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Abstract. We will discuss some new results for the inverse problem of
Variational Calculus. We will consider problems with functionals given
by action forms of order greater than one and subject to non-holonomic
constraints.

1. Introduction

Griffiths (see [16]) presented a new approach to variational problems in
the context of exterior differential systems, and proposed mixed endpoint
conditions for problems with non-holonomic constraints to obtain station-
ary solutions. With these non-holonomic constraints it is generally not
possible to have variations of integral manifolds subject to fixed endpoint
conditions. These mixed endpoint conditions will make the integral over
the boundary of the first variation vanish. In [26] we generalized Grif-
fiths’s framework to variational problems given by multiple integrals, and
established mixed boundary conditions for variational problems with non-
holonomic constraints. The study of Variational Calculus for functionals
defined by multiple integrals was developed by Caratheodory [1929], Weil-
De Donder [1936], Lepage [1936-1942]. Other authors like Dedecker [1953-
1977], Liesen [1967], R. Hermann [1966], H. Goldschmidt and S. Sternberg
[1973], Ouzilou [1972], D. Krupka [1970-1975], I. M. Anderson [1980], P. L.
Garcia and A. Pérez-Rendén [1969-1978], C. Giinther [1987], Edelen [1961]
and Rund [1966] contributed with their work to this field.
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336 P. G. Henriques

In 1887, Helmholtz presented the inverse problem of Variational Calculus
in the following way: Given P; = P;(z,u’,u},u};), is there a Lagrangian
L(z,u?,u}) such that E;(L) = OL/Ou’ — D,OL/Ou’. = P;, where D, =
0/0x +ut.0/ou’ + ul,0/0u’? Necessary conditions were found for P; to be
a Euler-Lagrange system (see (3.1) (3.2) and (3.3)). These conditions were
proved to be locally sufficient.

I. M. Anderson [1992], [1980], P. J. Olver [1986], F. Takens [1979], W.
M. Tulczyjew [1980] and A. M. Vinagradov [1964] generalized Helmholtz’s
conditions both for higher order systems of partial differential equations
and for multiple integrals.

In the present text we describe new results for the the inverse problem
of Variational Calculus for multiple integrals in the context of exterior dif-
ferential systems. We deal with non-holonomic constraints in the setting
of the mixed boundary conditions defined in [26]. This work is a follow up
of [29] and [30]. In section I and II we present a short review of the latter
work. In section III we discuss the inverse problem of Variational Calcu-
lus, and conclude in section IV with a study of the generalized Lagrange
problem with non-holonomic constraints.

1.1. Integral manifolds and valued differential systems. Let us con-
sider a manifold X and two subbundles of the cotangent bundle T* X, sat-
isfying;:

i) I" C T*X,

i) L* CT*X with I* ¢ L* C T* X,
with the rank (L*/I*) = n (a natural number).

We define an integral manifold of (I*, L*) as an oriented connected com-
pact n-dimensional smooth manifold N together with a smooth mapping

fiN—-X
satisfying:
Tiy™ = L™ + fo(TN), (1.1)

for all x € N.

N may admit a piecewise smooth boundary ON.

V(I*, L*) is the collection of integral manifolds f of (I*, L*).

Let ¢ be an n-form on X. A valued differential system of (I*,L*) is a
triple (I*, L*, ).

We define the functional ¢ associated with (I*, L*,¢) in V(I*, L*) by:

¢:V(I*,L*) — R,
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fa@ﬂ:/ﬁ@ (1.2)

1.2. Local embeddability. Let us define a Pfaffian differential system
which is locally embeddable in J'(R™ R™). The differenial system for
the Lagrange problem will be defined later [26]. Let d(C*°(X,L*)) C
C®(X,L*ANT*X) and d’ = dimX, s = rankl*. We denote d(C*>°(X, L*) as
the set of images obtained by the exterior derivative of C*°(X, L*). We can
set  for every p € X a chart coordinate system

{ul, .., ust o v 5 so that:
i)
L* = span{du®|l < a < s+n}) (1.3)
i)
0
L = span{%\l <i<d —-s—n} (1.4)

for an open subset U of X with p € U, using the Frobenius theorem. Let
§ be the map I* A Q — A" (T*U)/I: A (A™(T x U)) induced by:

d:C®(U,I* ANQ) — C®(U,A"TH(T*U))
in I'* A Q.
Definition 1.1. A Pfaffian differential system (I*, L*) with d(C*°(X, L)) C
C™®(X,L* NT*X) is locally embeddable if for every p € X there exists an

open neighborhood U of p and local coframes CF = {01, ...,0,} for Ij; and
CF' = {01, ....,05,du’** du”s*t"} for L}, satisfying:

(i) (I AQ) C T*U AA™(L};)/T*U A Iy AATLH(LY)),
(ii) Ker d is a constant rank subbundle of I* N,

where Q = span{du’*t1 A . A du”5 A LA du? ST,

du”stJ - means deletion of s + j factor (for n = 1,du”s+1 = 1).
If I* has no Cauchy characteristics, the structure equations are locally:
do* = 7 A du”H 4+ A S A 0P + BG0° A du” HmodI AT (1.5)
1 S OZ,O/,B S S, 1 S juj,aj” S nv-[ = COO(Xv-[*)
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1.3. The Cartan system. We will now define the Cartan system whose
solutions, when projected in X, will be candidates for extremum of ¢ for
appropriate boundary conditions.

We begin by assuming that (I*, L*, ) is a valued differential system on
X, and that W is the total space of I*. Let us consider x the canonical
form on T* X, and ¢ the inclusion map W * /T*X.

We assume that the n-form w is locally given by:
w=wA.. AW, (1.6)
inducing a nonzero section of A" (L*/I*).

wi = (—1) W A AL Aw™, (1.7)

W™ is the n-Cartesian power of W. We define Z as a subset of W™ by
Z ={z e W":7'(z) € X}, where 7’ is the projection 7'(z) : W" — X,
and AX"™ is the diagonal submanifold of X".

Z is a vector subbundle over X and dimZ = d + sn. Let 9 be
Y =T+ (10 0i ) [i* (X)] A Trw;. (1.8)
77 is the natural projection into the j** component 7/ : W™ — W, i’ is the
inclusion map Z — W™, « is the natural projection 7 : Z — X and
U = dy. (1.9)
Locally, (m70i')*[i*(x)] A T*wj = )\zﬂij with 0;7 = 67 A w;.
Definition 1.2. The Cartan system C(¥) is the ideal generated by the set

of n-forms
{vo¥  where veC®(Z,TZ)}.

Integral manifolds of (C(¥),w) are oriented connected compact n-dimensional

smooth manifolds N (possibly with a piecewise smooth boundary ON ) to-
gether with a smooth mapping f : N — X, satisfying:

ff0=0 forevery 60¢e C(D) (1.10)

and

[H(w) #0. (1.11)

We can now express the first variation of ¢ by:

op = / vady + d(vn). (1.12)
fF(N)
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1.4. The momentum space. Let us assume that we have on Z:

(i) a closed (n + 1)-form ¥ with the associated Cartan system C(V),
(ii) 7w is the pull-back to Z of w, which is the n-form inducing a
nonzero section on A"(L*/I*).

Definition 1.3. Let (C(¥),7"*w),, be the ideal generated by (C(¥), 7"*w) in
C®(Z,N"T*Z). We say that [zo, Ef], with zo € Z and Ef a p-dimensional
subspace of the tangent space T, is a p-dimensional integral element of

(C(0), 7"™*w)y, if
(i) < Ef,a>=0 for all (C(¥),m"*w)p,
(ii) < Ef ow ># 0.

Vo (C(), m*w)), the set of integral elements [zo, EY], is a subset of G,,(Z).
Let  be the projection G, (Z) — Z. Let us assume that:

Zy =" (Va(C(¥),m"w)), V,(C(¥), "w))) =
{E € V,(C(¥), 7m*w) : E tangent to Z1}, (1.13)
Zy =" (V,(C(¥),m"w)), V'n(C(T), m*w))) =
{E €V, (C(¥,7*w) : F tangent to Zy}... (1.14)
are subundles of Z.

Definition 1.4. Let (I*,L*,¢) be a locally embeddable valued differential

system, and w = w' A ... Aw". If there exists a kg € N, such that in the
above construction Zy, = Zyy41 = ... = Zggn' (0 € N), with

(1) Zk, a manifold of dimension (n+ 1)m +n for m € N, and
(ii) (C(¥),m*w)z,, being a differential system in Zy, with r, =0 (Car-
tan number in Cartan-Kdihler Theorem) for all V,_1(C(V), m*w)),

then (I*, L*, ) is a non-degenerate valued differential system.We will re-
name Zy, the momentum space Y .

For n = 1 we follow [16] and replace condition (ii) by 1) A U™ £ 0 on Z,.
We call (C(V), 7*w)y the prolongation of (C(¥), 7*w) in the momentum
space. In this construction, the differential system (C(¥), 7*w)y satisfies:
(i) the projection (C(¥),7*w) — Y is surjective,
(ii) and the integral manifolds of (C(¥),7"*w) on Z coincide with those
of (C(¥),7*w) on Y.
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1.5. Well-posed valued differential systems. Let us assume that
(a) we have the following subbundles of T*X
I ¢ L* c T°X

U U

P c M

: (1.15)

(b) the locally given n-form w also induces a nonzero section on
A" (M*/P*), and
(c) Y C (P*)"|axn, with Y being a subbundle of (P*)"|axn.

Definition 1.5. (I*,L*, ¢, P*, M*) is a well-posed valued differential sys-
tem if we have the following conditions fulfilled:

(i) (I*,L*,¢) is a non-degenerate wvalued differential  system
(with dimY = (n+ 1)m +n) and ¢ = Lw for a smooth function
L on X,

(ii) there exists a subbundle P* of I* of rank m and a subbundle M* of
L* of rank m +n as in (1.15),

(iii) 7”*M* = span{m*0|0 € C(X, M*)} is completely integrable on'Y,
where ™7 = w o1, with © once more denoting the inclusion mapping
Y — Z and 7w the projection Z — X.

CF = {6, dut, 7% 79" |1 < < 5,1 <o/ < 5,5 € Las,si1 < @7 <

s,1 <j<n}for T"X with L, C{k € N,1 <k <n}:
(i)
I" = span{6°|1 < a < s}, (1.16)
(i)
L* = span{f®, du*™|1 < a <s,1 <j<n}, (1.17)
(iii) 7*X = L*®&R* (& denotes a direct sum) with R* = span{r% , 7% |1 <
o <81, € Ly, sipn <o <5,1 < j <n},

(iv)

dGJO%I =0 mod I, for j” ¢ La/{HJO%, =6 A w; }, (1.18)

(v)
0% = 7% Awmod I, for j' € L, (1.19)

(vi)
dﬁ?‘” = 7r]a Aw mod I, when 1 < j <n, (1.20)

(vii) 7TJ°.‘,/, w;)‘ are linearly independent mod L.
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In [29], we presented a set of boundary conditions for different types
of well-posed valued differential systems. For these boundary conditions,
solutions of the Cartan system are solutions of the Euler-Lagrange system.
(These have null first variations.)

2. Generalized Lagrange problem

The framework for this Lagrange problem with or without constrains
represents a set of problems that is highly relevant to the study of Calculus
of Variations.

The generalized Lagrange problem is defined on X = J'(R",R™) (the
1 jet manifold), with the canonical system [* defined on X (i.e. I* =
span{0® = dy® —yg‘idazi}) and ¢ = Lw, with w = dz' A... Ad2z™. We choose

x!, ..., 2" to be coordinates for R", and y', ..., y™ coordinates for R™.

Definition 2.1. Let f be a solution to the canonical differential system
I*, with the independence condition given by L* = span{I*,dz', ..., dx"}.
A family F(x,t1,...,tx) of integral manifolds of (I*,L*) is a k-parameter
variation of f k € N if:
(i) F(z,t1,...,tg) is smooth with (t1,....,tx) € [0,€e1] x ... X [0, €], for
e >0,1<i<k,
(i) Foy,t) = Fo,ty, . te) € VI, L) for all (t1,....tx) € [0,€e1] X
o X [O, Gk],
(iii) F(z,0) = f(x) for allz € N,N C R.

F*(aiti) is an infinitesimal variation of F.

We will consider variations satisfying the condition 7” (F'(x,t)) = n” (f(z))
for all z € ON and t € [0,¢] (77 is the projection J!(R™, R™) — R").

Without loss of generality we can choose v so that vidz® = 0, thus
replacing a one parameter variation of f by another that has the same first
and second variation while satisfying:

7T”(F(.le,t))]v = idN (2.1)
for all t € [0, €]).

3. Inverse problem for calculus of variations

3.1. First example. In 1887, Helmholtz solved the following problem:

Example 1. Given P, = Pa(x,uﬁ,ug,ugx). Is there a Lagrangian
L(z,uP,ul) such that Eq(L) = OL/du® — D,0L/0u$ = P,, where D, =
0/0x + u$0/0u” + u$,0/0us? He found the necessary conditions for Py :
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OP,/0u?, = 0Ps/0u2,, (3.1)
OP,/0u? = OP3/ou® + 2D,0Ps/0u2,, (3.2)
OP,/0u’ = OP3/ou® — D,OPs/0us + DyyOPs/0us,. (3.3)

Let E — M be a fibered manifold. J*°(E) (see [5] and [41]) is the infinite

jet of F.
Let 4
0" = du® — ulde, (3.4)
0% = dul — us,dx, (3.5)
and

Qp = Po0% A dz + 1/2[0P,/0u? — D,OP,/0u,]0” A 6°
+1/2[0P,/0ul, + OPs/0ul,]0% A 65 (3.6)
If P satisfies the Helmholtz conditions (3.1), (3.2) and (3.3), then dQ2p =

0. If Qp is exact (equivalently, if H"*!(E) n+1, de Rham cohomology group
of E is trivial), then P, is globally variational.

If 01, = Ldx 4+ OL/0ul6%, then df;, = Qp.
Volterra [51] showed that if L = [, u®P,(z, tu”, tu?, tuﬁx)dt, where N =
[0,1], then:
Ea(L) — Pa- (37)
We obtain a global solution to the inverse problem in the case of one
independent variable and P, = 0 equations of second order.

In 1964, Vaingberg [50] generalized this result. However, this Lagrangian
is usually of much higher order than necessary.

From [5] one can derive the following theorem:
Theorem 3.1. Let A be a differential operator of order 2k
A = P,(z", uﬁ,uf, ...,ugk)Gﬁ Aw. (3.8)

Then A is the Euler-Lagrange operator of a k- order Lagrangian

L(mi,uﬁ,uf,...,u}f), if and only if A satifies the higher order Helmholtz
conditions, and the functions

P, (t) = Py(z', u?, uf, ey u}f, tuf+1..., tkugk) (3.9)
are polynomials in t of degree less or equal to k.

ug denote all possible k*- order derivatives of v”?, 1 < a,3 < m and
1<i<n, Hﬂ:duﬂ—ufidazi and w = dz' A ... A dz™.
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3.2. Variational Bicomplex. Let us recall now a very important tool for
a globalization of the inverse problem [5], [41].

Definition 3.1. A p-form w on J®(E) is said to be of type (r,s), where
r+ s =p, if at each point x of J*(FE)

w(Xl,XQ,...,Xp) :0, (310)
whenever either

(i) more than s of the vectors X1, Xo, ..., X, are ©3; vertical, or
(ii) more than r of the vectors Xy, Xo, ..., X, annthilate all contact one
forms.

Note: Q™* denotes the space of type (r,s) forms on J*°(E).

(i) m: E — M is a fiber bundle.
(ii) There exists a set of differential equations on sections of E.

d=dg+dy
dpg : Q5 (J®(E)) — QL8 (J®(E)), (3.11)
dy : Q(J®(E)) — QT’SH(J‘X’(E)), (3.12)
d% =0,dydy = —dydy,ds = 0. (3.13)
In local coordinates
dirf = [0f )05 +udf JOu® +u®_,0f Jous; + ..]dz"" (3.14)
dy f=0f/0u“0%+ 0f | Oul;0%; + ... (3.15)
I is locally given by:
I:Q"(JC(E)) — Q"3 (J>®(E)), (3.16)
1
I(w) = EQO‘ A [(0/0u® sw) — D,i((0/0uli sw) 4+ Diyi ((0/0ul: jow) — ...
(3.17)
Definition 3.2. The sequences of spaces
T dv Tdv Tov
0 — 03 — Qs L o
Tdv Tdv Tdv .. Tdv Tdv Tov
0 —e2  fEgrz QH g22 U gn-t2 GH o gn2 Lop2
T dy T dy Tdv .. Tdv Tdy Tov
0 —qvt g M ogoa H gn-ia A gna Lpl g
T dy T dy Tdy .. Tdv Tdy Tov
0,0 dH 1,0 dH 2,0 9H  n-1,0 %H n,0
0—R —Q° — Q" — Q= e — Q ' — Q™
(3.18)

is the Variational Bicomplex.
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Therefore, we have:

0= R— Q00 UL, oo 2, g20 AH, gno10 L, gno B opl O, p2 O, g3 (3.19)

3.3. Two other examples.

Example 2. Let T = T(z%, U, tyi, ..., Uiy 4iz ) be a second order operator 1 <
i1,i2 < n. We assume that T is a smooth function. Let L = L(x%, u,u,:)
be a first-order operator, with L being a smooth function. E[L] = 0L/0u —
D,iOL/Ouyi, where Dyi = 0/0z" + u,:0/0u + Ui 41 O Oyiy + ...

Let v be a lift to the momentum space of an infinitesimal variation
F.(0/0t) of f = mog, where g is a solution of (C(V¥),7*w). The Lie-

3

derivative of 1 = 7*p + (7%0i')*[i* (x)] A T*ws along v is:
vadyp + d(vs) = E[L](u)v'n*(dzt A ... A da™))
+d(OL/ugivtw* (=1 tdat Ao A dai... \ dx"). (3.20)

If we identify e; with 7*((—1)""tdz! A ... A dz'... A dz™) at each point of
the integral manifold of (C(¥), 7*w), we can write:

d(OL/duyiv 7 ((—1)Yda' A ... Ada... A dz™))
= DivV]ulr*(dz' A ... A dz™),

where .
Viu] = OL/0u,iv'e;. (3.21)
We have
E[L)(u) =0 if Llu] = DivW[u] (3.22)
and
H(T)=0 if T[u] is Euler-Lagrange. (3.23)

Helmholtz equations are:

0T /Ouyi = DiOT [Ouyiyi + 1/2D iy 0T/ Oty iy - (3.24)
There exists a sequence of spaces
V(u) 2% Fu) & Fu) 2L Vi) (3.25)

that is a cochain complex, the Euler-Lagrange complex, where F[u] is
the set of smooth functions F'(2, u, Uy, ..., Uy 4is ), V]u] is the set of vector
fields defined in R™ with F'[u] coeficients. This is a particular case of (3.19).
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This complex is exact and thus the inverse problem is solved in this second
example.

Example 3. Let Ta(:ci,uﬁ,ugi, ...,uiiu@) be second-order operators 1 <

i1,79 < n and 1 < B,a < m. We assume that T, are smooth functions.
Let L = L(2%,4°, ﬁ) be a first-order operator, with L being a smooth
function. E4[L] = OL/0u®—D,i0L/0u; where D,i = 0/dx"+u®8/0u*+
ugivwh@/@ugil + ...

Helmholtz equations are:
T, /0u’, , = = 0Tp/0uy; i, (3.26)

aTa/8uxi = 0T /0ug; + 2D i, 0To /Ous; iy (3.27)
T, /Ou’ = 9T /0u® — D, 0T5/0u; + OTp/0u .. (3.28)

riril

z il
4. G.L. problem with non-holonomic constraints

4.1. G.L. problem with non-holonomic constraints. Let us recall
from [26] the generalized Lagrange problem with non-holonomic constraints
forn>1,m > 1.

Let us assume g°(z',u®,u®) = 0, with rank[dg’/0u®;] = mn — I,
g°(z*,u®,u?;) are smooth functions, with 1 < i,j < n, 1 < a < m,
1<p<mn-—landl>0. (I",L*,¢,I",L*) is a well-posed valued differ-
ential system, where: I* = span {#“}, and L* = span {0%,dz'|1 < i <n}

* = {du® — uda'|l < i <n} (4.1)
and
07 = 0% Nwj|l < i <n}. (4.2)

In this setting we have:

do} = —du!’; Nw, (4.3)

doj = —dul;,, N\w with i, € Ly C {1,...n}, (4.4)
o9 = +AY  dul, Aw+A’ 2 du 01 L Aw

+Bj ,0% ANw modl AT Wlthjg ¢ L. (4.5)

= (8/8ugi — A“’ 8/6%]5) (4.6)

L7, = (8/ouc, , — A0 /0us,, )L, (4.7)
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L = (8/8u“. — A ,0/0uZ;, LY

Lgm L =0four, - A "’a/auﬂg)
LZ/‘, .= (9/0ul, — A% a/auxja)m .
L7o . = (0)ouli,. — A .0/0u,, LY ,,

with 1 <o,0'c” <m-—myand m —my+1< p,v<m.
We have Y "' n, =, where n, = n — #L,.

\IJE(L‘;—)\“- -7 Aif’ W) *(du“i/\w)
(LT, = X%, = X ATy (dul, Aw)
+d)\f/\7r (95)—{—(1)\?/\% (67)
+(Lye = A B] o+ Lo Bj )7 (0% Aw)mod I A,

zlo!

The Cartan system is:
70 (1<a<m and 1<i<n),

(L“—/\“—)\“A;‘;M) (m—m;+1<pu<m),

(L%, = X%, = X A )r*w,

xzo" Jo O

(1<0,0',0“<mgwithiy € Ly and jo ¢ Lo)

(=dN ANm*wi) + (Luw = X; B, + L, Bj ,)A7"w,

;E(I

O'“ * o,// *
(—dijU,, AT Wjou — d>\l,ja“ AT u)’LG//)
g a g *

+(Lua“ — )\jaBjoU“ + Lug; BjaUN) AT w.

z’o

Let us assume gp/au’;i =0 for all m; +1 < p <m and g*/0u?;

EM(L) = OL/ou! — DudL/out, + OL/OuS, , BS,, + \J, BY,
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(4.13)

(4.14)
(4.15)

(4.16)

(4.17)

(4.18)

= 0 for
all i, € L, and 1 < 0 < my. Then the Euler-Lagrange equations are:

(4.19)
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E°(L) = 0L/0u® — D,iy OL/OuS:, + OL/OuT; , BY 5+ A BY , — A7

Joxio*

(4.20)
Proposition 4.1. Let (I*,L*) be a locally embeddable differential sys-
tem defined on X = Jl(Rn,Rm)|gp($i’ua7uocj):0, rank[0g” /Oul;] = mn — 1,
g° (', u™,u®;) are smooth functions (1 <i,j <n,1<a<m,1<p<
mn—1,0> O) andg”/@u” =0 forall m+1<pu<m andgp/au =0
and for all iy € Ly and 1 < o < my, where I* = span {0*}, L* = span
{6, dx'|1 <i<n},

xio

0% = du® —u%da’ 1<j<n. (4.21)
Let '
Qula’, ul ul ully o u® Ui U AT AT i)
and
Qo ut cublulh Ui U AT AT o)
withmi+1<pu<m,1<o<mand1<i<n and (iy,iy) € (Ly)?, with
Qa2 ul, ull tulls o u JUgio s TUT AT )\;7 i)

1 < a < m being polynomials in t of degree less or equal to 1, and

Pr=Qo+ X BY s~ A i, (4.22)
Py =Qu+ X B . (4.23)

Furthermore, if we assume that P, satzsfy Helmholtz conditions and do not
depend on )\370 and )\jo coordinates, then Q. are locally Fuler-Lagrange

operators for a Lagrangian L(x®, u*, ug

zio

o 0
iU )uxi)-

Proof: In this case the Helmholtz conditions are:

8Pa/8u igin = OP3/0ul; i s (4.24)
8Pa/8uxi = 0Pg/oul; + 2D i, 0P /0us; i1 (4.25)
OPs/0u’ = OP3/0u® — D4i0P3/0uS + D yiyiy OP3/O0u; iy (4.26)

From Theorem 3.1 we know that a function F (azi,u",ug »u’,ug;, ) can

be found such that E,[F] = P,.
In addition, if in the domain of P, the sequence of spaces is exact

om0 B, gt B g (4.27)

then we have a global solution for the inverse problem.
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Example 4. Let X = Jl(R”,Rm)|gp(xi7ua,uq):0, rank[0g’ [Ou®;] = mn—I,
gP(z*, u™,u) are smooth functions (1<i,j<n,1<a<m,1<p<n-—
[,l >0). Furthermore, let us assume that gp/auzi =0 forall m+1<
p<m and g°/0ul; =0 for alli, € Ly , 1 < o < my. I* = span {0},
L* = span {6%,dz*|1 <1i < n}.

(N L N o a o _
QO’($ ,’U, 7u ’LL 33 u umw’uxiami;’ Jo? jgxio) -
O'/ ag ag ag
2u%;  BY o+ § 2y g0 = A], BTy = AT sia (4.28)
) M 12 o o o _
Qu(z',u sul,ul .zt u uzzo,umlaz i AT )\Jaxw) =
,u o o
2u7;, (z*,u) )Bj . + E 2u; . — ] BY . (4.29)

Qs — /\07 Bql — )7 and Q, — )\‘7 BH satzsfy Helmhotz equations and

Joxio

are globally Euler-Lagmnge operators for L=3% (u xw) + Z (u xw)
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