1.8)

β+(N) = β−(N) . (1.9)

Of course β± map integers, and only integers, to integers, by (1.5), (1.8).
Note how the linear pieces of β± each have slopes ±1, by (1.8). Moreover,
the upper and lower boundaries may touch, but only at isolated and integer
arguments; see (1.6), (1.7). For example β±(1) = ±1 and β+(N − 1) =
β−(N − 1) + 2. The billiard region B is the region between the boundaries
β±, i.e.

B = {(x, y) | 0 ≤ x ≤ N, β−(x) ≤ y ≤ β+(x)} . (1.10)

To describe the horizontal and vertical billiard flights between reflections
at the mid-segments of the boundary we adopt the simplifying notation

n′ := n− 1
2 (1.11)
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Figure 1.5. (a) The simple closed meander M of 1.3(a).
(b) A nontransitive billiard B with boundaries β±, N = 5
and associated meander M = Φ(B). Horizontal/vertical
flights at half-integer y/x in B again correspond to the
n = 5 upper/lower arches in M , respectively. One flight
path/meander component is distinguished by dashing.

for any integer n. Then the reflection points of the midsegments are simply
the 2N points

(i′, β+(i′)) and (i′, β−(i′)) (1.12)

for i = 1, . . . , N . Note that these 2N points are always distinct, because β±

touch each other only at some isolated and integer arguments. The flights
simply preserve the half-integer x- or y-value, respectively, and proceed to
the next boundary point, where the roles of fixed x or y are reserved.

1.3. Main results. In theorems 1.1 – 1.3 below, we formulate our main
results on the correspondence between closed meanders M and plane Carte-
sian billiards B. The meanders M possess 2N intersection points with the
horizontal x-axis, as described in section 1.1. The billiards B are given
by continuous boundaries β±: [0, N ] → R, as described in (1.5) – (1.9) of
section 1.2.

Theorem 1.1. Let N ≥ 2 and consider a plane Cartesian billiard B with
boundary functions β± satisfying properties (1.5) – (1.9) above.

Then B defines a unique associated closed multi-meander

M = Φ(B) (1.13)

of 2N intersection points with the horizontal axis. Moreover the associated
meander M is a rainbow meander and is circle-free.
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We construct the meander map Φ in section 2, explicitly, and prove
theorem 1.1 there.

The remaining two main theorems show surjectivity of the map Φ onto
the set of closed circle-free (multi-)meanders with 2N intersection points.

Theorem 1.2. Let M be any closed cleaved rainbow (multi-)meander with
2N intersection points.

Then there exists a plane Cartesian billiard B with boundary β± such
that

(i) M = Φ(B) , and

(ii) β±(N) = 0 .

Theorem 1.3. Conclusion (i) of the previous theorem holds, more gener-
ally, for any closed circle-free rainbow (multi-)meander M .

1.4. Outline. We prove theorem 1.m in section m + 1, for m = 1, 2, 3.
The proof of theorem 1.1 is by direct interpretation of the billiard paths:
the 2N reflection points on the billiard boundary β± become the intersec-
tion points of the meander M = Φ(B); horizontal flights correspond to the
upper arches and vertical flights correspond to lower arches in the bottom
rainbow. The proof of theorem 1.2 is by explicit construction of the bound-
ary functions β± from the opening and closing of upper parentheses in the
cleaved rainbow meander. The more intricate proof of theorem 1.3 proceeds
by induction, starting from a reduction of circle-free rainbow meanders to
cleaved rainbow meanders.

In section 5 we discuss several related constructions on meanders: open-
ing, closing, and conversions to rainbow type which do not affect connec-
tivity. Compactification to meanders on the 2-sphere provides a more em-
bracing view point on some of these constructions and on relations among
closed meanders. We also comment briefly on relations to Temperley-Lieb
algebras and, in particular, the relation between the Di Francesco trace and
rainbow meanders.

We conclude, in section 6, with an explicit discussion of some elementary
rainbow meanders, and a rather innocent-looking open question.
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2. Proof of theorem 1.1: from billiards to rainbow meanders

In this section we prove theorem 1.1: given a plane Cartesian billiard B
we construct a meander M and thus define the meander map M = Φ(B)
of (1.13).

We recall that the billiard B is given by its continuous boundary func-
tions β± : [0, N ] → R, which satisfy the boundary properties (1.5) – (1.9).
For i = 1, . . . , N in (1.12) we label the 2N half-integer reflection points

(i′, β+(i′)) by m = i ∈ {1, . . . , N}, and

(i′, β−(i′)) by n = 2N + 1− i ∈ {N + 1, . . . , 2N} ,
(2.1)

clockwise along the billiard boundary.
To construct a meander from the vertical and horizontal billiard flights

through these reflection points, we consider vertical flights first. Let each
vertical flight x = const. = i′ ∈ Z + 1

2 between (i′, β+(i′)) and (i′, β−(i′))
define a lower arch between the labels m = i and n = 2N +1− i. Obviously
this defines N nested lower arches, as required in a rainbow.

To define the upper arches we consider a nonempty connected horizontal
flight interval y = const. ∈ Z+ 1

2 within the compact billiard region B. Note
how the reflecting endpoints (i′1, β

ι1(i′1)) and (i′2, β
ι2(i′2)) may belong to the

same boundary graph, ι1 = ι2 ∈ {+,−}, or to opposite boundary graphs,
ι1 6= ι2. Nevertheless the horizontal flight defines an upper hemicircle arch
between the appropriate labels (2.1) of its reflecting endpoints.

It is already obvious that the resulting arch diagram is circle-free. Indeed
proceed indirectly and consider the two successive reflection points in the
billiard B which correspond to the intersection points of a hypothetical
circle with the x-axis. Then the two reflection points coincide in B: in
their x-coordinates by the vertical flight of the lower hemicircle, and in
their y-coordinates by the horizontal flight of the upper hemicircle. By
costruction, however, two successive reflection points in B cannot coincide.

Noting how upper and lower arches alternate, as do horizontal and verti-
cal flights in the billiard B, it only remains to show that the resulting upper
arches are disjoint. Then the constructed arch configuration M = Φ(B) is
a (multi-)meander, indeed, and the proof of theorem 1.1 will be complete.
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We show that two distinct upper arches a, from A1 to A2 > A1, and â,
from Â1 to Â2, do not intersect. Without loss of generality we may assume
that the meander intersection Â1 is between A1 and A2 on the x-axis. We
have to show that Â2 is between A1 and A2, likewise. We identify the
four intersections with their corresponding reflection points on the clock-
wise boundary curve β = β+ ∪ β− of the billiard B. We open up β, and
B, slightly at touching point integers (i, β±(i)), 0 < i < N without ob-
structing any part of the billiard path. Let B̃ denote this slightly modified
billiard, now with closed Jordan curve boundary β̃. The unchanged hor-
izontal flights A1A2 and Â1Â2 in B̃ are disjoint, by construction: either
their half-integer y-values disagree, or else the flights belong to different
B̃-components of the same half-integer y-level. Consider the closed Jor-
dan curve which consists of the horizontal A1A2 flight and the piece of the
boundary circle β̃ oriented clockwise from A1 to A2. Since Â1 lies on that
boundary piece, so does Â2, by the Jordan curve theorem in B̃ and because
the horizontal flights A1A2 and Â1Â2 do not intersect. This proves that
M = Φ(B) is a meander, and completes the proof of theorem 1.1.

3. Proof of theorem 1.2: from cleaved rainbow meanders to
billiards

In this section we prove theorem 1.2: given a cleaved rainbow meander
M with 2N axis intersections, we explicitly construct a plane Cartesian
billiard B via its defining continuous boundary functions β± : [0, N ] → R.
We construct β± with properties (1.5) – (1.9) and such that β±(N) = 0. In
terms of the meander map Φ of theorem 1.1, as constructed in the previous
section, we then show M = Φ(B) as required in theorem 1.2.

We define the upper billiard boundary β+ first. Let β+(0) = 0, as
required by (1.5). We satisfy (1.7) by the recursive definition

β+(i + 1):=
¨

β+(i) + 1, if “ ( ” at i + 1 ;
β+(i)− 1, if “ ) ” at i + 1 ;

(3.1)

for i = 0, . . . , N − 1. Here we have represented the upper arches of the
rainbow meander M to the left of the cleavage by parenthesis expressions
“(”, “)” at each intersection point i + 1 = 1, . . . , N , as in the Catalan
counting (1.4).

We use the upper arches to the right of the meander cleavage, right to
left, to define the lower boundary

β−(i + 1):=
¨

β−(i) + 1, if “ ( ” at 2N − i ;
β−(i)− 1, if “ ) ” at 2N − i ;

(3.2)
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again for i = 0, . . . , N − 1 and starting at β−(0):=0. We complete the
definition of β± by linear interpolation.

We check properties (1.5) – (1.9) of β±. Obviously properties (1.5),
(1.8) hold by construction. Because M is cleaved at N , N + 1, all opened
parentheses at i = 1, . . . , N − 1 have been closed when we reach i = N .
Therefore (3.1) implies β+(N) = 0. Reading right to left, on the right of
the cleavage, analogously proves β−(N) = 0 by (3.2). This proves property
(1.9) and claim (ii) of theorem 1.2. Since only open parentheses can close
we observe

β+(i) ≥ 0 ≥ β−(i) (3.3)
for all i = 0, . . . , N . This proves property (1.6). Moreover (1.8) and (3.3)
imply β+ > 0 and β− < 0 at integer neighbors of zeros of β±. This proves
property (1.7) and shows how the boundaries (3.1), (3.2) indeed define a
plane Cartesian billiard B.

It remains to show Φ(B) = M for the meander map Φ constructed in the
previous section. Since Φ(B) is always a rainbow, by construction, we only
have to address the upper part. Flipping the billiard B upside down, by
reflection through the x-axis, the roles of β± interchange and the meander
Φ(B) is reflected through the vertical axis x = N + 1

2 . Therefore it is
sufficient to consider the upper arches to the left of the cleavage of M , and
the horizontal flights 0 < y ∈ Z+ 1

2 of the billiard B which only involve the
boundary β+.

Let j1j2 denote any upper arch of M to the left of the cleavage, 1 ≤ j1 <
j2 ≤ N . The corresponding parenthesis pair “ ( ” at j1 and “ ) ” at j2 then
implies slope +1 of β+ at j′1 = j1 − 1

2 and slope −1 at j′2, by construction
(3.1). The fact that “ ) ” at j2 is the closing match of the parenthesis “ ( ”
opened at j1 implies β+(j′) > β+(j′1) = β+(j′2) for all j1 < j < j2, again by
(3.1). In other words, the unobstructed horizontal billiard flight between
the boundary reflection points (j′1, β

+(j′1)) and (j′2, β
+(j′2)) in B at half-

integer level y = β+(j′1) = β+(j′2) corresponds precisely to the upper arch
between the intersection points j1 and j2 in the meander M . This bijection
between the N/2 horizontal flights in B at positive half-integer levels of β+

and the upper arches of the meander M to the left of the cleavage proves
M = Φ(B) and completes the proof of theorem 1.2.

4. Proof of theorem 1.3: from circle-free rainbow meanders
to billiards

In this section we prove theorem 1.3: given any circle-free rainbow (multi-
) meander M with 2N axis intersections, we recursively construct a plane
Cartesian billiard B such that M = Φ(B).
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We proceed by reduction to a cleaved rainbow. Starting from the circle-
free non-cleaved rainbow M = M0 we construct rainbows M1,M2, . . . by
successively removing the topmost upper arch j1j2 across the cleavage. In
other words

j1 ≤ N < j2 (4.1)

and j1 is minimal (and hence j2 maximal) among all arches j1j2 with this
property. Of course we also remove one arch from the lower rainbow, in
parallel. At each reduction step from Mm to Mm+1 we show that Mm+1 is
circle-free, if Mm was circle-free; see lemma 4.1 below. Moreover we show
that Mm = Φ(Bm) arises as the meander of a billiard, if Mm+1 = Φ(Bm+1)
does; see lemma 4.2 below. Since M0 is circle-free, the descent M0,M1, . . .
by lemma 4.1 cannot terminate at the empty meander but must terminate
at a cleaved rainbow meander Mn, as soon as all the n arches across the
“cleavage” N,N + 1 in M0 have been removed. Since Mn is a cleaved
rainbow, theorem 1.2 and the explicit construction in section 3 provide
a plane Cartesian billiard Bn such that Mn = Φ(Bn) is the associated
cleaved rainbow meander. By lemma 4.2 below we may then ascend back
to M = M0 = Φ(B0) by induction, and theorem 1.3 will be proved.

We only need to formulate lemmas 4.1 and 4.2 for a single reduction step,
say from M0 to M1. To fix notation we label the intersection points of the
reduced meander M1 with the horizontal axis by 1, . . . , 2N , as usual. For
the extended meander M0 we append labels 0 and 2N + 1, symmetrically,
and denote the added upper arch by j1j2 as in (4.1), with 0 ≤ j1 ≤ N <
j2 ≤ 2N + 1.

Lemma 4.1. If the extended rainbow meander M0 is circle-free, then so is
the reduced rainbow meander M1.

Proof.
We prove the contrapositive. Suppose the reduced rainbow M1 possesses
a circle, i.e. an upper arch k1k2 with k2 = 2N + 1 − k1. We claim the
extended rainbow M0 possesses the same circle.

Indeed we may fix notation such that k1 ≤ N < k2. Minimality (4.1)
of j1 in the added upper arch j1j2 of M0 implies j1 < k1 and j2 > k2. In
particular the upper arch k1k2 of the reduced rainbow M1 appears as an
upper arch in the extended rainbow M2 with the same labels. Therefore
the extended rainbow M0 possesses the same circle k1k2 and the lemma is
proved. ./

The converse of lemma 4.1 fails, of course: we may always add a circle
by a topmost upper arch j1 = 0, j2 = 2N +1, in the extended meander M0.
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Figure 4.1. Extended rainbow meander M0 and reduced
rainbow meander M1. The dashed topmost upper arch a =
j1j2 of M0 overarching the cleavage of the lower rainbow at
N,N + 1 is removed in M1.

Lemma 4.2. Let the extended rainbow meander M0 be circle-free and as-
sume that the circle-free reduced rainbow meander M1 possesses a billiard
representation M1 = Φ(B1) by a plane Cartesian billiard B1.

Then the extended rainbow meander M0 also possesses a billiard repre-
sentation M0 = Φ(B0) by a plane Cartesian billiard B0.

Proof.
We divide the proof into four steps. In a first step, we fix some notation
for the upper arches of the rainbow meanders M0, M1, and for the given
billiard B1 representing the reduced rainbow meander M1. In step 2 we
identify the topmost upper arches of M1 by their corresponding horizontal
flights in B1. We also focus on the most typical subcase of the actual proof.
Step 3 contains the crucial construction to insert a new topmost upper arch
a = j1j2, across the rainbow cleavage at N , N + 1, for the extended rain-
bow M0 by inserting a new horizontal flight in B1. This will construct the
billiard B0. In step 4 we check that B0 is indeed a plane Cartesian billiard
with Φ(B0) = M0, as claimed.

Step 1: Notation.

In figure 4.1 we have sketched the sequence of topmost upper arches
of the reduced rainbow meander M1 and the extended rainbow mean-
der M0. The topmost upper arches of M1 are labeled a1, . . . , an from
left to right; they correspond to outermost pairs of matching parentheses
“ (. . . ) ”. The dashed additional arch a = j1j2 of M0 overarches ai, . . . , am−1

São Paulo J.Math.Sci. 6, 2 (2012), 247–275
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Figure 4.2. (a) Billiard representation Φ(B1) = M1 of the
reduced rainbow meander M1 of figure 4.1. (b) Billiard rep-
resentation Φ(B0) = M0 for the extended rainbow mean-
der M0 of figure 4.1. Note the shift by (1,1) of the billiard
boundary B1, from Ci to Cm, to construct the part from Ĉi

to Ĉm of the extended billiard boundary B0 for the extended
meander M .

with 1 ≤ i ≤ m ≤ n, so that the topmost upper arches of M0 are
a1, . . . , ai−1, a, am, . . . , an. The additional arch a is the unique topmost up-
per arch of the extended rainbow meander M0 which overarches the lower
rainbow cleavage at positions N,N + 1.

In figure 4.2(a) we sketch one possible configuration of the boundaries
β± of the billiard B1 which represents the reduced rainbow meander M1 =
Φ(B1), by assumption. We discuss the remaining cases in step 2. Specifi-
cally we have assumed Ck > 0 to be the smallest positive integer such that
β+(Ck) = 0 and β+(Ck + 1) = −1. We have also assumed β−(x) ≤ 0 for
0 ≤ x ≤ Ck + 1. The interval components of the horizontal flights at y = 1

2
in B1 are labeled a1, . . . , ak−1 from left to right. The analogous flights at
y = −1

2 are labeled ak, . . . , an, from right to left. In step 2 we will see how
a` labels corresponding topmost upper arches and horizontal flights in M1

and B1. Again we join the boundaries β = β+ ∪ β− in clockwise direction;
so that the path β starts from the origin in direction β+ and returns to the
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origin after having traversed β−. In this order, we denote the end points
of flight a` by A`,1 < A`,2. Along the boundary path β = β+ ∪ β− we have
also labeled zeros by C1 = 0 < C2 < · · · < Ck, left to right, along the
path β+, and Ck+1 > · · · > Cn+1 = 0, right to left, along the return path
β−. The zeros at Ci and Cm of β± occur at x-values j1 − 1 and 2N − j2.
They indicate where we plan to insert the additional horizontal flight of the
billiard B0 corresponding to the additional arch a = j1j2 of the extended
meander M0, in step 3.

Step 2: Topmost arches and dropped cases.

Let us first assume that the plane Cartesian billiard B1 with reduced
rainbow meander M1 = Φ(B1) satisfies

β+ ≥ 0 ≥ β− , (4.2)

and hence in particular β+(N) = β−(N) = 0. Then horizontal flights at
any half-integer levels y ∈ Z+ 1

2 begin and terminate on β± for ±y > 0, but
never run between β+ and β−. Therefore (4.2) implies that the reduced
rainbow meander M1 is cleaved. Moreover, the flights with y = +1

2 provide
the topmost upper arches to the left of the cleavage at N,N+1, and y = −1

2
provides the topmost upper arches to the right. Indeed the upper arches
a1, a2, . . . start at the meander intersection A11 = 1 with the horizontal
axis, which corresponds to the billiard point (1′, β+(1′)) with 1′ = 1

2 and
y = 1

2 . Along β+ we successively run into subsequent flights at y = 1
2 , from

ai−1 to ai, because β+ = 0 at Ci. Along β−, a similar argument applies,
down from an, an−1, . . . at level y = −1

2 .

Let us next consider the case that β+ or β− do attain values where
β+ < 0 or β− > 0. In figure 4.2(a) we have considered the case that
β+ < 0 occurs first, along the x-axis. In the opposite case β− > 0 the
boundary at Ck simply possesses positive slope and belongs to β−, already.
In the following we will suppress this analogous case, along with the cleaved
meander case (4.2) where Ck = N and Ak−1,2 belongs to β+ but Ak,1

belongs to β−. We thus assume

β+(Ck + 1) = −1 , and

β+(x) ≥ 0 ≥ β−(x) for 0 ≤ x ≤ Ck .
(4.3)

To insert the dashed arch a = j1j2, when extending the meander M1 to
M0, we have to insert an additional half-integer reflection point near the
zeros Ci of β+, for j1, and Cm of β− for j2.
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We first observe that Ci 6= Cm. Indeed Ci = Cm would imply that the
labels A`,κ satisfy

Ai,1 = 2N + 1−Am−1,2 , (4.4)
and are hence positioned symmetrically to the cleavage of the lower rainbow
at N,N + 1. Therefore the arch a of M0 would belong to a circle, but M0

is assumed circle-free. This proves Ci 6= Cm.
It remains to consider the cases Ci > Cm and Ci < Cm. By reflection of

the billiards B0, B1 through the horizontal axis, and of the meanders M0,
M1 through the vertical axis at x = N + 1

2 , however, we may focus on the
case

Ci < Cm (4.5)
of figure 4.2 for the remaining proof.

Step 3: Extending the billiard from B1 to B0.

In the previous step we have reduced the proof to the reduced meander
case M1 = Φ(B1) of figure 4.1 with the reduced billiard of figure 4.2(a). We
now keep the billiard boundary β+ fixed, from C1 = 0 to Ci, and we fix β−

from Cm to Cn+1 = 0. The remaining boundary part of β = β+ ∪ β− from
Ci to Cm we move by the vector (1, 1), i.e. one step to the right and one
step up. We interpolate the resulting gaps at Ci and Cm linearly, i.e. with
slope +1. See figure 4.2(b) for the resulting extension B0 of the billiard B1.

Step 4: Φ(B0) = M0.

It is straightforward to check properties (1.5) – (1.9) for the extension
of β± constructed above, either geometrically or algebraically, to see that
B0 is indeed a plane Cartesian billiard. Indeed, the partial shift by (1, 1)
preserves the closing properties (1.5), (1.9), the slope property (1.8), the
ordering (1.6), and does not introduce any new tangencies (1.7).

The horizontal flights in B1 are all preserved by the extension to B0,
although the half-integer y-levels increase by 1 in the shifted part. Check
the neighboring reflection points Ai−1,2 and Ai,1 of the newly inserted re-
flection point j1 at (Ci, 0)+ 1

2 · (1, 1), and likewise of the neighbors Am−1,2,
Am,1 of j2 at (Cm, 0) + 1

2 · (1, 1), along the boundary β. We see how the
extended meander Φ(B0) only differs from M1 by a newly inserted upper
arch a = j1j2 overarching ai, . . . , am−1 from the end Ai−1,2 of ai−1 to the
beginning Am,1 of am. Therefore Φ(B0) = M0.

Up to the careful consideration of a few remaining special cases like
m = k or i = k, or the cleavage case Ck = N and the analogous case
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Ck ∈ β−, as discussed in step 2, this completes the proof of the lemma, and
of theorem 1.3. ./

5. Morphing meanders

In the previous sections we have investigated the correspondence between
circle-free rainbow meanders and their associated plane Cartesian billiards.
In the four subsections below we widen the scope of our results to include
more general meander configurations. In subsection 5.1 we discuss the
relation between open and closed meanders, with an eye on the open con-
nected, i.e. simple, meanders which arise in parabolic PDEs of Sturm type;
see (1.2). In 5.2 we study closed meanders on the standard 2-sphere S2, the
one-point compactification of the Euclidean meander plane, to indicate the
resulting equivalences of closed meanders. The role of closed meanders in
Temperley-Lieb algebras is briefly sketched in 5.3, relating the connectivity
of rainbow meanders with Di Francesco’s notion of a trace in Temperley-
Lieb algebras. In subsection 5.4 we conclude with two constructions of
rainbow meanders, from general closed (multi-)meanders. Both construc-
tions preserve connectivity. This completes our objective of relating the
connected open meanders, as they arise in Sturmian parabolic PDEs, with
connectivity of circle-free rainbow-meanders, traces in Temperley-Lieb al-
gebras, and transitivity of plane Cartesian billiards.

5.1. Opening and closing meanders and billiards. We begin with a
PDE example from the class of global attractors of the scalar parabolic
equations

ut = uxx + f(x, u, ux) (5.1)
on the unit interval 0 < x < 1 under Neumann boundary conditions ux = 0
at x = 0 and x = 1. Based on [FiRo96] the global attractor sketched in
figure 5.1(a) has been identified as one of sixteen genuinely different exam-
ples with 9 hyperbolic equilibria in this class, see [Fi94]. The particular
example does not arise for f = f(u); see [FiRoWo11].

In figure 5.1(a) we sketch the 9 hyperbolic equilibria v = v(x) of (5.1),
i.e. the solutions of the second order ODE

0 = vxx + f(x, v, vx) , (5.2)

again with Neumann boundary conditions vx = 0 at x = 0, 1. Each equilib-
rium v is indicated by a dot, labeled 0, . . . , 8. The Morse indices i, alias the
unstable dimensions, alias the number of strictly positive Sturm-Liouville
eigenvalues of the linearization of (5.1) at v, are given by i = 0 for labels
0, 8 (stability); i = 1 for labels 1, 5, 7; and i = 2 for labels 2, 4, 6. La-
bel 3 indicates the only 3-dimensionally unstable equilibrium, central to the
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Figure 5.1. (a) Sturm global attractor of PDE (5.1) with
9 hyperbolic equilibria v, labeled by 0, . . . , 8 = 2N . One-
dimensional heteroclinic orbits between equilibria of adjacent
Morse index are indicated by arrows. (b) Open meander, at
x = 1, which leads to the 9 equilibrium solutions v by shoot-
ing from the Neumann boundary condition at x = 0, see
(5.2), (5.3). (c) Closed meander which arises by replacing
the dashed upper arch (0, 7), in (b), with the new dashed
upper arch (7, 8).

global attractor which is a closed 3-ball. For more details on the (Schoen-
flies) sphere geometry in global attractors of (5.1) see [FiRo13]. In figure
5.1(a) we sketch the full attractor geometry by heteroclinic orbit solutions
u(t, x) → v±(x) of (5.1), which tend to different equilibria v± of adjacent
Morse indices, for t → ±∞.

In figure 5.1(b) we sketch the shooting curve associated to the Neumann
boundary value problem (5.2). More precisely we rewrite (5.2) as a nonau-
tonomous first order system

vx = w

wx = −f(x, v, w)
(5.3)

with Neumann boundary values w = 0 at x = 0, 1. Solving (5.3) with the
v-axis {w = 0} as a set of initial conditions, at x = 0, we obtain an open
meander curve as in figure 5.1(b), at x = 1. Transverse intersections of
the open meander with the v-axis {w = 0} at x = 1 indicate hyperbolic
equilibria u(t, x) ≡ v(x) of (5.3). Obviously, the open meander will be
simple, i.e. connected, if we assume global solvability of (5.3) for initial
conditions w = 0 at x = 0, and all 0 ≤ x ≤ 1.
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In figure 5.1(c) we sketch how to relate the open meander of figure
5.1(b) to a closed meander. More generally consider any plane open multi-
meander M with exactly one unbounded component. Leaving the PDE
notation of (5.1) – (5.3) behind we return to calling the horizontal axis
x, again, and label the 2N + 1 transverse intersections by 0, . . . , 2N . We
also assume the unbounded component of the meander M to cross from
the lower to the upper half plane at labels 0 and 2N , as indicated in figure
5.1(b). We can then replace the topmost upper arch (0,m) of M by a new
topmost upper arch (m, 2N) to close the meander. We omit the intersection
point 0 in the resulting closed meander M̃ . Alternatively we may also omit
2N and replace the lowest bottom arch (n, 2N) by a new lowest bottom
arch (0, n), instead. Either way, M gives rise to a total of two associated
closed meanders M̃ with 2N intersections and with the same number of
connected components as M . In particular simple meanders stay simple
under closing.

Conversely we may think of opening closed meanders M̃ on 1, . . . , 2N .
Suppose we aim for an open meander M with upward crossings of the
unbounded ends at 0, 2N such that M̃ arises from M , in turn, as above.
Then we just have to replace the topmost upper arch (m, 2N) of M̃ by
(0,m). Similarly we can revert the closing of the lowest bottom arch (1, n)
of M to become an opening. In this way we can view opening and closing as
inverse constructions which preserve the number of connected components.
For a more general view point see section 5.2 on S2 compactified meanders.

Of course we may consider other variants of opening and closing, as well.
If the unbounded ends cross downwards at 0, 2N , instead, we may flip the
above considerations through the x-axis. If the unbounded ends are in the
same half-plane we may just join them to form a new arch in that half-plane,
for closing. Uniqueness of inverse openings will be lost, in general. If the
unbounded ends are in opposite half-planes, but not crossing at 0, 2N , it
may not be possible to close the meander 0, . . . , 2N with just 2N crossings.
Adding another crossing −1 or 2N + 1, however, a closing with 2N + 2
crossings is always possible.

Opening and closing plane Cartesian billiards is equally straightforward;
see figure 5.2. To accommodate unbounded meander ends, which enter the
upper half plane at 0, 2N , we attach a 1 × 1

2 rectangle R at the original
polygon edge interval of length 1 bisected by 2N . (We call the rectangle
1× 1

2 even though the (Euclidean) lengths of its sides require a suppressed
factor of

√
2.) We relabel the new corners as 0 and 2N , respectively. Since

these are the only corners at half-integer levels of x, y, they mark the start
and end points of a billiard path which corresponds to the unbounded
component of the open meander; see figures 5.1(b) and 5.2(b).
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Figure 5.2. (a) Closed billiard corresponding to the closed
cleaved rainbow meander of figure 5.1(c). (b) Open billiard
corresponding to the open meander of figure 5.1(b). Note the
shaded new rectangle R attached to the lower left. Only the
new corners 0 and 8 = 2N of the new polygon are placed at
half-integer coordinates x, y and can therefore serve as the
starting and end point of the nonclosed billiard path which
represents the unbounded meander component.

5.2. Closed meanders on the 2-sphere. Consider k disjoint closed C1

Jordan curves J1, . . . , Jk on the standard 2-sphere S2, and another closed
C1 Jordan curve J0 which intersects J1, . . . , Jk transversely. Without loss
of generality we may assume J0 to be the ±90◦ meridian through the poles,
after a diffeomorphism of S2. Moreover we may assume the north pole to
not coincide with any of the intersection points 1, . . . , 2N . Upon standard
stereographic projection to the Euclidean plane, J0 becomes the x-axis and
M = J1∪· · ·∪Jk becomes a closed plane (multi-)meander with k connected
components. Conversely any closed plane meander M can be viewed in the
one-point compactification S2 of R2, in this way. Simple meanders, k = 1,
arise from the mutual intersections of two transverse Jordan curves J0 and
J1.

Around 1840 Gauss considered transverse self-intersections of a single
closed curve K in S2; see [Ga1840]. Label the self-intersections of K by
“letters” 1, . . . , N ′. The Gauss word problem asks for the possible words,
with each letter appearing exactly twice, such that the letters appear in
order as K is traversed once. See [Ros99] for a contemporary account.
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For example consider the two transverse Jordan curves J0 and J1 above,
but assume they do intersect at the north pole. In the stereographic plane
this corresponds to an open meander J1 which crosses the horizontal axis
J0 at 2N − 1 remaining transverse intersections. Joining loose ends of J0,
J1 in one or the other way, we obtain a closed self-transverse curve K. The
Gauss word of K which determines the topology of self-intersection then
lists all N ′ = 2N − 1 intersection letters, say, first in order and then in a
possibly different but parity preserving permutation σ. This permutation σ
is directly related to the Fusco-Rocha permutation, or Sturm permutation,
[FuRo91] which has become of central importance for a combinatorial char-
acterization of Sturm global attractors of the PDE (5.1); see for example
[FiRo96, FiRo99, FiRo00, FiRoWo11] and the references there.

The S2 point of view suggests an equivalence relation on closed meanders
M = J1 ∪ · · · ∪ Jk as follows. We may place the north pole of S2 within
any of the 2N subintervals of the meridian J0 \M to obtain possibly differ-
ent, but equivalent, closed plane meanders M1, . . . ,M2N after stereographic
projection. Obviously this notion of equivalence preserves the number of
connected components.

For example consider a circle-free rainbow meander M1. Placing the
north pole in the cleavage interval (N,N + 1) of the rainbow produces
another circle-free rainbow meander M2. The associated billiards B1 and B2

are related by plane rotation through 180◦ around the point 1
2(N, β±(N)).

Placing the north pole at any of the intersection points 1, . . . , 2N instead,
an analogous construction applies to the open meanders as arising, e.g., in
the Sturm PDE problem (5.1). We have not even started to explore the
consequences of this equivalence on the level of Sturm global attractors.

Returning to the opening and closing of meanders as in figures 5.1(b),(c)
we now see how our constructions can be viewed on S2, if we identify the
points 0 and 2N and let them pass through the north pole. Then closing
open meanders corresponds to one or the other unfolding of such a pole
passage.

5.3. Temperley-Lieb algebras: traces and rainbows. Our brief ex-
position basically follows Di Francesco et al [dFGG97, dFG05]; see also
[We95]. A Temperley-Lieb algebra TLn(τ) of order n with parameter τ is
a matrix algebra with N generators 1 = e0, e1, . . . , eN−1 and the relations

e2
i = τei (5.4)

eiej = ejei (5.5)
eiei±1ei = ei (5.6)
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Figure 5.3. Diagram representations of Temperley-Lieb
generators e0 = 1 and ei, for i = 1, . . . , N − 1.

for all meaningful nonadjacent i 6= j; see [TeLi71]. In the N -strand diagram
representation of Temperley-Lieb algebras TLN (τ) sketched in figure 5.3,
products are represented by (homotopy classes of) concatenations of n-
strand diagrams, left to right. Resulting interior cycles are eliminated to
be replaced by a prefactor of τ , each, in view of property (5.4). Properties
(5.5) and (5.6) are obviously satisfied by these N -strand diagrams.

Following [dFGG97], we define the trace of a monomial e = ei1 . . . eim ∈
TLN (τ) as follows. In the N -strand diagram of e, we close up matching
right and left ends of the same strand index. Let k′ denote the resulting
number of connected components and define the trace

tr(e):=τk′
. (5.7)

Note that some of the components may be interior to e, whereas 1 ≤ k ≤ k′

other components involve the exterior closing. See figure 5.4(a),(b) for an
illustration with N = 4, e:=e2e1e3 ∈ TL4(τ) and tr(e) = k = k′ = 1.

Figure 5.4(c) shows how the exterior connectivity k of e = e2e1e3 ∈
TL4(τ) coincides with the connectivity of an equivalent rainbow meander.
Indeed the interior strands of e define the upper arches, and the exterior
strands define the lower rainbow, when we appropriately join the vertical
left and right boundaries of the strand diagram of e to become the horizontal
x-axis of the meander.

Conversely, we may pass from any 2N rainbow meander (c) to the N -
strand diagram of a (τ -reduced) monomial e ∈ TLN (τ) with k′ = k exterior
components. This relates the number of connected components of rainbow
meanders, alias plane Cartesian billiards, to traces in Temperley-Lieb alge-
bras.

5.4. Meanders and rainbows. Closed rainbow meanders M∗ are char-
acterized by the nested arrangement of all N lower arches (i, 2N + 1 − i).
We have seen how circle-free rainbow meanders M∗ are equivalent to plane
Cartesian billiards. The previous subsection, on the other hand, has re-
called how rainbow meanders M∗ relate to traces in Temperley-Lieb alge-
bras TLN (τ). More precisely it is the number k of connected components
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Figure 5.4. (a) Diagram representation of the 4-strand di-
agram e = e2e1e3 ∈ TLN (τ), N = 4. (b) Homotopy equiv-
alent diagram of e with dashed exterior strands matching
right and left ends of the same strand index. Note the num-
ber k = 1 of exterior connected components of the closed di-
agram. (c) Joining the lower ends “o” of the vertical strand
boundaries of e, and opening the boundaries to become hor-
izontal we obtain an equivalent rainbow meander with 2N
intersections and the same number k = 1 of exterior con-
nected components as in (b).

of the rainbow meander M∗ which determines the trace and decides, in
case M∗ is simple alias k = 1 alias tr = τ , whether the Cartesian billiard is
transitive.

Closing the simple open Sturm meanders M̃ of the PDE setting (5.1),
however, we mostly do not arrive at a closed rainbow meander M∗. There-
fore we discuss two constructions, in this subsection, which convert general
closed meanders M to closed rainbow meanders M∗ without changing the
connectivity k.

The first construction converts any closed meander M to a cleaved closed
rainbow M∗; in particular M∗ is circle-free. However, the number of 2N
intersections of the original meander M with the horizontal x-axis is dou-
bled to 4N , for the cleaved rainbow M∗. See figure 5.5 for an example with
N = 4. In general the N upper arches (i, j) of M are kept unchanged in
M∗, for 1 ≤ i < j ≤ 2N , and are located to the left of the (2N, 2N + 1)
cleavage of M∗. The N lower arches (i, j) of M , however, are converted to
upper arches (4N + 1 − i, 4N + 1 − j) to the right of the cleavage of M∗.
Contracting the nested lower rainbow arches of M∗ restores M . Therefore
M and M∗ possess the same number k of connected components.

The second construction attempts to reduce the number N∗ of arches
in the rainbow meander M∗ to become lower than the bound N∗ = 2N
attained in the first construction. We assume the original meander M is
circle-free. Let N∗ be maximal such that (N∗, N∗ + 1) is a lower arch of
M . (We may consider an upper arch, just as well, if we reflect M through
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Figure 5.5. (a) An original closed meander M with 2N =
8 intersections. (b) The associated cleaved rainbow meander
M∗ with 4N = 16 intersections. Note how upper arches
(i, j) of M have been preserved. Lower arches (i, j) of M
have been converted to upper arches (4N +1− i, 4N +1−j).

Figure 5.6. (a) The original closed circle-free meander M
with N = 4 of figure 5.5(a), slightly opened at intersections
1, . . . , N∗ = 5 < 2N . Note the lower rightmost innermost
arch at (N∗, N∗ + 1). (b) The fully opened rainbow meander
M∗ with N∗ < 2N upper arches and 2N∗ < 4N intersec-
tions.

the x-axis.) As indicated in figure 5.6(a) we now replace the intersections
1, . . . , N∗ < 2N by a wedge, say with vertex at the nonintersection point
N∗ + 1

2 on the x-axis. To arrive at the rainbow meander M∗ we open the
wedge to a full 180◦, generating the N∗ < 2N nested lower arches of the
rainbow M∗. We preserve the upper and lower arches (i, j) of the original
meander which reside in 1, . . . , N∗ entirely. The upper and lower arches of
M which share an intersection point in N∗ + 1, . . . , 2N , however, are each
merged into a single upper arch of M∗.
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More precisely we map an upper arch (i, j) of M with 1 ≤ i < j ≤ N∗
to the same upper arch of M∗. A lower arch (i, j) of M in the same range
maps to the upper arch (2N∗ + 1− i, 2N∗ + 1− j) of M∗. Any remaining
upper arch (i, j1) of M has i ≤ N∗ < j1 ≤ 2N . It can be merged with
its lower counterpart (j, j1) of M which satisfies j ≤ N∗ < j1 ≤ 2N by
construction. Here we have used maximality of N∗ < 2N . The merger
provides an upper arch

(i, 2N∗ + 1− j) (5.8)
of M∗.

This second construction provides a circle-free rainbow meander M∗,
with N < N∗ < 2N arches and 2N∗ < 4N intersections, from a circle-
free rainbow meander M with N arches and 2N intersections. In fact our
construction only used that the arch (i, j1) of M is not part of a circle.
Contracting the lower wedge again and re-inserting the arches of M∗ across
its cleavage at (N∗, N∗+1) below, we again conclude that the original circle-
free meander M and the shortened rainbow M∗ possess the same number
k of connected components.

6. Examples: simplicity of some rainbow meanders

For positive integers p1, . . . , pn we define the closed rainbow meander
M = M(p1, . . . , pn) as follows. For any positive integer p we call a con-
figuration of p nested arches a rainbow of size p, or a p-rainbow. Then
the upper arches of the meander M = M(p1, . . . , pn) consist, left to right,
of adjacent rainbows of sizes p1, . . . , pn. The lower arches of the rainbow
meander M form a single rainbow, by definition, of size N = p1 + · · ·+ pn.
Below we discuss connectivity of such rainbow meanders M for n = 1, 2, 3.
Already the case n = 4 is open!

The case M = M(p1) of n = 1 and p1 = N is trivial: the meander M
consists of p1 nested circles.

The case M = M(p, p) of n = 2 and p1 = p2 = p is a cleaved meander;
see figure 6.1(a). The associated Cartesian billiard B = B(p, p) is a p × p
square. Again, we call the square p× p although the (Euclidean) length of
its sides is

√
2p. The corners are at (0, 0), (±p, p), and (2p, 0); see figure

6.1(b). Obviously the cleaved rainbow meander M(p, p) has p connected
components. The p kidney shaped components are given by the rectangular
billiard paths starting with the p horizontal flight levels y = i′ = i − 1

2 in
the p× p square billiard B, for i = 1, . . . , p, respectively.

The general case M = M(p1, p2) of n = 2 is slightly more interesting; see
figure 6.2(a), (b). Without loss of generality assume p1 > p2; or else inter-
change p1 and p2 by flipping the billiard B through the horizontal x-axis.
For p1 > p2 the associated Cartesian billiard B = B(p1, p2) is a rectangle
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Figure 6.1. (a) Symmetrically cleaved rainbow meander
M = M(p, p). (b) Corresponding square billiard B =
B(p, p) with p closed rectangular billiard paths.

Figure 6.2. Circle-free rainbow meander M = M(p1, p2)
with p1 > p2, in (a), and corresponding rectangular billiard
B = B(p1, p2), in (b). Note the shaded p2 × p2 square Q in
the p1 × p2 rectangle B with the dashed line as boundary.

with corners (0, 0), (p1, p1), (p2,−p2), and (p1 + p2, p1 − p2); see figure 6.2.
We claim that the number k = k(p1, p2) of connected components of the
circle-free meander M = M(p1, p2) or, equivalently, the number of paths in
the Cartesian billiard B = B(p1, p2) at half-integer levels is given by

k = k(p1, p2) = gcd(p1, p2) , (6.1)

where gcd denotes the greatest common divisor.
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Proving (6.1) is particularly straightforward in the billiard setting of
figure 6.2(b). Consider the shaded p2 × p2 square Q to the lower left of
the dashed line from (2p2, 0) to (p2, p2) in the billiard rectangle B. As we
have already seen in our discussion of the square billiard B(p, p), billiard
paths inside the square Q are p2 rectangles. Cutting off the p2 × p2 square
Q from the p1×p2 rectangle in fact leaves a (p1−p2)×p2 rectangle behind
with the exact same number and connectivity of paths as before. Instead
of entering and leaving the shaded p2×p2 square Q, we simply reflect paths
at the new dashed line boundary. Cutting off squares from the resulting
rectangles repeatedly, in this manner, leads to a q × q square. By the
Euclidean Algorithm of division with remainder, the square has side length
q = gcd(p1, p2). By our study of B(q, q), the original billiard B(p1, p2) and
the original rainbow meander M(p1, p2) must therefore have k = k(p1, p2) =
q connected components, i.e. as many as the reduced square B(q, q). This
proves claim (6.1).

Figure 6.3. Circle-free rainbow meander M =
M(p1, p2, p3) with p1 < p3, in (a), and corresponding
L-shaped billiard B = B(p1, p2, p3), in (b). Note the shaded
p1 × p1 square Q in the left wing of B with the dashed line
as boundary.

As a third example we consider the case M = M(p1, p2, p3) of n = 3
upper rainbows. The symmetric case p1 = p3 with p1 + p2 connected com-
ponents, p2 of them circles, is not interesting. Without loss of generality we
may therefore assume p1 < p3. In particular, the meander M is circle-free.
The associated billiard B = B(p1, p2, p3) is L-shaped with the six corners 0,
(p1, p1), (p3,−p3), (2p1, 0), (2p1 +p2, p2), and (p1 +p2 +p3, p1 +p2−p3); see
figure 6.3. We claim that the number k = k(p1, p2, p3) of connected compo-
nents of the circle-free rainbow meander M = M(p1, p2, p3) or, equivalently,
of the Cartesian billiard B = B(p1, p2, p3) is given by

k = k(p1, p2, p3) = gcd(p2 + p1, p2 + p3) . (6.2)
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As with (6.1), we prove (6.2) in the billiard setting of figure 6.3(b). As
in our proof of (6.1) we may cut the shaded p1 × p1 square Q off the left
wing along the dashed line from (p1,−p1) to (2p1, 0), without changing the
connectivity of the Cartesian billiard. The resulting reduced rectangle has
sides p3 − p1 and p1 + p2. Inserting (6.1) this implies

k(p1, p2, p3) = k(p3 − p1, p1 + p2) = gcd(p3 − p1, p1 + p2) =
= gcd(p2 + p1, p2 + p3) ,

(6.3)

and claim (6.2) is proved.
Reflecting the L-shaped billiard B(p1, p2, p3) through the wing bound-

aries from 0 to (p1, p1) and from (2p1 +p2, p2) to (p1 +p2 +p3, p1 +p2−p3)
repeatedly, by the way, we obtain a Cartesian version of a Sinai billiard:
a rectangular domain with a rectangular hole, on the integer lattice, and
with flight paths at ±45◦ angles to the boundary.

Of course it is tempting to extend the above elementary observations and
address connectivities k = k(p1, . . . , pn) involving more than n = 3 upper
rainbows – not to speak of the complications of less simple-minded nesting
of arches or parentheses. Looking into the case n = 4, quite a few geometric
reductions actually come to mind and many particular subcases are easily
settled. The complexities of the general case seem to be such, however,
that we are not able, as yet, to provide a simple formula analogous to (6.1),
(6.2), even for the case n = 4. And of course there are many further cases
to explore.

In summary we find it intriguing how many puzzles are still in store,
even in a supposedly elementary subject like the combinatorics of Jordan
curves and billiards in the plane.
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Springer-Verlag, Heidelberg, 2002, 23–152.

[FiRoWo11] B. Fiedler, C. Rocha and M. Wolfrum. A permutation characterization
of Sturm global attractors of Hamilton type. J. Differential Eqs. 252
(2011) 588–623.

[FuRo91] G. Fusco and C. Rocha. A permutation related to the dynamics of a
scalar parabolic PDE. J. Differential Eqs. 91 (1991) 75–94.

[Ga1840] C.F. Gauss. Gesammelte Werke VIII, Nachlass, I. Zur Geometria Situs.
(ca. 1840) 271–286.

[Gi98] M. Gimbutas. Die Sprache der Göttin. Zweitausendeins, Frankfurt/M.,
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