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Abstract. Assume M is a closed connected smooth manifold and
H : T ∗M → R a smooth proper function bounded from below. Sup-
pose the sublevel set {H < d} contains the zero section M and α is a
non-trivial homotopy class of free loops in M . Then for almost every
s ∈ [d,∞) the level set {H = s} carries a periodic orbit z of the Hamil-
tonian system (T ∗M, ω0, H) representing α. Examples show that the
condition {H < d} ⊃ M is necessary and almost existence cannot be
improved to everywhere existence.

1. Introduction and main result

SupposeM is a smooth manifold and its cotangent bundle π : T ∗M →M
is equipped with the canonical symplectic structure ω0 = −dθ. Here θ
(= pdq) denotes the canonical Liouville 1-form on T ∗M . We view the
elements of T ∗M as pairs (q, p) where q ∈ M and p ∈ T ∗q M . Given any
function H on T ∗M , the identity dH = ω0(XH , ·) uniquely determines the
Hamiltonian vector field XH on T ∗M . The integral curves of XH are called
(Hamiltonian) orbits. They preserve the level sets of the total energy H.
Of particular interest are periodic orbits, namely orbits γ : R → T ∗M
such that γ(t + T ) = γ(t) for some constant T > 0 and every t ∈ R. The
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infimum1 over such T is called the period of γ. Given a family of energy
levels, the question arises which levels carry a periodic orbit.

Existence of a periodic orbit on a dense set of energy levels was proved
for T ∗Rn by Hofer and Zehnder [9] in 1987 and for T ∗M by Hofer and
Viterbo [8] in 1988. The result for T ∗Rn was extended to existence almost
everywhere by Struwe [15] in 1990. Existence of non-contractible periodic
orbits was studied among others in 1997 by Cieliebak [2] on starshaped
levels in T ∗M , in 2000 by Gatien and Lalonde [3] employing Lagrangian
submanifolds, and in 2003 by Biran, Polterovich, and Salamon [1] on T ∗M
for M = Rn/Zn or M closed and negatively curved. The dense existence
theorem in [1] was generalized in 2006 to all closed Riemannian manifolds
in [17]. Theorem A below is the corresponding almost existence theorem. In
contrast the almost existence theorem of Macarini and Schlenk [13] requires
finiteness of the π1-sensitive Hofer-Zehnder capacity. An assumption that
has been verified to the best of our knowledge only for such cotangent
bundles which carry certain circle actions; see [11,12]. For further references
concerning dense and almost existence results we refer to [5] and concerning
non-contractible orbits to [7].

Theorem A (Almost existence). Assume M is a closed connected smooth
manifold and H : T ∗M → R is a proper2 smooth function bounded from
below. Suppose the sublevel set {H < d} contains M . Then for every non-
trivial homotopy class α of free loops in M the following is true. For almost
every s ∈ [d,∞) the level set {H = s} carries a periodic Hamiltonian orbit
z that represents α in the sense that [π ◦ z] = α where π : T ∗M →M is the
projection map.

Proof. There are three main ingredients in the proof. The main player
is the Biran-Polterovich-Salamon (BPS) [1] capacity cBPS whose mono-
tonicity axiom Proposition 2.3 naturally leads to the monotone function
cα : [d,∞) → [0,∞] defined by

cα(s) := cBPS({H < s},M ;α). (1)

Secondly, the existence result [17, Thm. A] concerning periodic orbits
enters as follows: A priori the range of cBPS includes ∞ (by Definition 2.2
this is the case if no 1-periodic orbit representing α exists). To prove
finiteness of the function cα pick as an auxiliary quantity a Riemannian
metric g onM . Then using [17, Thm. A] one readily calculates that the BPS
capacity of the open unit disk cotangent bundle relative to its zero section
is equal to the smallest length `α among all closed geodesics representing
α; see [17, Thm. 4.3]. The rescaling argument in Lemma 2.4 shows that

1Here and thoughout we use the convention inf ∅ = ∞.
2A map is called proper if preimages of compact sets are compact.
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the capacity of the open radius r disk cotangent bundle DrT
∗M is r`α.

Observe that {H ≤ s} is compact since H is proper and bounded below.
Hence the set {H < s} is bounded and therefore contained in DrT

∗M
for some sufficiently large radius r = r(s). Thus cα(s) ≤ r(s)`α by the
monotonicity axiom and this proves finiteness of cα.

Thirdly, by Lebesgue’s last theorem, see e.g. [14], it is well known, yet
amazing, that monotonicity of the map cα : [d,∞) → [0,∞) implies differ-
entiability, thus Lipschitz continuity, at almost every point s in the sense
of measure theory. Now the key input is Theorem 3.1 whose proof is by an
analogue of the Hofer-Zehnder method [10, Sec. 4.2] and which detects for
each such s a periodic orbit on the corresponding level set {H = s}. �

Example 1.1 (Necessary condition). The condition {H < d} ⊃M cannot
be dropped in Theorem A. First of all, together with H being proper
and bounded below, it guarantees that each level set {H = s} is actually
nonempty whenever s ∈ [d,∞). Now consider a pendulum. It moves on
M = S1 = R/Z in a potential of the form V (q) = 1+cos 2πq; see Figure 1.
The Hamiltonian H : T ∗M = S1×R → R is given by H(q, p) = 1

2p
2+V (q);

see Figure 2 for the phase portrait. Energies below the maximum value 2
of the potential V do not allow for full rotations. For such low energies the
pendulum can just swing hence and forth. Observe that {H < 1} 6⊃ M .
On the other hand, for any energy s ∈ [1, 2) the level set {H = s} consists
of a periodic orbit which is contractible onto the stable (lower) equilibrium
point (x, y) ≡ (1/2, 0). So none of these orbits represents a homotopy
class α 6= 0. (For s > 2 the sets {H = s} represent classes α 6= 0. The
set {H = 2} consists of the unstable (upper) equilibrium point and two
homoclinic orbits one of them indicated red in Figure 2.)
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Figure 3. Hamiltonian H = h(p) without non-constant
orbits on {H = 2}

Example 1.2 (Existence everywhere not true). To see that almost ex-
istence in Theorem A cannot be improved to everywhere existence con-
sider the case M = S1 and a Hamiltonian H : S1 × R → R of the form
H(q, p) = h(p). More precisely, pick a proper smooth function h ≥ 0 with
h(0) = 0 and h(±3) = 2 and where the points 0,±3 are the only points
of slope zero; see Figure 3. Then {H < 1} contains M = S1. Moreover,
the whole level set {H = 2} consists of critical points of H. Therefore on
{H = 2} the Hamiltonian vector field XH vanishes identically and so all
orbits are necessarily constant.

In contrast to this critical level counterexample it should be interesting to
find a regular level of a smooth Hamiltonian H as in Theorem A without
a periodic orbit in a given homotopy class α 6= 0. One possible way to
achieve this is to start with an energy level with finitely many periodic orbits
representing α, then destroy them using the symplectic plugs constructed
in [4].

For general symplectic manifolds existence may fail completely; see [18]
and [16] for examples of closed symplectic manifolds admitting Hamiltoni-
ans with no non-constant periodic orbits.

2. Symplectic capacities

To fix notation consider R2n with coordinates (x1, . . . , xn, y1, . . . , yn) and
symplectic form ω0 =

∑n
i=1 dxi∧dyi. Associate to each symplectic manifold

(N,ω), of fixed dimension 2n > 0 and possibly with boundary, a number
c(N,ω) ∈ [0,∞] that satisfies the axioms:

• Monotonicity: c(N1, ω1) ≤ c(N2, ω) whenever there is a symplec-
tic embedding ψ : (N1, ω1) → (N2, ω2).

• Conformality: c(N,λω) = |λ| c(N,ω),∀λ ∈ R \ {0}.
• Non-Triviality: c(B(1), ω0) = c(Z(1), ω0) = π.
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Here B(r) = {(x, y) ∈ R2n : |x|2 + |y|2 < r2} is the ball of radius r > 0 and
Z(r) = {(x, y) ∈ R2n : x2

1 + y2
1 < r2} is the symplectic cylinder of radius

r > 0. On (R2n, ω0), one checks the following re-scaling property:

U ⊂ R2n open ⇒ c(λU, ω0) = λ2c(U, ω0),∀λ ∈ R \ {0}.
A map (N,ω) 7→ c(N,ω) satisfying the three axioms above is called a
symplectic capacity. Gromov introduced this notion in [6] and showed that

c0(N,ω) := sup
{
πr2 : ∃ symplectic embedding ψ : (B(r), ω0) → (N,ω)

}
is a symplectic capacity, called Gromov’s width. It satisfies c0(N,ω) ≤
c(N,ω) for any other symplectic capacity c. One of the consequences of
the existence of a symplectic capacity is the non-squeezing theorem which
asserts that

∃ symplectic embedding ψ : (B(r), ω0) → (Z(R), ω0) ⇔ r ≤ R.

2.1. Hofer-Zehnder capacity. Hofer and Zehnder introduced in [10] a
symplectic capacity defined in terms of the Hamiltonian dynamics on the
underlying symplectic manifold (N,ω). Recall that a smooth function H :
N → R determines the Hamiltonian vector field XH by iXH

ω = dH. We
say that a periodic orbit of ẋ = XH(x) is fast if its period is < 1. A function
H : N → R is called admissible if it admits a maximum and the following
conditions hold:

• 0 ≤ H ≤ maxH <∞.
• ∃K ⊂ N \ ∂N compact, such that H|N\K = maxH.
• ∃U ⊂ N open and non-empty, such that H|U = 0.
• ẋ = XH ◦ x admits no non-constant fast periodic orbits.

The set of admissible Hamiltonians is denoted by Ha(N,ω). Let
cHZ(N,ω) := sup{maxH | H ∈ Ha(N,ω)}.

Theorem 2.1 (Hofer-Zehnder). cHZ is a symplectic capacity.

We should remark that the hard part of proving Theorem 2.1 is to show
that cHZ satisfies the non-triviality axiom.

2.2. BPS relative capacity. Fix a closed manifold M . The components
LαM of the free loop space LM := C∞(S1,M) are labelled by the elements
α = [γ] of the set π̃1(M) of homotopy classes of free loops γ in M . Here
and throughout we identify S1 with R/Z and think of γ as a smooth map
γ : R → M that satisfies γ(t + 1) = γ(t) for every t ∈ R. A function
H ∈ C∞0 (S1×T ∗M) determines a 1-periodic family of compactly supported
vector fields XHt on T ∗M by dHt = ω0(XHt , ·). Let

P1(H;α) := {z : S1 → T ∗M | ż(t) = XHt(z(t))∀t ∈ S1, [π ◦ z] = α}
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be the set of 1-periodic orbits of XHt whose projections to M represent α.

Definition 2.2. Following [1] assume W ⊂ T ∗M is an open subset which
contains the zero section M . For any constant b > 0 consider the set

Hb(W ) :=
{
H ∈ C∞0 (S1 ×W )

∣∣∣m0(H) := max
S1×M

H ≤ −b
}
.

The BPS capacity of W relative M and with respect to α ∈ π̃1(M) is
defined by

cBPS(W,M ;α) := inf {b > 0 | P1(H;α) 6= ∅ for every H ∈ Hb(W )} . (2)

Note that cBPS takes values in [0,∞] since we use the convention inf ∅ =
∞. Furthermore, the BPS capacity is a relative symplectic capacity.

Proposition 2.3 (Monotonicity [1, Prop. 3.3.1]). If W1 ⊂ W2 ⊂ T ∗M
are open subsets containing M and α ∈ π̃1(M), then cBPS(W1,M ;α) ≤
cBPS(W2,M ;α).

Fix a Riemannian metric on M and constants r, b > 0. Denote by DT ∗M
the open unit disk cotangent bundle and by DrT

∗M the one of radius r.
Observe that

H ∈ Hb(DT ∗M) ⇐⇒ Hr ∈ Hrb(DrT
∗M) (3)

whenever the Hamiltonians H and Hr are related by Hr(t, q, p) = r ·
H(t, q, p

r ). In addition, pick α ∈ π̃1(M). Then there is the crucial bijection

P1(H;α) → P1(Hr;α) : (x, y) 7→ (x, ry) (4)

asserting that the 1-periodic orbits of H correspond naturally with those
of Hr.

Lemma 2.4 (Rescaling). cBPS(DrT
∗M,M ;α) = r · cBPS(DT ∗M,M ;α).

Proof. By definition (2) of the BPS capacity we obtain that

cBPS(DrT
∗M,M ;α)

= inf {rb > 0 | P1(Hr;α) 6= ∅ for every Hr ∈ Hrb(DrT
∗M)}

= r · inf {b > 0 | P1(H;α) 6= ∅ for every H ∈ Hb(DT ∗M)}
= r · cBPS(DT ∗M,M ;α)

where the second step uses (3) and (4). �

Corollary 2.5. cBPS(DrT
∗M,M ;α) = r`α where `α is the smallest length

among all closed curves representing α.

Proof. cBPS(DT ∗M,M ;α) = `α by [17, Thm. 4.3]. Apply Lemma 2.4. �
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3. The Hofer-Zehnder method

Assume the Hamiltonian H : T ∗M → R is smooth, proper, and bounded
from below and a sublevel set {H < d} contains M . Fix a non-trivial
homotopy class α of free loops in M . Consider the monotone function
cα defined on the interval [d,∞) by (1). By Lebesgue’s last theorem, see
e.g. [14, p. 401], the function cα is differentiable at almost every point in
the sense of measure theory.

Theorem 3.1. Assume s0 ∈ [d,∞) is a regular value of H and cα is
Lipschitz continuous at s0. Then the hypersurface S = H−1(s0) carries a
periodic orbit zT of XH that represents α and where T > 0 is the period.

Proof. The proof is an adaption of the Hofer-Zehnder method [10, Sec. 4.2]
to the case at hand. To emphasize this we mainly keep their notation.
Fix s0 as in the hypothesis of the theorem. Then S0 := H−1(s0) is a
hypersurface3 in T ∗M by the inverse function theorem. It is compact since
H is proper and it bounds the open set Ḃ0 := {H < s0} since H is bounded
below. Furthermore, by the implicit function theorem and compactness of
S0 there is a constant µ > 0 such that s0 + ε is a regular value of H and
Sε := H−1(s0 + ε) is diffeomorphic to S0 whenever ε ∈ [−µ, µ]. Note that
Sε bounds the open set Ḃε := {H < s0 + ε} which itself contains the zero
section M of T ∗M . Furthermore, since cα is Lipschitz continuous at s0
there is a constant L > 0 such that

c(ε)− c(0) ≤ Lε, c(ε) := cα(s0 + ε), (5)

for every ε ∈ [−µ, µ]; otherwise, choose µ > 0 smaller. We proceed in three
steps I–III.

I. Pick τ ∈ (0, µ). Then there is a Hamiltonian K ∈ C∞0 (S1× Ḃ0) whose
maximum over the zero section satisfies

−c(0) < m0(K) ≤ − (c(0)− Lτ)
and which does not admit any 1-periodic orbit representing α. Indeed if
no such K exists, then cBPS(Ḃ0,M ;α) ≤ c(0) − Lτ by definition (2) of
the BPS capacity. But c(0) = cα(s0) = cBPS(Ḃ0,M ;α) and we obtain the
contradiction c(0) ≤ c(0) − Lτ . Now pick a smooth function f : R →
[−3Lτ, 0] such that

f(s) = −3Lτ if s ≤ 0
f(s) = 0 if s ≥ τ

2

0 < f ′(s) ≤ 7L if 0 < s < τ
2

3A hypersurface is a smooth submanifold of codimension 1.
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if x ∈ Sǫ

R

∋ −c(τ)

Sτ/2 T ∗

q
M

3Lτ

F (x) = f(ǫ)

−(c(0)− Lτ)

−(c(0) + Lτ)

−(c(0) + 2Lτ)

∂B0 = S0

K

F = K − 3Lτ

0

−c(0) = −cBPS(Ḃ0, M ;α)

Figure 4. Hamiltonians F ∈ Hc(τ)(Ḃτ ) and K with
P1(K;α) = ∅

and consider the Hamiltonian F ∈ C∞0 (S1 × Ḃτ ) defined by

F (x) = K(x)− 3Lτ if x ∈ Ḃ0

F (x) = f(ε) if x ∈ Sε = H−1(s0 + ε), 0 ≤ ε < τ

F (x) = 0 if x /∈ Ḃτ

and illustrated by Figure 4. By (5) the Hamiltonian F satisfies the estimate

m0(F ) = m0(K)− 3Lτ ≤ −(c(0)− Lτ)− 3Lτ < −(c(0) + Lτ) ≤ −c(τ).

Since m0(F ) ≤ −cBPS(Ḃτ ,M ;α) the definition (2) of the BPS capacity
shows that the set P1(F ;α) is not empty. In other words, there is a 1-
periodic orbit z of XF that represents α. Observe that z cannot intersect
Ḃ0: Due to compact support the open set Ḃ0 is invariant under the flow of
K. But the flows of K and K−3Lτ = F coincide. Thus, if z intersects Ḃ0,
then it stays completely inside. But this is impossible since P1(K;α) = ∅.
On the other hand, since α 6= 0 the orbit z of XF is non-constant and
therefore it must intersect the regions foliated by the hypersurfaces Sε where
0 < ε < τ

2 . But each of them is a level set of F , hence invariant under the
flow of XF . This shows that z lies on Sε for some 0 < ε < τ

2 .
II. Repeat the argument for each element of a sequence τj → 0 to obtain

sequences Fj and εj and a sequence zj of 1-periodic orbits of XFj that lie
on Sεj and where εj → 0. Next we interpret each zj as a Tj-periodic orbit
of XH by rescaling time. Most importantly, the periods Tj are uniformly
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bounded from above by 7L. To see this note that on the open set

U :=
⋃

ε∈(−µ,µ)

Sε =
⋃

ε∈(−µ,µ)

H−1(s0 + ε)

the Hamiltonian H is obviously given by H(x) = s0 + ε whenever x ∈ Sε.
For each τj and each ε ∈ [0, τj) we have

Fj(x) = fj(H(x)− s0) = fj(ε)

for every x ∈ Sε. At such x use the definition of XFj and the chain rule to
get

ω0

(
XFj , ·

)
= dFj = f ′j(H − s0)dH = ω0

(
f ′j(ε)XH , ·

)
.

Thus, because zj lies on Sεj , it satisfies the equation

żj(t) = XFj ◦ zj(t) = Tj ·XH ◦ zj(t), Tj := f ′j(εj),

and the periodic boundary condition zj(t+ 1) = zj(t) for every t ∈ R.
III. Uniform boundedness of the periods Tj is crucial in the following

proof of existence of a 1-periodic orbit z of XH which lies on the original
level hypersurface S0 = H−1(s0) and represents the given class α. Indeed
note that Sεj ⊂ {H ≤ s0 + µ} =: Bµ and that Bµ is compact since H
is proper and bounded below. In other words, the sequence of loops zj is
uniformly bounded in C0. Concerning C1 we obtain the uniform estimate

|żj(t)| = |Tj | · |XH ◦ zj(t)| ≤ 7L ‖XH‖C0(Bµ)

for all t ∈ S1 and j ∈ N. Therefore by the Arzelà-Ascoli theorem there is
a subsequence, still denoted by zj , which converges in C0 and by using the
equation for zj even in C∞ to a smooth 1-periodic solution z of the equation
ż = T ·XH(z) where T = limj→∞ Tj . Since εj → 0 the orbit z takes values
on the desired level hypersurface S0 = H−1(s0). To prove that z = (x, y)
represents the same class α as does each zj = (xj , yj) we need to show that
[x] = [xj ] for some j. To see this consider the injectivity radius ι > 0 of
the compact Riemannian manifold (M, g) and pick j sufficiently large such
that the Riemannian distance between x(t) and xj(t) is less than ι/2 for
every t ∈ S1. Setting expx(t) ξ(t) = xj(t) provides the desired homotopy
hλ(t) = expx(t) λξ(t) between h0 = x and h1 = xj .
Reparametrize time to obtain the T -periodic solution zT (t) := z(t/T ) of

żT (t) = 1
T ż(t/T ) = XH ◦ z(t/T ) = XH ◦ zT (t)

which obviously represents the same class α as z. Since α 6= 0 the loop
zT cannot be constant and so the period necessarily satisfies T > 0. This
concludes the proof of Theorem 3.1. �
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