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Abstract. We discuss recent results in the stability theory of nonau-
tonomous differential equations under sufficiently small perturbations.
We mostly concentrate on the description of our own work, with empha-
sis on the Lyapunov stability of solutions, the existence and smoothness
of invariant manifolds, and the construction and regularity of topologi-
cal conjugacies, among other topics. The main novelty is that we always
consider a nonuniform exponential behavior of the linear variational
equations, given either by the existence of a nonuniform exponential
contraction or a nonuniform exponential dichotomy.
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1. Introduction

The unifying theme of this survey is the stability of nonautonomous dif-
ferential equations under sufficiently small nonlinear perturbations, with
emphasis on the study of the Lyapunov stability of solutions, and of the
existence and smoothness of invariant manifolds. We describe recent re-
sults in the area, mostly concentrating on our own work. The main novelty
is that we always consider a nonuniform exponential behavior of the linear
variational equations. This causes that the stability results discussed in
the survey hold for a much larger class of differential equations than in the
“classical” theory of exponential dichotomies. In addition, whenever possi-
ble, we consider the infinite-dimensional case. In view of the readability of
the survey, instead of always presenting the most general results, we made
an appropriate selection of the material, although this selection should also
reflect a personal taste.

1.1. Exponential dichotomies and generalizations

In the theory of differential equations, both in finite-dimensional and
infinite-dimensional spaces, the notion of exponential dichotomy, introduced
by Perron in [57], plays a central role in the study of the stability of so-
lutions, and in particular in the theory of stable and unstable invariant
manifolds. For example, let u(t) be a solution of the equation u′ = F (u),
for some differentiable map F in a Banach space. Setting

A(t) = du(t)F,

the existence of an exponential dichotomy for the linear variational equation

v′ = A(t)v, (1)

with some additional assumptions on the nonlinear part of the vector field,
guarantees the existence of stable and unstable invariant manifolds for the
solution u(t).

We note that the theory of exponential dichotomies and its applica-
tions are quite developed. In particular, there exist several classes of linear
differential equations with exponential dichotomies. We can mention, for
example, the series of papers of Sacker and Sell [71, 72, 73, 70, 74] that
in particular discuss sufficient conditions for the existence of exponential
dichotomies, also in the infinite-dimensional setting. In a different direc-
tion, for example, geodesic flows on compact smooth Riemannian manifolds
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with negative sectional curvature have the whole unit tangent bundle as a
hyperbolic set, i.e., they define Anosov flows. For any such flow the lin-
ear variational equation of each trajectory has an exponential dichotomy.
Furthermore, time changes and small C1 perturbations of flows with a hy-
perbolic set also possess hyperbolic sets (see for example [41]). We refer to
the books [21, 35, 38, 75] for details and further references related to expo-
nential dichotomies. We particularly recommend [21] for historical aspects.
One may also consult the interesting books [27, 28, 50], in spite of being
less recent. On the other hand, even though all the literature and the in-
tense research activity in the area over the years, the notion of exponential
dichotomy considerably restricts the dynamics. It is thus important to look
for more general types of hyperbolic behavior.

Our main objective is precisely to consider the more general notion of
nonuniform exponential dichotomy and study in a systematic manner some
of its consequences, in particular in connection with the existence and the
smoothness of invariant manifolds for nonautonomous differential equa-
tions. We also discuss a version of the Grobman–Hartman theorem, the
existence of center manifolds, as well as their reversibility properties, and
Lyapunov’s regularity theory and its applications to the stability of solu-
tions of nonautonomous equations. In comparison with the classical notion
of (uniform) exponential dichotomy, the existence of a nonuniform expo-
nential dichotomy is a much weaker assumption. In particular, perhaps
surprisingly, we will see that in a certain sense any linear equation as in (1),
having global solutions and at least one nonzero Lyapunov exponent, ad-
mits a nonuniform exponential dichotomy.

1.2. Nonuniform hyperbolicity

Our work is also a contribution to the nonuniform hyperbolicity theory,
with emphasis on differential equations and with a systematic development
in the infinite-dimensional setting. We refer to [1, 3] for detailed exposi-
tions of parts of the nonuniform hyperbolicity theory and [2] for a detailed
description of its contemporary status. The theory goes back to the land-
mark works of Oseledets [54] and particularly Pesin [58, 59, 60]. Since then
it became an important part of the general theory of dynamical systems
and a principal tool in the study of stochastic behavior. We note that
the nonuniform hyperbolicity conditions can be expressed in terms of the
Lyapunov exponents. For example, almost all trajectories of a dynami-
cal system preserving a finite invariant measure with nonzero Lyapunov
exponents are nonuniformly hyperbolic.

Among the most important properties due to nonuniform hyperbolicity is
the existence of stable and unstable invariant manifolds, and their absolute
continuity property established by Pesin in [58]. The theory also describes
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the ergodic properties of dynamical systems with a finite invariant measure
that is absolutely continuous with respect to the volume [59], and expresses
the Kolmogorov–Sinai entropy in terms of the Lyapunov exponents by the
Pesin entropy formula [59] (see also [45]). In another direction, combining
the nonuniform hyperbolicity with the nontrivial recurrence guaranteed
by the existence of a finite invariant measure, the fundamental work of
Katok [40] revealed a very rich and complicated orbit structure, including
an exponential growth rate for the number of periodic points measured
by the topological entropy, and the approximation of the entropy of an
invariant measure by uniformly hyperbolic horseshoes (see also [3]).

We now consider the particular case of the stable manifold theorem, and
we compare the existing results with our own work. We first briefly de-
scribe the relevant references. The proof by Pesin in [58] is an elaboration
of the classical work of Perron. In [68] Ruelle obtained a proof of the sta-
ble manifold theorem based on the study of perturbations of products of
matrices in Oseledets’ multiplicative ergodic theorem [54]. Another proof
is due to Pugh and Shub in [66] with an elaboration of the classical work
of Hadamard using graph transform techniques. In [31] Fathi, Herman
and Yoccoz provided a detailed exposition of the stable manifold theorem
essentially following the approaches of Pesin and Ruelle. There are also
versions of the stable manifold theorem for dynamical systems in infinite-
dimensional spaces. In [69] Ruelle established a version in Hilbert spaces,
following his approach in [68]. In [48] Mañé considered transformations
in Banach spaces under certain compactness and invertibility assumptions,
including the case of differentiable maps with compact derivative at each
point. On the other hand, in [65] Pugh constructed a C1 diffeomorphism in
a manifold of dimension 4, that is not of class C1+ε for any ε, and for which
there exists no invariant manifold tangent to a certain stable space such
that the trajectories along the invariant manifold travel with exponential
speed. But this example does not forbid the existence of a C1 dynamics,
which is not of class C1+ε for any ε, for which there still exist stable man-
ifolds. We show in [5, 7] that there exist stable invariant manifolds for the
nonuniformly hyperbolic trajectories of a large family of dynamics that, in
general, are at most of class C1. Furthermore, in [9] we obtain Ck stable
manifolds in Banach spaces, using a single fixed point problem to obtain
all derivatives simultaneously.

1.3. Uniform contractions and nonuniform contractions

In order to describe the main problems in which we are interested, we first
introduce the notions of uniform contraction and nonuniform contraction.
We note that these are simpler notions than those of (uniform) exponential
dichotomy and nonuniform exponential dichotomy. On the other hand,
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this simplification allows us to describe the main ideas without accessory
technicalities.

Consider the linear equation (1) in a Banach space X, for a family of
bounded linear operators A(t) varying continuously with t ≥ 0. We assume
that (1) has unique solutions that are defined for all time t ≥ 0. We also
consider the equation

v′ = A(t)v + f(t, v) (2)

for a continuous function f such that f(t, 0) = 0 for every t ≥ 0. In
particular, v(t) = 0 is still a solution of equation (2).

When there exist constants c > 0 and λ < 0 such that

‖v(t)‖ ≤ ceλ(t−s)‖v(s)‖, t ≥ s (3)

for every solution v(t) of equation (1), we say that (1) admits a uniform ex-
ponential contraction. One can then show that for each “sufficiently small”
perturbation f , the zero solution of equation (2) is uniformly asymptoti-
cally stable and in fact uniformly exponentially stable. This follows from a
simple argument using the variation-of-constants formula to obtain a fixed
point problem, and then showing that this problem has a unique solution
in a certain space of functions with exponential decay.

The situation changes drastically if condition (3) is replaced by the
weaker assumption that all Lyapunov exponents of equation (1) are nega-
tive, i.e., that

lim sup
t→+∞

1

t
log‖v(t)‖ < 0 (4)

for any solution v(t) of equation (1). Indeed, in this situation there may
exist arbitrarily small perturbations f such that the zero solution of equa-
tion (2) is not asymptotically stable, as the following example shows.

Example 1.1 (see [1, Example 1.1.1]). We consider the linear equation in
R

2 with matrix of coefficients

A(t) =

(
−15 − 14a(t) 0

0 −15 + 14a(t)

)

defined for t > 0, where

a(t) = sin log t + cos log t.

For example, for the perturbation

f(t, (x, y)) = (0, x4),

one can show that although the limsup in (4) is constant and equal to −1,
there exist solutions v(t) of equation (2) for which

lim sup
t→+∞

1

t
log‖v(t)‖ > 0
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(we refer to [1] for details). In other words, assuming that all Lyapunov
exponents are negative is not sufficient to guarantee that the asymptotic
stability of the zero solution of equation (1) persists under sufficiently small
nonlinear perturbations.

We now briefly explain the difficulty in establishing the asymptotic stabil-
ity in equation (2) when the ambient space X is finite-dimensional. Assume
that condition (4) holds, i.e., that all Lyapunov exponents are negative.
Since the space of solutions of equation (1) is finite-dimensional (since it
has the same dimension as X), one can easily show that there exist con-
stants D > 0, λ < 0 and ε ≥ 0 such that

‖v(t)‖ ≤ Deλ(t−s)+εs‖v(s)‖, t ≥ s. (5)

When this happens we say that equation (1) admits a nonuniform expo-
nential contraction. We emphasize that one is not able to deduce from (4)
that ε = 0. When ε > 0 the estimate in (5) can be shown to imply that the
size of the neighborhood at time s where the exponential stability of the
zero solution of equation (2) is guaranteed decreases with exponential rate
at least ε (see Section 2.2). This is due to the fact that when we perturb
equation (1) the exponential term eεs in (5) may amplify the perturbation,
and thus to make sure that this is not the case we must take the initial
condition v(s) so that eεs‖v(s)‖ is sufficiently small (that is, v(s) must be
approximately of size e−εs). We refer to Section 2.2 for rigorous statements.

1.4. Formulation of the main problems

The former discussion also motivates some of the main problems that we
discuss in the survey. We now briefly describe these problems.

Persistence of asymptotic stability

The study of asymptotic stability is at the center of our discussion. Thus,
one of the main problems is to find conditions that guarantee the persistence
of asymptotic stability in equation (2), assuming that equation (1) admits
a nonuniform exponential contraction. We describe sufficient conditions
that are much weaker than the uniform asymptotic stability exhibited by a
uniform exponential contraction. Furthermore, we also consider the situa-
tion when the constant ε in (5) is positive and cannot be made arbitrarily
small.

Exponential dichotomies

We also want to consider the case when the solutions of equation (1)
exhibit not only contraction but also expansion. In this case the notion of
stability is replaced by the asymptotic stability along an invariant manifold,
that is tangent to the space containing the solutions of (1) with negative
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Lyapunov exponent. In particular, we describe the construction of stable
(and unstable) invariant manifolds, in the infinite-dimensional setting. We
also study their regularity, with a single fixed point problem to obtain all
derivatives simultaneously.

Robustness of nonuniform exponential behavior

Besides the problem of persistence of asymptotic stability in equation (1)
under nonlinear perturbations it is also important to know whether the
stability persists under sufficiently small linear perturbations. This is the
so-called robustness problem. It corresponds to consider the linear equation

v′ = [A(t) + B(t)]v (6)

and ask whether it admits a nonuniform exponential contraction (or a non-
uniform exponential dichotomy), for a sufficiently small perturbation B,
when the same happens with the original equation (1). We give conditions
for the robustness of the nonuniform exponential behavior. We also discuss
how the constants λ and ε in the notion of exponential contraction vary
with the perturbation.

Estimates for the constants determining the hyperbolicity

In the study of the persistence of asymptotic stability, the conditions
determining the allowed perturbations are expressed in terms of the con-
stants λ and ε. Thus, it is important to obtain sharp estimates for these
constants, preferably in terms of the operators A(t), without the need to
solve explicitly equation (1). We describe estimates for a large class of
equations. We recall that there are examples, even within Floquet theory,
with all matrices A(t) having only eigenvalues with negative real part, but
for which there exists a positive Lyapunov exponent. This shows once more
that the study of the asymptotic behavior of solutions of equation (1) is
very delicate.

Construction of topological conjugacies

A fundamental problem in the study of the local behavior of a dynamical
system is whether the linearization of the dynamics along a given solution
approximates well the solution. In other words, we look for a local change
of variables, called a conjugacy, that takes the system to a linear one.
Moreover, to distinguish the dynamics in a neighborhood of the solution
further than in the topological category, the change of variables must be
as regular as possible. We discuss this problem in the general setting of
nonuniform hyperbolicity, with a version of the Grobman–Hartman the-
orem. In addition we show that the (topological) conjugacies are always
Hölder continuous.
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Central behavior

It is also important to allow central directions, in which there is neither
contraction nor expansion, at least with exponential speed, and obtain cor-
responding results concerning the persistence of the central behavior in
equation (1) under sufficiently small nonlinear perturbations. This corre-
sponds to establish the existence of invariant center manifolds for equa-
tion (2). As is well known, these are powerful tools in the analysis of the
asymptotic behavior of dynamical systems. For example, when equation
(1) possesses no unstable directions, the stability of the origin in equation
(2) can be determined by studying the behavior on (any) center manifold.

Speeds of nonuniform exponential behavior and optimal estimates

There are many examples of contractions for which the constant ε in
(5) cannot be taken equal to zero. On the other hand, in many of these
examples one can replace the term Deεs in (5) by a function D(s) with
subexponential growth, i.e., such that

lim sup
s→+∞

1

s
log D(s) = 0.

In this case, some of the results presented in the survey can be improved.
For example, it is possible to obtain optimal estimates for the decay of
solutions of the perturbed equation (2) expressed in terms of D(s) and
of the constant λ in (5). This is a more technical problem, although the
required changes are not tremendous. We do not discuss any related matter
in the survey and we refer to [16] for full details.

2. Exponential contractions and stability

This section is dedicated to the study of the persistence of asymptotic
stability of a nonuniform exponential contraction under a sufficiently small
nonlinear perturbation. Instead of starting the discussion with the more
general notion of nonuniform exponential dichotomy, we start with the
notion of contraction which allows us to describe the main ideas without
accessory technicalities.

We first give nontrivial examples of nonuniform contractions, in the sense
that they are not uniform, exhibiting different speeds of nonuniform behav-
ior. We then discuss the persistence of asymptotic stability of nonuniform
exponential contractions under perturbations. We also give sharp esti-
mates for the constants in the notion of nonuniform contraction. Finally,
we discuss the existence of nonuniform contractions at large, in particular
in connection with ergodic theory.
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2.1. Nonuniform exponential contractions

Let B(X) be the set of bounded linear operators in the Banach space X.
We consider a continuous function A : R

+
0 → B(X), and the initial value

problem
v′ = A(t)v, v(s) = vs, (7)

with s ≥ 0 and vs ∈ X. As in Section 1.3, we always assume that all
solutions of equation (7) are global, i.e., that

each solution of (7) is defined for every t ≥ 0. (8)

We denote by T (t, s) the linear operator such that

T (t, s)v(s) = v(t) (9)

for each solution v of equation (7) and each t, s ≥ 0.

Definition 2.1. We say that equation (7) admits a nonuniform exponential
contraction if there exist constants D > 0, λ < 0, and ε ≥ 0 such that

‖T (t, s)‖ ≤ Deλ(t−s)+εs, t ≥ s ≥ 0. (10)

When one can take ε = 0 in (10) we also say that equation (7) admits
a uniform exponential contraction (and thus a uniform contraction is a
particular case of a nonuniform one).

We now give examples of nonuniform exponential contractions that are
not uniform.

Example 2.2 ([16, Example 1]). For λ < 0 and a > 0, the equation in R

given by

v′ =
(
λ +

a

t + 1
(cos t − 1) − a log(t + 1) sin t

)
v (11)

(for t > −1) admits a nonuniform exponential contraction. Indeed, we have

T (t, s) = eλ(t−s)+a log(t+1)(cos t−1)−a log(s+1)(cos s−1) (12)

(that is, the linear operator T (t, s) coincides with multiplication by the
exponential in (12)), which implies that

T (t, s) ≤ (s + 1)2aeλ(t−s), t ≥ s ≥ 0. (13)

Therefore, for each ε > 0 there exists D > 0 such that inequality (10) holds.
In particular, equation (11) admits a nonuniform exponential contraction.
We note that one is not able to take ε = 0 in inequality (10): for example,
taking t = 2kπ and s = (2l − 1)π with k, l ∈ N we find that

T (t, s) = (s + 1)2aeλ(t−s),

and thus the estimate in (13) cannot be improved.
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We now give an example of nonuniform exponential contraction for which
the exponential term eεs in (10) cannot be improved.

Example 2.3 ([12, Proposition 3]). For λ < a < 0, the equation in R

given by v′ = (λ + at sin t)v admits a nonuniform exponential contraction.
We have

T (t, s) = eλ(t−s)−at cos t+a sin t+as cos s−a sin s

= e(λ−a)(t−s)−at(cos t−1)+as(cos s−1)+a(sin t−sin s).

It follows that

T (t, s) ≤ e2|a|e(λ−a)(t−s)+2|a|s, t ≥ s ≥ 0, (14)

and inequality (10) holds with the constants D = e2|a| and ε = 2|a| > 0.
Furthermore, for t = 2kπ and s = (2l − 1)π with k, l ∈ N we have

T (t, s) = e(λ−a)(t−s)+2|a|s,

and thus the term 2|a|s in (14) is as small as possible.

2.2. Stability of nonuniform exponential contractions

We address in this section the problem of the persistence of asymptotic
stability, under sufficiently small perturbations of equation (7).

We consider perturbations of equation (7) given by a continuous function
f : R

+
0 × X → X such that

f(t, 0) = 0 for every t ≥ 0, (15)

and we assume that there exist constants c > 0 and q > 0 such that

‖f(t, u) − f(t, v)‖ ≤ c‖u − v‖(‖u‖q + ‖v‖q) (16)

for every t ≥ 0 and u, v ∈ X. We consider the initial value problem

v′ = A(t)v + f(t, v), v(s) = vs, (17)

with s ≥ 0 and vs ∈ X. We note that by condition (15) the function
v(t) = 0 is still a solution of equation (17).

The following result establishes the persistence of asymptotic stability of
nonuniform exponential contractions under sufficiently small perturbations.
We denote by B(δ) ⊂ X the open ball of radius δ > 0 centered at zero, and
we set α = ε(1 + 1/q).

Theorem 2.4. If equation (7) admits a nonuniform exponential contrac-
tion with qλ + ε < 0, then for each K > D there exists δ > 0 such that for
every s ≥ 0, vs, v̄s ∈ B(δe−αs) and t ≥ s we have

‖v(t) − v̄(t)‖ ≤ Keλ(t−s)+εs‖vs − v̄s‖,

where v(t) and v̄(t) are the solutions of (17) with v(s) = vs and v̄(s) = v̄s.
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Theorem 2.4 is a particular case of Theorem 1 in [16]. Notice that we
need to take the initial conditions vs and v̄s in a neighborhood of size δe−αs.
Essentially, this ensures that the exponential term eεs in (10) is not ampli-
fied in equation (17).

When ε = 0 we recover the following classical result.

Theorem 2.5. If equation (7) admits a uniform exponential contraction,
then for each K > D there exists δ > 0 such that for every s ≥ 0, vs, v̄s ∈
B(δ) and t ≥ s we have

‖v(t) − v̄(t)‖ ≤ Keλ(t−s)‖vs − v̄s‖.

The main differences between Theorems 2.4 and 2.5 are that in the second
theorem the condition qλ + ε < 0 is automatically satisfied, and that the
neighborhoods B(δe−αs) are replaced by the single neighborhood B(δ),
which is independent of s.

2.3. Existence of nonuniform exponential contractions

It should be emphasized that the existence of a uniform exponential
contraction (see (3)), is a very restrictive assumption. On the other hand,
the existence of a nonuniform exponential contraction (see (10)) is a more
typical situation, although not only because it is a weaker assumption.
To make this statement more precise we formulate two theorems which
indicate that nonuniform exponential contractions are very common, at
least in finite-dimensional spaces. We emphasize that Sections 2.3 and 2.4
consider only the finite-dimensional case. This is due to the fact that the
theory is not yet developed for arbitrary Banach spaces. We refer to [6] for
an appropriate generalization in Hilbert spaces.

The fact that condition (4) implies condition (10) can be reformulated
in the following manner.

Theorem 2.6 ([12, Theorem 1]). Let A(t) be n×n matrices varying contin-
uously with t. If condition (4) holds then equation (1) admits a nonuniform
exponential contraction.

In particular, Theorem 2.6 indicates that the constants λ and ε in (10)
occur naturally in the study of asymptotic stability. Furthermore, the
theorem shows that in a certain sense the notion of nonuniform exponential
contraction is the weakest possible notion of exponential contraction. Thus,
one can argue that the approach presented in the survey is as general as
possible, although sometimes with weaker statements.

On the other hand, in view of the condition qλ + ε < 0 in Theorem 2.4,
for a given λ either the order q of the perturbation f is sufficiently large or
the constant ε is sufficiently small. It turns out, at least from the point of
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view of ergodic theory, that ε can be made arbitrarily small almost always.
To formulate a rigorous statement we recall that a flow Ψt : R

n → R
n is

said to preserve a measure µ in R
n if

µ(ΨtA) = µ(A) for every measurable set A ⊂ R
n and every t ∈ R.

Theorem 2.7. Let F : R
n → R

n be a vector field of class C1 determining
a flow Ψt that preserves a finite measure µ in R

n. For µ-almost every
x ∈ R

n, if condition (4) holds for equation (1) with A(t) = dΨtxF , then
the equation admits a nonuniform exponential contraction with arbitrarily
small ε > 0.

Theorem 2.7 is a simple consequence of Oseledets’ multiplicative ergodic
theorem in [54] (see for example [3, Section 3.4] for a detailed discussion). It
shows that in the context of ergodic theory the nonuniformity given by the
constant ε in (10) can be made arbitrarily small almost always, although
not necessarily zero. Therefore, it is important to study the asymptotic
stability in the general nonuniform case.

2.4. Estimates for the constants

When ε > 0, the condition qλ + ε < 0 in Theorem 2.4 requires a com-
promise between the rate of contraction (given by λ) and the order of the
perturbation f (given by q). It is thus important to estimate the constants
λ and ε in the notion of nonuniform exponential contraction.

Fortunately, there exists a device, developed by Lyapunov, that allows
one to measure the deviation of a nonuniform exponential contraction with
respect to a uniform contraction. This is the so-called regularity theory (see
Section 7), introduced by Lyapunov in his doctoral thesis [47] in the case
of finite dimension. Unfortunately, this theory seems nowadays somewhat
overlooked in the context of differential equations. A generalization to
infinite dimension is given in [6] although only for Hilbert spaces.

We first formulate a rigorous statement with a sharp estimate for the
constant λ. Consider n×n matrices A(t) varying continuously with t, and
assume that condition (8) holds.

Theorem 2.8 ([12, Theorem 1]). If for every v0 ∈ R
n we have

λ(v0) := lim sup
t→+∞

1

t
log‖v(t)‖ < 0, (18)

where v(t) is the solution of equation (7) with v(0) = v0, then the equation
admits a nonuniform exponential contraction and we can take in (10) any
λ < 0 such that

λ > sup
v0∈Rn

λ(v0). (19)
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The function v0 7→ λ(v0) defined by (18) is called the Lyapunov exponent
associated to equation (7) (see also Section 7). We note that the supremum
in (19) is indeed negative, since the Lyapunov exponent can take only
finitely many values (this follows easily from the fact that the space of
solutions of equation (7) is finite-dimensional).

We now consider the constant ε. For simplicity of the exposition, we
consider only the case of triangular matrices.

Theorem 2.9 ([12, Theorem 2]). Assume that the matrices A(t) are upper
triangular for each t ≥ 0. If equation (7) admits a nonuniform exponential
contraction, then we can take in (10) any ε > 0 such that

ε >

n∑

k=1

(
lim sup
t→+∞

1

t

∫ t

0
ak(τ) dτ − lim inf

t→+∞

1

t

∫ t

0
ak(τ) dτ

)
,

where a1(t), . . . , an(t) are the entries in the diagonal of A(t).

Theorem 2.9 is a simple consequence of Theorems 7.3 and 7.5, which are
based on the regularity theory of Lyapunov. The case of arbitrary matrices
can be treated by first making a reduction to the triangular case (see [1,
Lemma 1.3.3]). We refer to [12] for details.

3. Exponential dichotomies

We now consider the more general case of nonuniform exponential di-
chotomies. This section is dedicated to the linear theory; we refer to Sec-
tions 4–6 for the discussion of the nonlinear theory, with emphasis on the
construction of invariant manifolds and topological conjugacies.

In particular we discuss the robustness of nonuniform exponential di-
chotomies, that is, whether a sufficiently small linear perturbation of a lin-
ear equation with a nonuniform exponential dichotomy stills admits such a
dichotomy.

3.1. Nonuniform exponential dichotomies

We continue to consider a continuous function A : R
+
0 → B(X), and the

initial value problem (7) with s ≥ 0 and vs ∈ X. We assume that (8) holds,
and we denote by T (t, s) the linear operator such that (9) holds for each
solution v of equation (7) and each t, s ≥ 0.

Definition 3.1. We say that equation (7) admits a nonuniform exponential
dichotomy if there exists a function P : R

+
0 → B(X) such that P (t) is a

projection for each t ≥ 0, with

P (t)T (t, s) = T (t, s)P (s) for every t, s ≥ 0, (20)
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and there exist constants

D > 0, a < 0 ≤ b, and ε ≥ 0 (21)

such that for every t ≥ s ≥ 0 we have

‖T (t, s)P (s)‖ ≤ Dea(t−s)+εs, ‖T (t, s)−1Q(t)‖ ≤ De−b(t−s)+εt, (22)

where Q(t) = Id−P (t) is the complementary projection for each t ≥ 0.

The notion of nonuniform exponential dichotomy mimics the classical
notion of (uniform) exponential dichotomy. Recall that equation (7) ad-
mits a (uniform) exponential dichotomy if there exist a function P as in
Definition 3.1 and constants D,β > 0 such that for every t ≥ s ≥ 0 we have

‖T (t, s)P (s)‖ ≤ De−β(t−s), ‖T (t, s)−1Q(s)‖ ≤ De−β(t−s).

We note that we allow the constant b in (21) to be zero. We emphasize
that this is not an essential feature of the notion of nonuniform exponential
dichotomy. Incidentally, in the theory of stable invariant manifolds (see
Section 4) the inequalities a < 0 ≤ b in (21) are the minimal hypotheses
in the notion of dichotomy that allow us to construct the manifolds. We
could consider instead the situation when a ≤ 0 < b, and develop an
entirely analogous theory to construct invariant unstable manifolds (simply
by reversing time). The details are simple and are not discussed in the
survey.

We also consider a stronger form of nonuniform exponential dichotomy.

Definition 3.2. We say that equation (7) admits a strong nonuniform
exponential dichotomy if there exists a function P : R

+
0 → B(X) such that

P (t) is a projection for each t ≥ 0 and (20) holds, and there exist constants

D ≥ 0, a ≤ a < 0 ≤ b ≤ b, and ε ≥ 0 (23)

such that for every t ≥ s ≥ 0 we have

‖T (t, s)P (s)‖ ≤ Dea(t−s)+εs, ‖T (t, s)−1P (t)‖ ≤ De−a(t−s)+εt,

‖T (t, s)Q(s)‖ ≤ Deb(t−s)+εs, ‖T (t, s)−1Q(t)‖ ≤ De−b(t−s)+εt.
(24)

Clearly, any strong nonuniform exponential dichotomy is also a nonuni-
form exponential dichotomy. On the other hand, even when X is finite-
dimensional, a linear equation admitting a nonuniform exponential dichot-
omy may not admit a strong nonuniform exponential dichotomy, as the
following example shows. Consider the equation in R

2 given by

x′ = −x, y′ = ty. (25)

One can easily verify that (25) admits a nonuniform exponential dichotomy
with a = −1, b = 0, ε = 0, and D = 1. Furthermore, the second inequality

São Paulo J.Math.Sci. 1, 2 (2007), 133–173



Stability in Nonautonomous Dynamics 147

in (24) holds with a = −1. But we would need to take b = +∞ so that the
third inequality in (24) could hold, and thus equation (25) does not admit
a strong nonuniform exponential dichotomy.

More generally, one can introduce the notion of nonuniform exponential
dichotomy for an arbitrary evolution operator T (t, s), without considering
an associated linear equation, and thus, in particular, without any a priori
assumption on the regularity of the map (t, s) 7→ T (t, s). We can also
introduce the notion of nonuniform exponential dichotomy in an arbitrary
interval J . In this case, instead of the inequalities in (22) we require that

‖T (t, s)P (s)‖ ≤ Dea(t−s)+ε|s|, ‖T (t, s)−1Q(t)‖ ≤ De−b(t−s)+ε|t|

for every t, s ∈ J with t ≥ s. Analogously, we introduce the notion of
strong nonuniform exponential dichotomy in an arbitrary interval J .

Building on the examples of nonuniform exponential contractions in Sec-
tion 2.1 one can easily obtain examples of nonuniform exponential dichot-
omies.

Example 3.3. For λ < a < 0, the linear equation in R
2 given by

u′ = (λ + at sin t)u, v′ = (−λ − at sin t)v (26)

admits a nonuniform exponential dichotomy. This can be shown by repeat-
ing arguments in Example 2.3. Furthermore, equation (26) does not admit
a (uniform) exponential dichotomy. First observe that

u(t) = e(λ−a)(t−s)−at(cos t−1)+as(cos s−1)−a(sin s−sin t)u(s).

Given integers m > n, for t = 2mπ and s = (2n + 1)π we have

u(t) = e(λ−a)(t−s)−asu(s).

This shows that the first equation in (26) does not admit a uniform expo-
nential contraction. Analogous arguments apply to the second equation.

When equation (7) admits a nonuniform exponential dichotomy, we con-
sider the linear subspaces

E(t) = P (t)X and F (t) = Q(t)X

for each t ≥ 0. These are called stable and unstable subspaces at t (although
strictly speaking F (t) should be called unstable space only when b > 0).
Clearly,

X = E(t) ⊕ F (t)

for each t ≥ 0, and the dimensions dimE(t) and dimF (t) are independent
of t. Set

α(t) = inf{‖x − y‖ : x ∈ E(t), y ∈ F (t), ‖x‖ = ‖y‖ = 1} (27)
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(we took this notion from [39]). One can easily verify that in the case of
Hilbert spaces we have

α(t) = 2 sin(θ(t)/2),

where θ(t) is the angle between the subspaces E(t) and F (t). Furthermore,
one can show that

1

‖P (t)‖
≤ α(t) ≤

2

‖P (t)‖
and

1

‖Q(t)‖
≤ α(t) ≤

2

‖Q(t)‖

for every t ≥ 0. Setting t = s in (22) we obtain

‖P (t)‖ ≤ Deεt and ‖Q(t)‖ ≤ Deεt. (28)

Therefore, by (28),

α(t) ≥ e−εt/D for every t ≥ 0. (29)

This shows, at least in the case of Hilbert spaces, that when there exists
a nonuniform exponential dichotomy the angle between the stable and un-
stable subspaces cannot decrease more than exponentially, with maximal
exponential rate given by the number ε in (21). In the general case of
Banach spaces, α(t) in (27) can also be thought of as an “angle” between
the spaces E(t) and F (t). We mote that in the particular case of uniform
exponential dichotomies we can take ε = 0 in (28), and thus also in (29).
This means that in the uniform case the “angle” between the stable and
unstable subspaces is uniformly bounded from below for all time.

3.2. Robustness of nonuniform exponential dichotomies

We consider continuous functions A,B : R
+
0 → B(X), and equation (6).

Set λ = min{−a, b}. For a given constant δ > 0 we define

λ̃ = λ
√

1 − 2δD/λ and D̃ =
4D2

1 − δD/(λ̃ + λ)
. (30)

Then for every t ≥ s ≥ 0 we have

‖T (t, s)P (s)‖ ≤ De−λ(t−s)+εs, ‖T (t, s)−1Q(t)‖ ≤ De−λ(t−s)+εt. (31)

The following result establishes the robustness of nonuniform exponential
dichotomies for sufficiently small perturbations B.

Theorem 3.4 ([18, Theorem 2]). Assume that:

1. equation (7) admits a nonuniform exponential dichotomy with b > 0
and ε < λ;

2. ‖B(t)‖ ≤ δe−2εt for every t ≥ 0.
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For each sufficiently small δ, equation (6) admits a nonuniform exponential
dichotomy with the constants D, λ, and ε in (31) replaced respectively by

D̃, λ̃, and 2ε.

We note that by (30) the constants D̃ and λ̃ vary continuously with δ.

Some arguments in the proof of Theorem 3.4 are inspired in work of
Popescu in [63] in the case of uniform exponential dichotomies. Inciden-
tally, we note that he uses the notion usually called admissibility, while we
do not need it, of course independently of its possible interest in other sit-
uations. This notion goes back to Perron and refers to the characterization
of the existence of an exponential dichotomy in terms of the existence and
uniqueness of bounded solutions of the equation

v′ = A(t)v + g(t)

for g in a certain class of bounded perturbations.

In the case of uniform exponential dichotomies the study of the robust-
ness problem has a long history, in particular with work of Massera and
Schäffer [49] (building on earlier work of Perron [57]; see also [50]), Cop-
pel [26], and Dalec′kĭı and Krĕın [28] (in the case of Banach spaces), with
different approaches and successive generalizations. For more recent work
we refer to [22, 53, 63, 62] and the references therein. In particular, Chow
and Leiva [22] and Pliss and Sell [62] considered the context of linear skew-
product flows and gave examples of applications in infinite dimension, in-
cluding to parabolic partial differential equations and functional differential
equations. We emphasize that in all these works it is only considered the
case of uniform exponential dichotomies.

4. Stable invariant manifolds

This section is dedicated to the construction of stable invariant manifolds
for sufficiently small perturbations of linear differential equations admitting
a nonuniform exponential dichotomy. In other words, we describe versions
of the stability results in Section 2.2 when not all directions are contracting.
The existence of stable invariant manifolds corresponds precisely to the
existence of an asymptotic stability along a certain invariant manifold, that
is tangent to the stable space.

4.1. Lipschitz stable invariant manifolds

Before discussing the existence of smooth stable manifolds, we consider
the simpler problem of existence of Lipschitz stable invariant “manifolds”,
i.e., graphs of Lipschitz functions along which we have asymptotic stability.
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Let again X be a Banach space, and let A : R
+
0 → B(X) and f : R

+
0 ×

X → X be continuous functions such that (15) and (16) hold. In particular,
v(t) = 0 is still a solution of the equation v′ = A(t)v + f(t, v).

One can easily verify that when f is differentiable condition (16) is equiv-
alent to the existence of constants c > 0 and q > 0 such that

∥∥∥∥
∂f

∂v
(t, v)

∥∥∥∥ ≤ c‖v‖q for every t ≥ 0 and v ∈ X.

Condition (16) may sometimes be obtained with an appropriate cut-off of
the perturbation in a neighborhood of 0 ∈ X and taking a Taylor expansion,
provided that the perturbation is sufficiently regular. We note that since
all norms in R

2 are equivalent, when q > 1 the q-norm (‖u‖q + ‖v‖q)1/q is
equivalent to the 1-norm ‖u‖+‖v‖. In this case, one can replace the factor
‖u‖q + ‖v‖q in (16) by (‖u‖ + ‖v‖)q , up to a multiplicative constant.

Given s ≥ 0 and vs ∈ X we denote by

(x(t), y(t)) = (x(t, s, vs), y(t, s, vs)) ∈ E(t) × F (t)

the unique solution of the initial value problem in (17), i.e., of the problem

x(t) = T (t, s)P (s)vs +

∫ t

s
T (t, r)P (r)f(r, x(r), y(r)) dr,

y(t) = T (t, s)Q(s)vs +

∫ t

s
T (t, r)Q(r)f(r, x(r), y(r)) dr

for t ≥ s. The flow generated by the autonomous equation

t′ = 1, v′ = A(t)v + f(t, v) (32)

is given by

Ψτ (s, vs) = (s + τ, x(s + τ, s, vs), y(s + τ, s, vs)), τ ≥ 0. (33)

The stable manifolds are obtained as graphs of Lipschitz functions. We
first describe an appropriate class of functions. Let

α = ε(1 + 2/q), (34)

with ε as in (21). We fix δ > 0 and we consider the set of initial conditions

Xα = {(s, ξ) : s ≥ 0 and ξ ∈ Bs(δe
−αs)}, (35)

where Bs(δ) ⊂ E(s) is the open ball of radius δ > 0 centered at zero. We
denote by Xα the space of continuous functions ϕ : Xα → X such that for
each s ≥ 0 and ξ, ξ̄ ∈ Bs(δe

−αs) we have

ϕ(s, 0) = 0, ϕ(s,Bs(δe
−αs)) ⊂ F (s),

and
‖ϕ(s, ξ) − ϕ(s, ξ̄)‖ ≤ ‖ξ − ξ̄‖.
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Given a function ϕ ∈ Xα we consider its graph

V = {(s, ξ, ϕ(s, ξ)) : (s, ξ) ∈ Xα} ⊂ R
+
0 × X. (36)

We note that (s, 0) ∈ V (since ϕ(s, 0) = 0), for every s ≥ 0. In particular,
V contains the line R

+
0 × {0} and the graph

Vs = {(s, ξ, ϕ(s, ξ)) : ξ ∈ Bs(δe
−αs)}

for each s ≥ 0 (see Figure 1). We also set

β = α + ε = ε(2 + 2/q), (37)

and we consider the corresponding sets Xβ and Xβ, obtained replacing α
by β in the definitions. We will see that there exists a (unique) function
ϕ ∈ Xα such that for every (s, ξ) ∈ Xβ ⊂ Xα the solution of (17) with
vs = (ξ, ϕ(s, ξ)) is contained in V. This means that for this function ϕ the
set V is forward invariant under the flow Ψτ in (33).

s

stau

E

F

a

W
p

Wstau

Ws

Figure 1. A stable manifold V of the origin. In order
that V is invariant under the flow Ψτ we require that
p = Ψτ (s, ξ, ϕ(s, ξ)). Here the subspaces E = E(t) and
F = F (t) are assumed to be independent of t.

The following result establishes the existence of Lipschitz stable mani-
folds.
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Theorem 4.1 ([10, Theorem 3]). If equation (7) admits a nonuniform
exponential dichotomy with

a + α < 0 and a + ε < b, (38)

then there exist δ > 0 and a unique function ϕ ∈ Xα such that

Ψτ (s, ξ, ϕ(s, ξ)) ∈ V for every (s, ξ) ∈ Xβ and τ ≥ 0.

Furthermore, there exists K > 0 such that for every s ≥ 0, ξ, ξ̄ ∈ Bs(δe
−βs),

and τ ≥ 0 we have

‖Ψτ (s, ξ, ϕ(s, ξ)) − Ψτ (s, ξ̄, ϕ(s, ξ̄))‖ ≤ Keaτ+εs‖ξ − ξ̄‖. (39)

We call to the set V in (36) a Lipschitz stable manifold of the origin for
equation (17). In particular, setting ξ̄ = 0 in (39) we find that any solution
of the initial value problem in (17) starting in V, i.e., with vs = (ξ, ϕ(s, ξ))
for some ξ ∈ Bs(δe

−βs), approaches zero with exponential speed a (which
is independent of s and ξ). We note that both inequalities in (38) are
automatically satisfied when ε is sufficiently small, and that the first one
is satisfied for a given ε < |a| provided that q is sufficiently large (i.e.,
provided that the order of the perturbation is sufficiently large).

We now briefly explain how Theorem 4.1 can be used to establish the
existence of stable invariant manifolds for nonuniformly hyperbolic trajec-
tories. Consider a C1 function F : R

+
0 × X → X and the equation

v′ = F (t, v). (40)

We say that a solution v0(t) of (40) is nonuniformly hyperbolic if the linear
equation in (7) with

A(t) =
∂F

∂v
(t, v0(t))

admits a nonuniform exponential dichotomy. We continue to assume that
all solutions of equation (7) are global. The following statement is a simple
consequence of Theorem 4.1.

Theorem 4.2. Let v0(t) be a nonuniformly hyperbolic solution of equa-
tion (40). If there exist constants c > 0 and q > 0 such that

∥∥∥∥
∂F

∂v
(t, y + v0(t)) − A(t)

∥∥∥∥ ≤ c‖y‖q

for every t ≥ 0 and y ∈ X, and (38) holds, then there exist δ > 0 and a
unique function ϕ ∈ Xβ such that the set

W = {(s, ξ, ϕ(s, ξ)) + (0, v0(s)) : (s, ξ) ∈ Xα} (41)

has the following properties:
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1. if
(s, vs) ∈ {(s, ξ, ϕ(s, ξ)) + (0, v0(s)) : (s, ξ) ∈ Xβ},

then (t, v(t)) ∈ W for every t ≥ s, where v(t) = v(t, vs) is the unique
solution of (40) with v(s) = vs;

2. there exists K > 0 such that for every s ≥ 0, (s, vs), (s, v̄s) ∈ W,
and t ≥ s we have

‖v(t, vs) − v(t, v̄s)‖ ≤ Kea(t−s)+εs‖vs − v̄s‖.

We call to the set W in (41) a Lipschitz stable manifold of v0(t).

4.2. Smooth stable manifolds

We now discuss the existence of smooth stable invariant manifolds. The-
orem 4.1 already shows that the function ϕ in (36) is unique in a class
of Lipschitz functions. Thus, to show that the set V in (36) is a smooth
manifold it is sufficient to show that ϕ is smooth. However, it is more
convenient to deal with the problem from the beginning, finding indepen-
dently a unique function ϕ, now in an appropriate class of smooth func-
tions, that a posteriori must coincide with the function ϕ already obtained
in Theorem 4.1. The main novelty in our approach, besides considering the
nonuniform setting, is the method of proof, which uses a single fixed point
problem to obtain the maximal degree of regularity for the function ϕ. We
refer to Section 4.3 for details on the method of proof.

We assume in this section that A : R
+
0 → B(X) and f : R

+
0 × X → X

are of class Ck. We continue to denote by Bs(δ) ⊂ E(s) be the open ball
of radius δ > 0 centered at zero. Given q > k we set

α =
ε(q + k + 2)

q − k
> ε and β =

ε(2q + 2)

q − k
> α.

We notice that when k = 0 the numbers α and β coincide respectively with
α and β in (34) and (37). We continue to consider the set Xα in (35).

We assume that there exist constants c, δ′ > 0, q > k, and η ∈ (0, 1] such
that for every t ≥ 0 and u, v ∈ X we have:

1.

f(t, 0) = 0,
∂f

∂v
(t, 0) = 0, f |Yβ = 0, (42)

where
Yβ = {(s, v) ∈ R

+
0 × X : ‖v‖ ≥ δ′e−βs};

2. ∥∥∥∥
∂jf

∂vj
(t, u)

∥∥∥∥ ≤ c‖u‖q+1−j for j = 1, . . . , k,
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and
∥∥∥∥

∂kf

∂vk
(t, u) −

∂kf

∂vk
(t, v)

∥∥∥∥ ≤ c‖u − v‖η(‖u‖ + ‖v‖)q−k.

The last condition in (42) may sometimes be obtained with an appropriate
cut-off of the function f (see also the discussion after Theorem 4.3).

We denote by Zα the space of continuous functions ϕ : Xα → X of class
Ck in ξ such that for each s ≥ 0 and ξ, ξ̄ ∈ Bs(δe

−αs) we have:

1.

ϕ(s, 0) = 0,
∂ϕ

∂ξ
(s, 0) = 0, ϕ(s,Bs(δe

−αs)) ⊂ F (s);

2. ∥∥∥∥
∂jϕ

∂ξj
(s, ξ)

∥∥∥∥ ≤ 1 for j = 1, . . . , k,

and ∥∥∥∥
∂kϕ

∂ξk
(s, ξ) −

∂kϕ

∂ξk
(s, ξ̄)

∥∥∥∥ ≤ ‖ξ − ξ̄‖η.

For each function ϕ ∈ Zα we consider its graph V given by (36).

We now formulate a stable manifold theorem. Set ps,ξ = (s, ξ, ϕ(s, ξ)).

Theorem 4.3 ([9, Theorem 1]). If equation (7) admits a nonuniform ex-
ponential dichotomy with

a + α < 0 and a + ε < b, (43)

then there exist δ, δ′ > 0 and a unique function ϕ ∈ Zα such that

Ψτ (ps,ξ) ∈ V for every (s, ξ) ∈ Xβ and τ ≥ 0.

Furthermore:

1. V is a manifold of class Ck that contains the line R
+
0 × {0} and

satisfies T(s,0)V = R × E(s) for every s ≥ 0;

2. there exists K > 0 such that for every s ≥ 0, ξ, ξ̄ ∈ Bs(δe
−βs), and

τ ≥ 0 we have
∥∥∥∥

∂jΨτ

∂ξj
(ps,ξ) −

∂jΨτ

∂ξj
(ps,ξ̄)

∥∥∥∥ ≤ Keaτ+ε(j+1)s‖ξ − ξ̄‖

for j = 0, . . . , k − 1, and
∥∥∥∥

∂kΨτ

∂ξk
(ps,ξ) −

∂kΨτ

∂ξk
(ps,ξ̄)

∥∥∥∥ ≤ Keaτ+ε(k+1)s‖ξ − ξ̄‖η. (44)
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We observe that both inequalities in (43) hold when ε is sufficiently small.
Note that we also establish the exponential decay on the stable manifold of
the derivatives up to order k−1 of the flow with respect to the initial condi-
tion (see (44)). We are not aware of any similar result in the literature, even
in the case of uniform exponential dichotomies. The exponential decay of
the derivatives can be understood in the following manner. When we con-
sider higher-order jets (other than the first, which corresponds to the linear
variational equation), the higher-order linearizations maintain the linear
part A(t) of the linear variational equation. Thus, the higher-order jets
possess essentially the same nonuniform exponential dichotomies, although
in higher-dimensional spaces. This explains the exponential behavior of the
derivatives along the stable manifolds.

We now discuss an alternative version of the stable manifold theorem,
partly motivated by the desire of eliminating the third condition in (42). In
fact this condition requires an exponential decay on time for the function f
and its derivatives. We consider a function f : R

+
0 × X → X of class Ck

such that:

1. f(t, 0) = 0 and ∂f/∂v(t, 0) = 0 for every t ≥ 0;
2. for some constant δ > 0, and every t ≥ 0 and u, v ∈ X we have

∥∥∥∥
∂jf

∂vj
(t, u)

∥∥∥∥ ≤ δe−(k+2)εt for j = 0, . . . , k − 1,

and ∥∥∥∥
∂kf

∂vk
(t, u) −

∂kf

∂vk
(t, v)

∥∥∥∥ ≤ δe−(k+2)εt‖u − v‖.

Let also X be the space of continuous functions

ϕ : {(s, ξ) ∈ R
+
0 × X : ξ ∈ E(s)} → X

of class Ck in ξ such that for each s ≥ 0 and ξ, ξ̄ ∈ E(s) we have

ϕ(s, 0) = 0,
∂ϕ

∂ξ
(s, 0) = 0, ϕ(s,E(s)) ⊂ F (s),

and ∥∥∥∥
∂jϕ

∂ξj
(s, ξ) −

∂jϕ

∂ξj
(s, ξ̄)

∥∥∥∥ ≤ ‖ξ − ξ̄‖ for j = 0, . . . , k − 1.

For each ϕ ∈ X we consider its graph

W = {(s, ξ, ϕ(s, ξ)) : (s, ξ) ∈ R
+
0 × E(s)} ⊂ R

+
0 × X.

We now formulate a second stable manifold theorem. We continue to
write ps,ξ = (s, ξ, ϕ(s, ξ)).
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Theorem 4.4. If equation (7) admits a nonuniform exponential dichotomy
and a + ε < b, then there exist δ > 0 and a unique function ϕ ∈ X such
that Ψτ (W) ⊂ W for every τ ≥ 0. Furthermore:

1. W is a Ck manifold with T(s,0)W = R × E(s) for every s ≥ 0;

2. there exists K > 0 such that for every s ≥ 0, ξ, ξ̄ ∈ E(s), τ ≥ 0, and
j = 0, . . . , k we have

∥∥∥∥
∂jΨτ

∂ξj
(ps,ξ) −

∂jΨτ

∂ξj
(ps,ξ̄)

∥∥∥∥ ≤ Keaτ+(j+1)εs‖ξ − ξ̄‖.

For k = 1, this statement is Theorem 1 in [17]. The proof for an arbitrary
k follows essentially the same steps as in the proof of Theorem 4.3 (see
Section 4.3 for details).

When equation (7) admits a strong nonuniform exponential dichotomy
(see Definition 3.2) we also obtain a characterization of the stable manifold
in terms of the exponential growth rate of solutions.

Theorem 4.5 ([17, Theorem 2]). Assume that equation (7) admits a strong
nonuniform exponential dichotomy with b > 0. Given s ≥ 0 and v ∈ X, if

lim sup
t→+∞

1

t
log ‖Ψt(s, v)‖ ≤ b − 2ε,

then (s, v) ∈ W.

4.3. Method of proof

Our approach to prove the stable manifold theorems (Theorems 4.3
and 4.4) starts by using the differential equation and the desired invari-
ance of the manifold to conclude that it must be the graph of a function
satisfying a certain fixed point problem (as in many other stable mani-
fold theorems). However, the extra small exponentials of a nonuniform
exponential dichotomy led us to consider two fixed-point problems—one to
obtain an a priori bound for the stable component of the solutions along
each graph, and the other to obtain the graph that gives the stable man-
ifold. To obtain the estimates in the fixed point problems, we need sharp
bounds for several derivatives, such as for example for the derivatives of
the vector field along each graph, i.e., of the vector field

(t, ξ) 7→ f(t, ξ, ϕ(t, ξ)).

For this we use a multivariate version of the Faà di Bruno formula in [25]
for the derivatives of a composition. Consider open sets Y , Z, and W of
Banach spaces. Let g : Y → Z be defined in a neighborhood of x ∈ Y
with derivatives up to order n at x. Let also f : Z → W be defined in a

São Paulo J.Math.Sci. 1, 2 (2007), 133–173



Stability in Nonautonomous Dynamics 157

neighborhood of y = g(x) ∈ Z with derivatives up to order n at y. The
n-th derivative of the composition h = f ◦ g at x is given by

dn
xh =

n∑

k=1

dk
yf

∑

0≤r1,...,rk≤n
r1+···+rk=n

cr1···rk
dr1

x g · · · drk
x g, (45)

for some nonnegative integers cr1···rk
. The formula allows us to estimate the

norm of the derivatives of a composition in terms of the original functions.
Namely, collecting derivatives of equal order, one can show that for each
n ∈ N there exists c = c(n) > 0 such that (see [25])

‖dn
xh‖ ≤ c

n∑

k=1

‖dk
yf‖

∑

p(n,k)

n∏

j=1

‖dj
xg‖kj ,

where

p(n, k) =




(k1, . . . , kn) ∈ N
n
0 :

n∑

j=1

kj = k and

n∑

j=1

jkj = n






(here N0 is the set of nonnegative integers). A multivariate extension of
the Faà di Bruno formula in (45) was established in [25]. Although several
special cases were treated before, the general formula for the derivatives of
a composition was first obtained by Faà di Bruno in [30]. We recommend
[46] for the history of the problem and for many related references.

In the proof of the stable manifold theorems we also use a result of Elbialy
in [29] (see Theorem 4.6), that goes back to a lemma of Henry in [38], and
which allows us to establish simultaneously the existence and regularity of
the stable manifolds using a single fixed point problem, instead of one for
each of the successive derivatives. We now briefly describe Henry’s lemma.
Let X and Y be Banach spaces, and let U ⊂ X be an open set. Given
constants η ∈ (0, 1], k ∈ N ∪ {0}, and c > 0 we define the set

Ck,η
c (U, Y ) =

{
u ∈ Ck,η(U, Y ) : ‖u‖k,η ≤ c

}
,

where Ck,η(U, Y ) is the space of Ck functions u : U → Y with η-Hölder
continuous k-th derivative, and with the norm

‖u‖k,η = max
{
‖u‖∞, ‖du‖∞, . . . , ‖dku‖∞,Hη(d

ku)
}

,

where ‖·‖∞ denotes the supremum norm and

Hη(u) = sup

{
‖u(x) − u(y)‖

‖x − y‖η
: x, y ∈ X and x 6= y

}
.
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The following result shows that Ck,η
c (U, Y ) is closed in the space of contin-

uous functions C(U, Y ) with the supremum norm.

Theorem 4.6 (see [38, 29]). Let X and Y be Banach spaces, and let U ⊂ X

be an open set. If un ∈ Ck,η
c (U, Y ) for each n ∈ N and u : U → Y is a

function such that ‖un − u‖∞ → 0 as n → ∞, then u ∈ Ck,η
c (U, Y ) and for

each x ∈ U we have dkun(x) → dku(x) as n → ∞.

When k = 1 the statement in Theorem 4.6 was first established by
Henry in [38, Lemma 6.1.6]. A related result was obtained by Lanford in
[44, Lemma 2.5]. In particular, Theorem 4.6 says that the closed unit ball
in Ck,η is closed with respect to the C0-topology. This property allows
us to consider contraction maps solely using the supremum norm, instead
of any norm that also involves the derivatives. For example, it follows in
a straightforward manner from Theorem 4.6 that the space Zα (see Sec-
tion 4.2) with the norm

‖ϕ‖ = sup

{
‖ϕ(s, ξ)‖

‖ξ‖
: s ≥ 0 and ξ ∈ Bs(δe

−αs) \ {0}

}
(46)

is a complete metric space. The function ϕ ∈ Zα in Theorem 4.3 is precisely
obtained as the unique fixed point of a map in Zα that is a contraction with
the norm in (46).

In [5, 4] we presented an alternative proof of the stable manifold theorem
with slightly weaker assumptions, although only in the finite-dimensional
case. This is due to the fact that we use in a decisive manner the compact-
ness of the closed unit ball in R

n. The proof is based on the construction
of an invariant family of cones along each orbit, as in the uniform hyper-
bolic theory, although now using a family of Lyapunov norms. The family
of cones allows us to obtain an invariant distribution that coincides with
the tangent space of the stable manifold. This procedure also allows us
to discuss the continuity of the distribution, and thus the continuity of
the tangent spaces, which corresponds to the C1 regularity of the stable
manifold.

5. Construction of conjugacies

We address in this section the construction of topological conjugacies
between the flows defined by the equations

v′ = A(t)v and v′ = A(t)v + f(t, v), (47)

in the general case when the linear equation admits a nonuniform exponen-
tial dichotomy. We also show that it is always possible to construct Hölder
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continuous conjugacies. We refer to [15] for the construction of topologi-
cal (and Hölder continuous) conjugacies between nonautonomous dynamics
with distinct linear parts.

5.1. Conjugacies for flows

Let X be a Banach space. We continue to denote by B(X) the set
of bounded linear operators in X, and we consider a continuous function
A : R → B(X) such that each solution of (7) is defined for every t ∈ R.
We also consider a continuous function f : R×X → X and we assume that
there exists δ > 0 such that for every t ∈ R and x, y ∈ X we have

‖f(t, x) − f(t, y)‖ ≤ δe−6ε|t| min{1, ‖x − y‖}

(with the constant ε as in (23)). The equations in (47) define evolution
operators that we denote respectively by T (t, s) and R(t, s), for t, s ∈ R.

Theorem 5.1 ([15, Theorem 7]). If equation (7) admits a strong nonuni-
form exponential dichotomy in R with b > 0, and δ is sufficiently small,
then there exist homeomorphisms ht : X → X for t ∈ R such that

T (t, s) ◦ hs = ht ◦ R(t, s), t, s ∈ R.

It is also shown in [15] that the maps ht are unique among those that
are close to the identity for each t. More precisely, the maps ht − Id are
uniformly bounded in t with respect to a family of Lyapunov norms. We
refer to Section 5.2 for a detailed discussion in the case of discrete time.

The original references for the Grobman–Hartman theorem (in the case of
uniformly hyperbolic dynamics) are Grobman [32, 33] and Hartman [36, 37].
Using the ideas in Moser’s proof in [52] of the structural stability of Anosov
diffeomorphisms, the Grobman–Hartman theorem was extended to Banach
spaces independently by Palis [55] and Pugh [64]. In the case of continu-
ous time a version of the Grobman–Hartman theorem for nonautonomous
differential equations v′ = A(t)v was obtained by Palmer in [56] (with the
exception of the Hölder property of the conjugacies), although assuming
the existence of a uniform exponential dichotomy.

We can also show that the topological conjugacies ht and their inverses
are Hölder continuous. We assume that equation (7) admits a strong
nonuniform exponential dichotomy and we set

α0 = min{a/a, b/b}.

It follows from (23) that α0 ∈ (0, 1].

Theorem 5.2 ([15, Theorem 7]). If equation (7) admits a strong nonuni-
form exponential dichotomy in R with b > 0, then for each α ∈ (0, α0) and
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each δ sufficiently small (depending on α), there exist homeomorphisms ht

as in Theorem 5.1, and a constant K > 0 (depending on α and δ) such that

‖ht(x) − ht(y)‖ ≤ Ke2ε(2+3α)|t|‖x − y‖α

and
‖h−1

t (x) − h−1
t (y)‖ ≤ Ke2ε(2+3α)|t|‖x − y‖α

for every t ∈ R and x, y ∈ X with ‖x − y‖ ≤ e−3ε|t|.

We note that in the case of uniform exponential dichotomies, the Hölder
regularity of the conjugacies seems to have been known by the experts for
some time, although the first proof only appeared recently in [11]. The
Hölder property was claimed by van Strien in [79, Proposition 4.6], but it
was observed in [67] (see also [34]) that some problems in the proof are not
yet overcome. This should be compared with the discussion in [34], where
the authors indicate that the statement of the Hölder regularity is contained
in a preprint of Belitskĭı [19] (we believe that the preprint circulates since
1994 but it remains unpublished).

5.2. Conjugacies for maps

The conjugacies for flows are constructed by first considering the time-
1 maps. After obtaining conjugacies for these maps, we use a general
“integrating” procedure to obtain the desired conjugacies for the original
flows.

We first consider arbitrary maps (not necessarily obtained from a flow).
For each m ∈ Z consider:

1. an invertible linear operator Am ∈ B(X) with inverse A−1
m ∈ B(X);

2. a continuous map fm : X → X.

We now introduce the notion of nonuniform exponential dichotomy in
the case of discrete time. Set

A(m,n) = Am−1 · · ·An, m > n.

Definition 5.3. We say that the sequence of linear operators (Am)m∈Z

admits a nonuniform exponential dichotomy if there exist projections Pn ∈
B(X) for n ∈ Z with

PmA(m,n) = A(m,n)Pn for every m,n ∈ Z with m ≥ n,

and there exist constants

D > 0, a < 0 ≤ b, and ε ≥ 0 (48)

such that for every m,n ∈ Z with m ≥ n we have

‖A(m,n)Pn‖ ≤ Dea(m−n)+ε|n|, ‖A(m,n)−1Qm‖ ≤ De−b(m−n)+ε|m|,

where Qn = Id−Pn are the complementary projections.
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For a sequence (Am)m∈Z admitting a nonuniform exponential dichotomy,
we consider the linear subspaces

Em = PmX and Fm = QmX

for m ∈ Z. Clearly, X = Em ⊕ Fm for every m ∈ Z, and the dimensions
dimEm and dimFm are independent of m. We also define the operators

Bm = Am|Em : Em → Em+1 and Cm = Am|Fm : Fm → Fm+1

for each m ∈ Z. Clearly, Bm and Cm are invertible continuous linear
operators with continuous inverse. Furthermore, with respect to the de-
compositions X = Em ⊕ Fm each operator Am has the form

Am =

(
Bm 0
0 Cm

)
, m ∈ Z.

Setting, for each m ≥ n,

B(m,n) = Bm−1 · · ·Bn and C(m,n) = Cm−1 · · ·Cn,

we introduce Lyapunov norms as follows. Choose ̺ > 0 such that ̺ <
min{−a, b}. For each m ∈ Z we define the norms

‖x‖′m =
∑

k≥m

‖B(k,m)x‖e(−a−̺)(k−m) for x ∈ Em

and

‖y‖′m =
∑

k≤m

‖C(m,k)−1y‖e(b−̺)(m−k) for y ∈ Fm.

We also define

‖(x, y)‖′m = ‖x‖′m + ‖y‖′m for each (x, y) ∈ Em × Fm.

Finally, we consider the space X of sequences u = (um)m∈Z of continuous
functions um : X → X such that

sup{‖um(x)‖′m : m ∈ Z, x ∈ X} < ∞.

We finally assume that there exists δ > 0 such that for each m ∈ Z and
x, y ∈ X we have

‖fm(x)‖ ≤ δe−ε|m|

and

‖fm(x) − fm(y)‖ ≤ δe−ε|m|‖x − y‖

(with the constant ε as in (48)).

The following is a version of the Grobman–Hartman theorem in this
nonuniformly hyperbolic setting.
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Theorem 5.4 ([8, Theorems 1 and 3 and Corollary 1]). If the sequence
of linear operators (Am)m∈Z admits a nonuniform exponential dichotomy
with b > 0, and δ is sufficiently small, then there exist unique sequences
(um)m∈Z ∈ X and (vm)m∈Z ∈ X such that for every m ∈ Z we have

Am ◦ ûm = ûm+1 ◦ (Am + fm)

and
v̂m+1 ◦ Am = (Am + fm) ◦ v̂m,

where ûm = Id +um and v̂m = Id+vm. Furthermore,

ûm ◦ v̂m = v̂m ◦ ûm = Id, m ∈ Z.

The Hölder regularity of the conjugacies is also established in [8].

We now explain how we can obtain the conjugacies for the flows from
the conjugacies for the time-1 maps. Fix r ∈ [−1, 1]. For each m ∈ Z we
consider the invertible linear operators

Am = T (m + r,m + r − 1),

and the continuous maps

fm(u) =

∫ m+r

m+r−1
T (m + r, τ)f(τ, v(τ, u)) dτ,

where v(t, u) is the solution of the differential equation v′ = A(t)v + f(t, v)
with v(m + r − 1) = u. One can show in a simple manner that when
the conditions in Theorem 5.1 hold we can apply Theorem 5.4 (in partic-
ular, the sequence of operators (Am)m∈Z admits a nonuniform exponential
dichotomy). Therefore, there exist homeomorphisms Gm,r : X → X for
m ∈ Z such that

T (m + r,m + r − 1) ◦ Gm,r = Gm+1,r ◦ R(m + r,m + r − 1).

Furthermore, the uniqueness statement in Theorem 5.4 can be used to show
that

Gm,r = Gm̄,r̄ whenever m̄ + r̄ = m + r.

In other words, we can define homeomorphisms

Jt = Gm,r with m = [t] and r = t − [t],

where [t] denotes the integer part of t. Finally, for each t ∈ R we define the
map ht : X → X by

ht(x) =

∫ 1

0
[T (t, r + t) ◦ Jτ+t ◦ R(τ + t, t)](x) dτ.

One can show that these maps are the required conjugacies, with the prop-
erties in Theorems 5.1 and 5.2.
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6. Center manifolds and reversibility

This section is dedicated to the construction of invariant center mani-
folds. We also discuss their reversibility properties when the ambient dy-
namics is reversible.

6.1. Existence of center manifolds

Let A : R → B(X) be a continuous function. We continue to assume
that all solutions of equation (7) are global. We first introduce the notion
of nonuniform exponential trichotomy.

Definition 6.1. We say that equation (7) admits a nonuniform exponential
trichotomy if there exist functions P,Q1, Q2 : R → B(X) such that P (t),
Q1(t), and Q2(t) are projections with

P (t) + Q1(t) + Q2(t) = Id,

P (t)T (t, s) = T (t, s)P (s), Qi(t)T (t, s) = T (t, s)Qi(s), i = 1, 2

for every t, s ∈ R, and there exist constants

D, ε ≥ 0, 0 ≤ a < b, and 0 ≤ c < d (49)

such that:

1. for every s, t ∈ R with t ≥ s we have

‖T (t, s)P (s)‖ ≤ Dea(t−s)+ε|s|, ‖T (t, s)−1Q2(t)‖ ≤ De−b(t−s)+ε|t|;

2. for every s, t ∈ R with t ≤ s we have

‖T (t, s)P (s)‖ ≤ Dec(s−t)+ε|s|, ‖T (t, s)−1Q1(t)‖ ≤ De−d(s−t)+ε|t|.

In a certain sense, the existence of a nonuniform exponential trichotomy
is the weakest hypothesis under which one is able to establish the existence
of invariant center manifolds.

We now present the hypotheses for the nonlinear part of the vector field.
We assume that there is an integer k ∈ N such that A : R → B(X) and
f : R × X → X are of class Ck. We also assume that:

1. f(t, 0) = 0 and ∂f/∂v(t, 0) = 0 for every t ∈ R;
2. there exists δ > 0 such that for every t ∈ R and u, v ∈ X we have

∥∥∥∥
∂jf

∂vj
(t, u)

∥∥∥∥ ≤ δe−(k+2)ε|t| for j = 1, . . . , k,

and ∥∥∥∥
∂kf

∂vk
(t, u) −

∂kf

∂vk
(t, v)

∥∥∥∥ ≤ δe−(k+2)ε|t|‖u − v‖.
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In the presence of a nonuniform exponential trichotomy we consider the
subspaces

E(t) = P (t)X, F1(t) = Q1(t)X, and F2(t) = Q2(t)X.

Let X be the space of continuous functions

ϕ = (ϕ1, ϕ2) : {(s, ξ) ∈ R × X : ξ ∈ E(s)} → X

of class Ck in ξ such that for every s ∈ R and ξ, ξ̄ ∈ E(s) we have:

1.

ϕ(s, 0) = 0,
∂ϕ

∂ξ
(s, 0) = 0, ϕ(s,E(s)) ⊂ F1(s) ⊕ F2(s);

2. ∥∥∥∥
∂jϕ

∂ξj
(s, ξ)

∥∥∥∥ ≤ 1 for j = 1, . . . , k,

and ∥∥∥∥
∂kϕ

∂ξk
(s, ξ) −

∂kϕ

∂ξk
(s, ξ̄)

∥∥∥∥ ≤ ‖ξ − ξ̄‖.

Given a function ϕ ∈ X we consider its graph

V = {(s, ξ, ϕ(s, ξ)) : (s, ξ) ∈ R × E(s)} ⊂ R × X. (50)

We now present the center manifold theorem. We continue to use the
notation ps,ξ = (s, ξ, ϕ(s, ξ)), and we set α = 4cDδ. We also denote by Ψτ

the flow generated by the autonomous equation in (32).

Theorem 6.2 ([14, Theorem 3]). If equation (7) admits a nonuniform
exponential trichotomy with

(k + 1)(a + ε) − b < 0 and (k + 1)(c + ε) − d < 0,

and δ is sufficiently small, then there is a unique function ϕ ∈ X such that
the set V in (50) is invariant under the flow Ψτ , i.e.,

Ψτ (ps,ξ) ∈ V for every (s, ξ) ∈ R × E(s) and τ ∈ R.

Furthermore:

1. V is a smooth manifold of class Ck containing the line R × {0} and
satisfying T(s,0)V = R × E(s) for every s ∈ R;

2. there exists K > 0 such that for each s ∈ R, ξ, ξ̄ ∈ E(s), τ ∈ R, and
j = 0, . . ., k we have

∥∥∥∥∥
∂jΨτ

∂ξj
(ps,ξ) −

∂j
ξΨτ

∂ξj
(ps,ξ̄)

∥∥∥∥∥ ≤ Ke(j+1)[(a+α)τ+ε|s|]‖ξ − ξ̄‖, τ ≥ 0,
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and∥∥∥∥∥
∂jΨτ

∂ξj
(ps,ξ) −

∂j
ξΨτ

∂ξj
(ps,ξ̄)

∥∥∥∥∥ ≤ Ke(j+1)[(c+α)|τ |+ε|s|]‖ξ − ξ̄‖, τ ≤ 0.

The proof of Theorem 6.2 follows a similar strategy to the one described
in Section 4.3 in the case of stable manifolds, that is based in a lemma of
Henry and in the Faà di Bruno formula to estimate the derivatives of a
composition.

The study of center manifolds can be traced back to the works of Pliss [61]
and Kelley [42]. A very detailed exposition in the case of autonomous
equations is given in [76], adapting results in [78]. See also [51, 77] for the
case of equations in infinite-dimensional spaces. We refer to [20, 23, 24, 76]
for more details and further references. We emphasize that all these works
consider only the case of uniformly hyperbolic dynamics.

6.2. Reversibility in center manifolds

We now show that the (time) reversibility of a given flow descends to
the center manifold obtained in Theorem 6.2. We recall that time-reversal
symmetries are among the fundamental symmetries in many “physical”
systems. In particular, many Hamiltonian systems are reversible (see [43]
for several examples).

We first introduce the notion of reversible (nonautonomous) differential
equation. Let X be a Banach space, and let L : R×X → X be a continuous
function such that

v′ = L(t, v) (51)

has unique and global solutions. We also consider a (Fréchet) differentiable
map S : R × X → X.

Definition 6.3. We say that equation (51) is reversible with respect to S
if

L(−t, S(t, v)) +
∂S

∂v
(t, v)L(t, v) = −

∂S

∂t
(t, v)

for every t ∈ R and v ∈ X.

We now describe a characterization of reversibility. In fact, this char-
acterization can be seen as the main justification for the above notion of
reversible equation. For each s ∈ R and vs ∈ X, we denote by Φ(t, s)(vs)
the unique solution of (51) with v(s) = vs. We recall that by hypothesis
the operator Φ(t, s) is defined for every t, s ∈ R.

Theorem 6.4 ([13, Proposition 1]). Equation (51) is reversible with respect
to the map S if and only if

Φ(τ,−t)(S(t, v)) = S(−τ,Φ(−τ, t)(v))
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for every t, τ ∈ R and v ∈ X.

We now formulate our result about the reversibility in center manifolds,
showing that the reversibility of a given equation, with respect to a map
S with St = S(t, ·) linear for each t ∈ R, always descends to the center
manifold. We assume that for some constants C > 0 and θ ≥ 0 we have

C−1e−θ|t| ≤ ‖S−1
t ‖−1 ≤ ‖St‖ ≤ Ceθ|t|, t ∈ R. (52)

We also write

Vs = {v ∈ X : (s, v) ∈ V} = {(ξ, ϕ(s, ξ)) : ξ ∈ E(s)},

where ϕ is the function given by Theorem 6.2.

Theorem 6.5 ([13, Theorem 2]). Under the assumptions of Theorem 6.2,
if the equation

v′ = A(t)v + f(t, v)

is reversible with respect to a map S with S2
0 = Id and St linear for each

t ∈ R, and the constants in (49) and (52) satisfy

max{c, a} + 2(ε + θ) < min{b, d},

then Ss(Vs) = V−s for every s ∈ R.

7. Lyapunov regularity

We present briefly in this section the abstract theory of Lyapunov expo-
nents, and its associated regularity theory developed by Lyapunov in his
doctoral thesis [47]. We also explain how one can use this theory to esti-
mate the constants in the notion of nonuniform exponential dichotomy. At
present this theory is only fully developed for finite-dimensional spaces. A
generalization to infinite dimension is given in [6] in the particular case of
Hilbert spaces.

7.1. Lyapunov exponents and regularity

Consider matrices A(t) varying continuously with t ≥ 0. We assume that

lim sup
t→+∞

1

t
log+‖A(t)‖ = 0,

where log+ x = max{0, log x} (we use the convention that log 0 = −∞).

Definition 7.1. We define the Lyapunov exponent λ : R
n → R ∪ {−∞}

associated to equation (7) by

λ(v0) = lim sup
t→+∞

1

t
log‖v(t)‖,

where v(t) is the solution of (7) with v(0) = v0.
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One can easily show that the following properties hold (see [1] for details):

1. λ(αv) = λ(v) for each v ∈ R
n and α ∈ R \ {0};

2. for each v, w ∈ R
n we have

λ(v + w) ≤ max{λ(v), λ(w)};

3. for each v, w ∈ R
n with λ(v) 6= λ(w) we have

λ(v + w) = max{λ(v), λ(w)};

4. given v1, . . . , vm ∈ R
n \ {0}, if the numbers λ(v1), . . ., λ(vm) are

distinct, then the vectors v1, . . . , vm are linearly independent.

By the last property, the function λ takes at most p ≤ n distinct values on
R

n \ {0}, say

−∞ ≤ λ1 < · · · < λp.

Moreover, by the first two properties, for i = 1, . . . , p the set

Ei = {v0 ∈ R
n : λ(v0) ≤ λi} (53)

is a linear subspace. Note that λ(v0) > λi for every v0 ∈ R
n \ Ei.

To introduce the notion of Lyapunov regularity we consider the initial
value problem of the adjoint equation

w′ = −A(t)∗w, w(0) = w0, (54)

with w0 ∈ R
n, where A(t)∗ denotes the transpose of A(t). We also consider

the corresponding Lyapunov exponent µ : R
n → R ∪ {−∞} defined by

µ(w0) = lim sup
t→+∞

1

t
log‖w(t)‖,

where w(t) is the solution of (54).

We denote by 〈·, ·〉 the canonical inner product in Rn. We recall that two
bases v1, . . . , vn and w1, . . . , wn of R

n are said to be dual if 〈vi, wj〉 = δij

for every i and j, where δij is the Kronecker symbol.

Definition 7.2. The regularity coefficient of the pair of Lyapunov expo-
nents λ and µ is defined by

γ(λ, µ) = min max{λ(vi) + µ(wi) : 1 ≤ i ≤ n},

where the minimum is taken over all dual bases v1, . . . , vn and w1, . . . , wn
of R

n. We say that equation (7) is Lyapunov regular or simply regular if
γ(λ, µ) = 0.

We note that the notion of regularity can also be expressed solely us-
ing equation (7), thus without the need for the adjoint equation in (54).
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Namely, (7) is regular if and only if

lim
t→+∞

1

t

∫ t

0
tr A(τ) dτ =

p∑

i=1

(dim Ei − dimEi−1)λi,

setting E0 = {0} (we refer to [1] for details). However, it is sometimes
convenient to use the above description of regularity, in terms of γ(λ, µ),
for example in the proof of Theorem 7.3.

7.2. Existence of nonuniform exponential dichotomies

We assume in this section that there is at least one negative Lyapunov
exponent for equation (7), i.e., that for some 1 ≤ k ≤ p we have

−∞ ≤ λ1 < · · · < λk < 0 ≤ λk+1 < · · · < λp.

We emphasize that λk+1 may be zero. Furthermore, we assume that there is
a subspace F ⊂ R

n such that E = Ek (see (53)) and F give a decomposition

R
n = E ⊕ F,

with respect to which A(t) has the form

A(t) =

(
B(t) 0

0 C(t)

)
(55)

for every t ≥ 0. We also consider the Lyapunov exponents associated to
the blocks B(t) and C(t) in (55), i.e., associated to the pair of equations

x′ = B(t)x and x′ = −B(t)∗x,

and to the pair of equations

y′ = C(t)y and y′ = −C(t)∗y.

The corresponding regularity coefficients are

γ1 = γ(λ|E,µ|E) and γ2 = γ(λ|F, µ|F ). (56)

The following result shows that any linear differential equation as above
admits a nonuniform exponential dichotomy, and in fact a strong nonuni-
form exponential dichotomy. Furthermore, the constants in the notion of
dichotomy can be related to the Lyapunov exponents and the regularity
coefficients.

Theorem 7.3 ([12, Theorem 4]). Assume that the matrices A(t) have the
form in (55) for every t ≥ 0, and that equation (7) has at least one negative
Lyapunov exponent. Then, for each δ > 0, equation (7) admits a strong
nonuniform exponential dichotomy with

a = λ1 + δ, a = λk + δ, b = λk+1 + δ, b = λp + δ,

and ε = max{γ1, γ2} + 2δ.
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By Theorem 7.3, the deviation of a nonuniform exponential dichotomy
with respect to a uniform dichotomy is measured by the regularity coeffi-
cients in (56). It is therefore of interest to obtain sharp bounds for γ(λ, µ), if
possible expressed only in terms of the matrices A(t), thus without knowing
explicitly the solutions of equation (7).

We first present a lower bound for the regularity coefficient.

Theorem 7.4 ([12, Theorem 5]). We have

γ(λ, µ) ≥
1

n

(
lim sup
t→+∞

1

t

∫ t

0
tr A(τ) dτ − lim inf

t→+∞

1

t

∫ t

0
tr A(τ) dτ

)
.

We now describe a geometric consequence of Theorem 7.4. Let v1, . . .,
vn be a basis of R

n. We denote by Γn(t) the n-volume of the parallelepiped
defined by the vectors v1(t), . . ., vn(t), where vi(t) is the solution of (7)
with v0 = vi, for i = 1, . . ., n. By the Liouville formula we have

Γn(t)/Γn(0) = exp

∫ t

0
tr A(τ) dτ,

and it follows from Theorem 7.4 that

lim sup
t→+∞

1

t
log Γn(t) − lim inf

t→+∞

1

t
log Γn(t) ≤ n γ(λ, µ).

In particular, when equation (7) is regular we have

lim
t→+∞

1

t
log Γn(t) = lim

t→+∞

1

t

∫ t

0
tr A(τ) dτ

(and the limits are independent of the basis v1, . . ., vn).

We now present an upper bound for the regularity coefficient. We only
consider triangular matrices, for which we can describe the results more
explicitly (we refer to [12] for details on the reduction to the triangular
case). For k = 1, . . . , n, we consider the numbers

αk = lim inf
t→+∞

1

t

∫ t

0
ak(τ) dτ and αk = lim sup

t→+∞

1

t

∫ t

0
ak(τ) dτ,

where a1(t), . . ., an(t) are the entries in the diagonal of A(t).

Theorem 7.5 ([12, Theorem 6]). If the matrices A(t) are upper triangular
for every t ≥ 0, then

γ(λ, µ) ≤

n∑

k=1

(αk − αk).
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It follows from Theorems 7.4 and 7.5 that in the 1-dimensional case, i.e.,
for a scalar equation v′ = a(t)v the regularity coefficient is given by

γ(λ, µ) = lim sup
t→+∞

1

t

∫ t

0
a(τ) dτ − lim inf

t→+∞

1

t

∫ t

0
a(τ) dτ.
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