On finite W-algebras for Lie algebras and superalgebras

Elena Poletaeva

Department of Mathematics, University of Texas-Pan American, Edinburg, TX 78539 *E-mail address*: elenap@utpa.edu

Abstract. The finite W-algebras are certain associative algebras associated to a complex semi-simple or reductive Lie algebra $\mathfrak g$ and a nilpotent element e of $\mathfrak g$. Due to recent results of I. Losev, A. Premet and others, finite W-algebras play a very important role in description of primitive ideals. In the full generality, the finite W-algebras were introduced by A. Premet. It is a result of B. Kostant that for a regular nilpotent (principal) element e, the finite W-algebra coincides with the center of $U(\mathfrak g)$. Premet's definition makes sense for a simple Lie superalgebra $\mathfrak g = \mathfrak g_{\bar 0} \oplus \mathfrak g_{\bar 1}$ in the case when $\mathfrak g_{\bar 0}$ is reductive, $\mathfrak g$ admits an invariant super-symmetric bilinear form, and e is an even nilpotent element. We show that certain results of A. Premet can be generalized for classical Lie superalgebras. We consider the case when e is an even regular nilpotent element. The associated finite W-algebra is called principal. Kostant's result does not hold in this case. This is joint work with V. Serganova.

1. Introduction

A *finite W-algebra* is certain associative algebra associated to a complex semisimple Lie algebra $\mathfrak g$ and a nilpotent element $e \in \mathfrak g$. It is a generalization of the universal enveloping algebra $U(\mathfrak g)$.

The finite W-algebras are quantizations of Poisson algebras of functions on the Slodowy (i.e. transversal) slice at e to the adjoint orbit Ad(G)e, where $\mathfrak{g} = Lie(G)$ [Pr1]. Due to recent results of I. Losev, A. Premet and others, finite W-algebras play a very important role in description of primitive ideals [L2, L3, Pr2, Pr3].

The key ideas for finite W-algebras appeared in the study of classical and quantum affine W-algebras [B, F1, F2]. In the full generality, the finite W-algebras for semi-simple Lie algebras were introduced by A. Premet [Pr1]. The construction of finite W-algebras is based on the study of Whittaker vectors and Whittaker modules in the famous work of B. Konstant [Ko].

This survey was presented during the 3rd Graduate Research Conference in Algebra and Representation Theory at Kansas State University.

Finite W-algebras for Lie algebras have been extensively studied by I. Losev, V. Ginzburg, W. L. Gan, J. Brundan, S. Goodwin, A. Kleshchev, W. Wang and other mathematicians and physicists [L1, BG, GG, BK1, BK2, W].

In Section 2 we discuss Dynkin and good Z-gradings of \mathfrak{g} . In Sections 3-5 we review various equivalent definitions of finite W-algebra for \mathfrak{g} . In Section 6 we describe Kazhdan filtration on finite W-algebras. In Sections 7 and 8 we give examples of the principal finite W-algebra for $\mathfrak{g} = \mathfrak{gl}(2)$ and $\mathfrak{gl}(n)$.

In Sections 9-11 we recall the definition of a Lie superalgebra, main examples and classification of simple finite-dimensional Lie superalgebras. In Section 12 we review the definition of finite W-algebras for Lie superalgebras. In Section 13 we recall the notion of defect of a basic Lie superalgebra. In section 14 we describe the principal finite W-algebras for Lie superalgebras of type I and defect one. In Section 15 we outline the case when $g = \mathfrak{gl}(n|n)$. J.Brown, J.Brundan and S. Goodwin have recently described the principal finite W-algebra of the Lie superalgebra $\mathfrak{gl}(m|n)$ as a certain truncation of a shifted version of the super-Yangian of $\mathfrak{gl}(1|1)$. In Section 16 we review the notion the super-Yangian of $\mathfrak{gl}(m|n)$. In sections 17 and 18 we consider the case when g = Q(n). We describe the principal finite W-algebra for O(n) in terms of generators and relations, and show that it is isomorphic to a factor algebra of the super-Yangian of Q(1). In Section 19 we describe the principal finite W-algebras for the family of simple exceptional Lie superalgebras $\Gamma(\sigma_1, \sigma_2, \sigma_3)$. In Sections 20 and 21 we describe the principal finite W-algebra for $\mathfrak{vsp}(1|2)$ and obtain partial results and formulate a conjecture for $\mathfrak{vsp}(1|2n)$.

2. Preliminaries

Let \mathfrak{g} be a finite-dimensional semi-simple or reductive Lie algebra over \mathbb{C} and $(\cdot|\cdot)$ be a non-degenerate invariant symmetric bilinear form on \mathfrak{g} .

Definition 2.1. A bilinear form $(\cdot|\cdot)$ on g is g-invariant if

$$([x,y] \mid z) = (x \mid [y,z])$$
 for all $x, y, z \in \mathfrak{g}$.

Definition 2.2. Adjoint representation of g.

For any $x \in \mathfrak{g}$, ad(x) is the endomorphism of \mathfrak{g} defined as follows:

$$ad(x)(y) = [x, y]$$
 for all $y \in \mathfrak{g}$.

Definition 2.3. An element $e \in \mathfrak{g}$ is called nilpotent if ad(e) is a nilpotent endomorphism of \mathfrak{g} .

Example 2.1. g = gl(n), (a|b) = tr(ab).

 $e \in \mathfrak{gl}(n)$ is nilpotent if and only if e is an $n \times n$ -matrix with eigenvalues zero.

Definition 2.4. A nilpotent element $e \in \mathfrak{g}$ is regular nilpotent if $\mathfrak{g}^e := Ker(ad(e))$ attains the minimal dimension, which is equal to the rank of \mathfrak{g} .

Example 2.2. g = gl(n).

$$e = J_n = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
 is a regular nilpotent element.

$$g^e = \langle e, e^2, \dots, e^{n-1}, z \rangle, \quad z = \langle 1_n \rangle, \quad \dim g^e = n.$$

Theorem 2.1. *Jacobson-Morozov* [C].

Associated to a nonzero nilpotent element $e \in \mathfrak{g}$, there always exists an $\mathfrak{sl}(2)$ -triple $\{e,h,f\}$ which satisfies

$$[e, f] = h,$$
 $[h, e] = 2e,$ $[h, f] = -2f.$

Proof. Induction on dim g.

Example 2.3. g = gl(n), $e = J_n$. Let h = diag(n-1, n-3, ..., 3-n, 1-n) and

$$f = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ a_1 & 0 & 0 & 0 & 0 & 0 \\ 0 & a_2 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & 0 & a_{n-1} & 0 \end{pmatrix}, where \ a_i = i(n-i) \ for \ 1 \le i \le n-1.$$

Then e, h and f span an $\mathfrak{sl}(2)$.

3. \mathbb{Z} -gradings

Definition 3.1. A Lie algebra \mathfrak{g} is \mathbb{Z} -graded if

$$\mathfrak{g} = \bigoplus_{j \in \mathbb{Z}} \mathfrak{g}_j, \quad [\mathfrak{g}_j, \mathfrak{g}_k] \subseteq \mathfrak{g}_{j+k}.$$

Definition 3.2. A Dynkin \mathbb{Z} -grading.

Let $\mathfrak{sl}(2) = \langle e, h, f \rangle$. The eigenspace decomposition of the adjoint action

$$ad(h): \mathfrak{g} \longrightarrow \mathfrak{g}$$

provides a \mathbb{Z} -grading: $\mathfrak{g} = \bigoplus_{j \in \mathbb{Z}} \mathfrak{g}_j$, where $\mathfrak{g}_j = \{x \in \mathfrak{g} \mid ad(h)(x) = jx\}$.

São Paulo J.Math.Sci. 7, 1 (2013), 1-32

A Dynkin \mathbb{Z} -grading satisfies the following properties:

- $(1) e \in \mathfrak{g}_2,$
- (2) $ad(e): \mathfrak{g}_j \longrightarrow \mathfrak{g}_{j+2}$ is injective for $j \leq -1$,
- (3) $ad(e): \mathfrak{g}_j \longrightarrow \mathfrak{g}_{j+2}$ is surjective for $j \ge -1$,
- (4) $\mathfrak{g}^e \subset \bigoplus_{j>0} \mathfrak{g}_j$,
- (5) $(\mathfrak{g}_i|\mathfrak{g}_j) = 0$ unless i+j=0,
- (6) $\dim \mathfrak{g}^e = \dim \mathfrak{g}_0 + \dim \mathfrak{g}_1$.

Proof. (1) follows from the definition of $\mathfrak{sl}(2)$, (2) and (3) follow from the theory of finite-dimensional irreducible $\mathfrak{sl}(2)$ -modules, (4), (5) and (6) are easy to prove. We will show that these properties are valid for more general type of \mathbb{Z} -gradings, called good \mathbb{Z} -gradings.

Definition 3.3. A good \mathbb{Z} -grading.

A \mathbb{Z} -grading $\mathfrak{g} = \bigoplus_{j \in \mathbb{Z}} \mathfrak{g}_j$ for a semi-simple Lie algebra \mathfrak{g} is good for e, if it satisfies the conditions (1)-(3).

For a reductive \mathfrak{g} , there is an additional condition: the center of \mathfrak{g} is in \mathfrak{g}_0 . Note that good \mathbb{Z} -gradings of simple finite-dimensional Lie algebras over an algebraically closed field of characteristic zero were classified in [EK].

Proposition 3.1. Properties (4)-(6) remain to be valid for every good \mathbb{Z} -grading of \mathfrak{g} .

Proof. (see [W])

- (4) \mathfrak{g}^e is a \mathbb{Z} -graded Lie subalgebra of \mathfrak{g} , and (4) follows from (2).
- (5) For any \mathbb{Z} -grading $\mathfrak{g} = \bigoplus_{j \in \mathbb{Z}} \mathfrak{g}_j$ there exists a semi-simple element $h \in [\mathfrak{g}, \mathfrak{g}]$ such that

$$\mathfrak{g}_j = \{ x \in \mathfrak{g} \mid [h, x] = jx \}.$$

Let $\partial : \mathfrak{g} \longrightarrow \mathfrak{g}$ be the degree operator:

$$\partial(x) := jx \text{ for } x \in \mathfrak{g}_i,$$

then ∂ is a derivation of the semi-simple Lie algebra $[\mathfrak{g},\mathfrak{g}]$, hence ∂ is an inner derivation of $[\mathfrak{g},\mathfrak{g}]$, given by ad(h) for some semi-simple element $h \in [\mathfrak{g},\mathfrak{g}]$. Then $\partial = ad(h)$ as derivations of $[\mathfrak{g},\mathfrak{g}] \oplus \operatorname{center}(\mathfrak{g})$, since the equality hold on the $\operatorname{center}(\mathfrak{g})$ too. For $x \in \mathfrak{g}_i$, $y \in \mathfrak{g}_i$, we have

$$-i(x|y) = ([x,h]|y) = (x|[h,y]) = j(x|y).$$

Then (5) holds.

(6) From (2) and (3),

$$ad(e): \mathfrak{g}_{-1} \longrightarrow \mathfrak{g}_1$$
 is a bijection.

An exact sequence of vector spaces

$$0 \longrightarrow \mathfrak{g}^e \longrightarrow \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus (\oplus_{j>0} \mathfrak{g}_j) \stackrel{ad(e)}{\longrightarrow} \oplus_{j>0} \mathfrak{g}_j \longrightarrow 0$$

is well-defined by (2) and (3). Then (6) holds.

Example 3.1. Associated to e = 0, we have a good \mathbb{Z} -grading with $\mathfrak{g}_0 = \mathfrak{g}$.

Exercise 1. Properties (2) and (3) are equivalent for any \mathbb{Z} -grading $\mathfrak{g} = \bigoplus_{j \in \mathbb{Z}} \mathfrak{g}_j$.

Remark 3.1. Obviously, if a \mathbb{Z} -grading is Dynkin, then it is a good \mathbb{Z} -grading. However, not every good \mathbb{Z} -grading is Dynkin.

Example 3.2. $\mathfrak{g} = \mathfrak{gl}(3)$

$$e = E_{13} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad h = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad f = E_{31} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

Note that e is a non-regular nilpotent element, $\mathfrak{sl}(2) = \langle e, h, f \rangle$ defines a Dynkin \mathbb{Z} -grading of $\mathfrak{gl}(3)$, whose degrees on the elementary matrices E_{ij} are

$$\left(\begin{array}{ccc} 0 & 1 & 2 \\ -1 & 0 & 1 \\ -2 & -1 & 0 \end{array}\right).$$

 $\dim(\mathfrak{g}^e) = \dim\mathfrak{g}_0 + \dim\mathfrak{g}_1 = 5, \quad \mathfrak{g}^e = \langle E_{11} + E_{33}, E_{22}, E_{12}, E_{23}, E_{13} \rangle.$

Example 3.3. g = gl(3).

$$e = E_{13} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad h = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

h defines a good but non-Dynkin \mathbb{Z} -grading for e, whose degrees on the elementary matrices E_{ij} are

$$\left(\begin{array}{ccc} 0 & 0 & 2 \\ 0 & 0 & 2 \\ -2 & -2 & 0 \end{array}\right).$$

4. Definition of finite W-algebras

Let \mathfrak{g} be a reductive Lie algebra, $(\cdot|\cdot)$ be a non-degenerate invariant symmetric bilinear form, e be a nilpotent element. Let $\mathfrak{g} = \bigoplus_{j \in \mathbb{Z}} \mathfrak{g}_j$ be a good \mathbb{Z} -grading for e. Let $\chi \in \mathfrak{g}^*$ by defined as follows: $\chi(x) := (x|e)$ for $x \in \mathfrak{g}$.

Define a bilinear form on \mathfrak{g}_{-1} by

$$(x,y) := ([x,y] \mid e) = \chi([x,y]) \text{ for } x,y \in \mathfrak{g}_{-1}.$$

Remark 4.1. The bilinear form on \mathfrak{g}_{-1} is skew-symmetric and non-degenerate.

Proof. The skew-symmetry follows by definition.

The non-degeneracy follows from the bijection

$$ad(e): \mathfrak{g}_{-1} \longrightarrow \mathfrak{g}_1$$

and the identity

$$(x,y) = ([x,y] \mid e) = (x \mid [y,e]).$$

Hence $\dim \mathfrak{g}_{-1}$ is even. Pick a Lagrangian (i.e. a maximal isotropic) subspace \mathfrak{l} of \mathfrak{g}_{-1} with respect to the form (\cdot,\cdot) . Then $\dim \mathfrak{l} = \frac{1}{2} \dim \mathfrak{g}_{-1}$.

Let $\mathfrak{m}=(\oplus_{j\leq -2}\mathfrak{g}_j)\oplus \mathfrak{l}$. Note that \mathfrak{m} is a nilpotent subalgebra of \mathfrak{g} . The restriction of χ to \mathfrak{m}

$$\chi:\mathfrak{m}\longrightarrow\mathbb{C}$$

defines a one-dimensional representation $\mathbb{C}_{\chi} = \langle v \rangle$ of m. In fact, if $x \in \mathfrak{g}_i$, $y \in \mathfrak{g}_j$ and $i \leq -2$ or $j \leq -2$, then $\chi([x,y]) = 0$ by Proposition 1. If $x,y \in \mathfrak{l} \subset \mathfrak{g}_{-1}$, we have that $\chi([x,y]) = (x,y) = 0$ thanks to the Lagrangian condition on \mathfrak{l} .

Let I_{χ} be the left ideal of $U(\mathfrak{g})$ generated by $a - \chi(a)$ for all $a \in \mathfrak{m}$.

Definition 4.1. The generalized Whittaker module is

$$Q_{\chi} := U(\mathfrak{g}) \otimes_{U(\mathfrak{m})} \mathbb{C}_{\chi} \cong U(\mathfrak{g})/I_{\chi}.$$

Definition 4.2. [Pr1]. The finite W-algebra associated to the nilpotent element e is

$$W_{\chi} := End_{U(\mathfrak{g})}(Q_{\chi})^{op}.$$

Example 4.1. Let e = 0. Then $\chi = 0$, $\mathfrak{g}_0 = \mathfrak{g}$, $\mathfrak{m} = 0$,

$$Q_{\chi} = U(\mathfrak{g}), \quad W_{\chi} = U(\mathfrak{g}).$$

Theorem 4.1. B. Kostant (1978) [Ko].

For a regular nilpotent element $e \in \mathfrak{g}$, $W_{\chi} \cong Z(\mathfrak{g})$, the center of $U(\mathfrak{g})$.

Remark 4.2. The isoclasses of finite W-algebras do not depend on good \mathbb{Z} -grading ([BG]) and Lagrangian subspace \mathfrak{l} ([GG]).

São Paulo J.Math.Sci. 7, 1 (2013), 1-32

5. The Whittaker model definition of finite W-algebras

We have given endomorphism algebra definition of W_{χ} . Note that W_{χ} can also be identified as the space of Whittaker vectors in $U(\mathfrak{g})/I_{\chi}$.

Definition 5.1. A g-module L is called a Whittaker module if $a - \chi(a)$ for all $a \in \mathfrak{m}$ acts on L locally nilpotently. A Whittaker vector in a Whittaker \mathfrak{g} -module L is a vector $x \in L$ which satisfies $(a - \chi(a))x = 0$ for all $a \in \mathfrak{m}$.

Proposition 5.1. (see [W]). Let $\pi: U(\mathfrak{g}) \to U(\mathfrak{g})/I_{\chi}$ be the natural projection, and let $y \in U(\mathfrak{g})$. Then

$$W_{\chi} = \{\pi(y) \in U(\mathfrak{g})/I_{\chi} \mid (a - \chi(a))y \in I_{\chi} \text{ for all } a \in \mathfrak{m}\}.$$

Proof. Since $Q_{\chi} = U(\mathfrak{g})/I_{\chi}$ is a cyclic module, then any endomorphism of the \mathfrak{g} -module Q_{χ} is determined by the image of ν . The image of ν must be annihilated by I_{χ} . Hence W_{χ} can be identified as the space of Whittaker vectors in $U(\mathfrak{g})/I_{\chi}$.

By definition of I_{χ} , W_{χ} can be further identified with the subspace of ad m-invariants in Q_{γ} :

$$W_{\chi} = (Q_{\chi})^{ad\mathfrak{m}} := \{ \pi(y) \in U(\mathfrak{g})/I_{\chi} \mid [a, y] \in I_{\chi} \text{ for all } a \in \mathfrak{m} \}.$$
 (1)

The algebra structure on W_{χ} is given by

$$\pi(y_1)\pi(y_2) = \pi(y_1y_2)$$

for $y_i \in U(\mathfrak{g})$ such that $[a, y_i] \in I_{\chi}$ for all $a \in \mathfrak{m}$ and i = 1, 2.

Exercise 2. Check directly that

- (1) The ideal I_χ is ad m-invariant, hence $(Q_\chi)^{ad\mathfrak{m}}$ as a vector space is well-defined
- (2) For y_i satisfying $[a, y_i] \in I_{\chi}$ for all $a \in \mathfrak{m}$ and i = 1, 2, we have $[a, y_1 y_2] \in I_{\chi}$ for all $a \in \mathfrak{m}$. Hence $(Q_{\chi})^{ad\mathfrak{m}}$ as an algebra is well-defined.

6. Finite W-algebras for even good \mathbb{Z} -gradings

Definition 6.1. A good \mathbb{Z} -grading $\mathfrak{g} = \bigoplus_{j \in \mathfrak{gg}_j}$ is called even, if $\mathfrak{g}_j = 0$ unless j is an even integer.

The definition of W_{χ} for an even good \mathbb{Z} -grading is simpler, since in this case $\mathfrak{g}_{-1}=0$. Hence there is no complications of choice of a Lagrangian subspace \mathfrak{g} and $\mathfrak{m}=\oplus_{j\leq -2}\mathfrak{g}_{j}$.

П

Let $\mathfrak{p} := \bigoplus_{j \geq 0} \mathfrak{g}_j$ be a parabolic subalgebra of \mathfrak{g} . From the PBW theorem,

$$U(\mathfrak{g}) = U(\mathfrak{p}) \oplus I_{\chi}.$$

The projection

$$pr_{\chi}: U(\mathfrak{g}) \longrightarrow U(\mathfrak{p})$$

along this direct sum decomposition induces an isomorphism:

$$\overline{pr}_{\gamma}: U(\mathfrak{g})/I_{\chi} \stackrel{\sim}{\longrightarrow} U(\mathfrak{p}).$$

The algebra W_{χ} can be regarded as a *subalgebra* of $U(\mathfrak{p})$.

Consider a χ -twisted adjoint action of \mathfrak{m} on $U(\mathfrak{p})$ by

$$a \cdot y := pr_{\chi}([a, y])$$
 for $a \in \mathfrak{m}$ and $y \in U(\mathfrak{p})$.

Identify W_{χ} as

$$W_{\chi} = U(\mathfrak{p})^{ad\mathfrak{m}} := \{ y \in U(\mathfrak{p}) \mid [a, y] \in I_{\chi} \text{ for all } a \in \mathfrak{m} \}.$$

Since $\overline{pr}_{\chi}: U(\mathfrak{g})/I_{\chi} \stackrel{\sim}{\longrightarrow} U(\mathfrak{p})$ is an isomorphism of \mathfrak{m} -modules, this definition is equivalent to the definition (1) (for even \mathbb{Z} -gradings) [W].

7. Filtration on W_{χ}

To introduce a filtration on W_{χ} , first we will recall the definition of a filtered algebra [A].

Definition 7.1. A filtered algebra is an algebra A, which has an increasing sequence of subspaces such that

$$\{0\} \subset F_0 \subset F_1 \subset \ldots \subset F_i \subset \ldots A, \quad A = \bigcup_i F_i,$$

which is compatible with the multiplication:

$$F_i \cdot F_j \subset F_{i+j}$$
 for all i, j .

As a vector space the associated graded algebra is

$$Gr(A) := \bigoplus_i G_i,$$

where

$$G_i = F_i/F_{i-1}$$
 for all $i > 0$, $G_0 = F_0$,

with multiplication

$$(x+F_{i-1})(y+F_{i-1}) = xy+F_{i+j-1}, x \in F_i, y \in F_j.$$

São Paulo J.Math.Sci. 7, 1 (2013), 1-32

Definition 7.2. *Kazhdan filtration on* W_{χ} .

Let \mathfrak{g} be a reductive Lie algebra with a Dynkin \mathbb{Z} -grading: $\mathfrak{g} = \bigoplus_{j \in \mathbb{Z}} \mathfrak{g}_j$, and let $\mathfrak{m} = (\bigoplus_{j \leq -2} \mathfrak{g}_j) \oplus \mathfrak{l}$. Let $\mathfrak{n} \subset \mathfrak{g}$ be an ad(h)-invariant subspace such that $\mathfrak{g} = \mathfrak{m} \oplus \mathfrak{n}$ and $\mathbb{C}_{\chi} = \langle v \rangle$ be one-dimensional representation of \mathfrak{m} . Then

$$W_{\chi} = \{ X \in U(\mathfrak{g})/U(\mathfrak{g})\mathfrak{m} \cong S(\mathfrak{n}) \mid aXv = \chi(a)Xv \text{ for all } a \in \mathfrak{m} \}.$$

For any $y \in \mathfrak{n}$, let wt(y) be the weight of y with respect to ad(h) and

$$deg(y) = wt(y) + 2$$

The degree function deg induces a \mathbb{Z} -grading on $S(\mathfrak{n})$. This grading defines a filtration on W_{γ} .

Theorem 7.1. *A. Premet* [*Pr1*].

The associated graded algebra $Gr(W_{\chi})$ is isomorphic to $S(\mathfrak{g}^e)$.

Idea of Proof. Introduce the map

$$P: W_{\chi} \longrightarrow S(\mathfrak{g}^e).$$

For $X \in W_{\chi} \subset S(\mathfrak{n})$, let P(X) be the highest weight component in the highest degree component of X, then P(X) belongs to $S(\mathfrak{g}^e)$.

Example 7.1. If e = 0, then the statement of Theorem 3 is the PBW theorem. In this case $W_{\chi} = U(\mathfrak{g})$, $\mathfrak{g}^e = \mathfrak{g}$ and we have that

$$Gr(U(\mathfrak{g})) \cong S(\mathfrak{g}).$$

The finite W-algebras associated to *regular* nilpotent elements are called the *principal* finite W-algebras.

8. The case of $\mathfrak{g} = \mathfrak{gl}(2)$

In this section, we describe the principal finite W-algebra for $\mathfrak{gl}(2)$.

Form: $(a|b) = \operatorname{tr}(ab)$.

$$e = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right), \quad f = \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right), \quad h = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right).$$

Note that e is a regular nilpotent element, h defines an even Dynkin \mathbb{Z} -grading of \mathfrak{g} whose degrees on the elementary matrices E_{ij} are

$$\left(\begin{array}{cc} 0 & 2 \\ -2 & 0 \end{array}\right).$$

Let $z = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, then z is a central element of g.

$$\mathfrak{g}^e = < z, e>, \quad \dim \mathfrak{g}^e = \dim \mathfrak{g}_0 = 2.$$

$$\begin{split} \mathfrak{m} &= \mathfrak{g}_{-2} = < f>, \quad \chi(f) = (f|e) = 1, \\ \mathfrak{n} &= \mathfrak{p} = \mathfrak{g}_0 \oplus \mathfrak{g}_2, \quad \mathbb{C}_{\gamma} = < v>. \end{split}$$

 W_{χ} is the polynomial algebra generated by $\pi(z)$ and $\pi(e + \frac{1}{4}h^2 - \frac{1}{2}h)$.

$$\Omega = ef + fe + \frac{1}{2}h^2 \in Z(\mathfrak{g})$$
 is the quadratic Cazimir element of \mathfrak{g} .

We have that

$$\frac{1}{2}\pi(\Omega) = \frac{1}{2}\pi(ef + fe + \frac{1}{2}h^2)) = \frac{1}{2}\pi(2ef - h + \frac{1}{2}h^2)) = \pi(e + \frac{1}{4}h^2 - \frac{1}{2}h).$$

The generators of W_{χ} can be identified with elements of \mathfrak{g}^e :

$$\pi(z) \xrightarrow{P} z,$$
 $\frac{1}{2}\pi(\Omega) \xrightarrow{P} e.$

9. The case of $\mathfrak{g} = \mathfrak{gl}(n)$

In this section, we describe the principal finite W-algebra for $\mathfrak{gl}(n)$.

Form: $(a|b) = \operatorname{tr}(ab)$. Let

 $h = \text{diag}(n-1, n-3, \dots, 3-n, 1-n)$. Note that e is a regular nilpotent element, and h defines an even Dynkin \mathbb{Z} -grading of \mathfrak{g} whose degrees on the elementary matrices E_{ij} are

$$\begin{pmatrix} 0 & 2 & 4 & 6 & \cdots & 2n-2 \\ -2 & 0 & 2 & 4 & \cdots & 2n-4 \\ -4 & -2 & 0 & 2 & \cdots & 2n-6 \\ -6 & -4 & -2 & 0 & \cdots & 2n-8 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 2-2n & \cdots & -6 & -4 & -2 & 0 \end{pmatrix}.$$

Let z = diag(1, ..., 1) be a central element of $\mathfrak{gl}(n)$. Then

$$\mathfrak{g}^e = \langle z, e, e^2, e^3, \dots, e^{n-1} \rangle$$
, $\dim \mathfrak{g}^e = \dim \mathfrak{g}_0 = n$.

$$\mathfrak{m} = \bigoplus_{j \geq 2}^n \mathfrak{g}_{2-2j}, \quad \boldsymbol{\chi}(E_{i+1,i}) = 1, \quad \boldsymbol{\chi}(E_{i+k,i}) = 0 \text{ if } k \geq 2.$$

Recall that the *Casimir elements* of \mathfrak{g} are generators of $Z(\mathfrak{g})$, the center of $U(\mathfrak{g})$. If $\mathfrak{g} = \mathfrak{gl}(n)$ they are given as follows:

$$\Omega_k = \sum_{i_1, i_2, \dots, i_k} E_{i_1 i_2} E_{i_2 i_3} \dots E_{i_k i_1}, \text{ for } k \ge 1.$$

Note that W_{χ} is the polynomial algebra generated by n elements:

$$\pi(z), \pi(\Omega_2), \pi(\Omega_3), \ldots, \pi(\Omega_n).$$

The generators of W_{χ} can be identified with elements of \mathfrak{g}^e :

$$\pi(z) \xrightarrow{P} z,$$

$$\frac{1}{k}\pi(\Omega_k) \xrightarrow{P} e^{k-1} \text{ for } k = 2, \dots, n.$$

10. Lie superalgebras

Let
$$\mathbb{Z}_2 = \mathbb{Z}/2\mathbb{Z} = \{\bar{0}, \bar{1}\}.$$

Definition 10.1. A superspace is a \mathbb{Z}_2 -graded vector space

$$V = V_{\bar{0}} \oplus V_{\bar{1}}$$
.

Definition 10.2.

The dimension of a superspace: $\dim V = (m|n)$, where $\dim V_{\bar{0}} = m$, $\dim V_{\bar{0}} = n$. The parity of an element: if $v \in V_{\bar{0}}$ then $p(v) = \bar{0}$, if $v \in V_{\bar{1}}$ then $p(v) = \bar{1}$.

Definition 10.3. A superalgebra is a \mathbb{Z}_2 -graded algebra

$$A = A_{\bar{0}} \oplus A_{\bar{1}}, \quad A_i A_j \subseteq A_{i+j} \text{ for } i, j \in \mathbb{Z}_2.$$

Definition 10.4. A Lie superalgebra is a \mathbb{Z}_2 -graded algebra

$$\mathfrak{g} = \mathfrak{g}_{\bar{0}} \oplus \mathfrak{g}_{\bar{1}}$$

with an operation [,] satisfying the following axioms:

1. super-anticommutativity:

$$[x,y] = -(-1)^{p(x)p(y)}[y,x]$$
 for all $x,y \in \mathfrak{g}$,

2. super-Jacobi identity:

$$[x, [y, z]] = [[x, y], z] + (-1)^{p(x)p(y)}[y, [x, z]]$$
 for all $x, y, z \in \mathfrak{g}$.

Remark 10.1. $\mathfrak{g}_{\bar{0}}$ is a Lie algebra, $[\mathfrak{g}_{\bar{0}},\mathfrak{g}_{\bar{1}}] \subseteq \mathfrak{g}_{\bar{1}}$, hence $\mathfrak{g}_{\bar{1}}$ is a module over $\mathfrak{g}_{\bar{0}}$, $[\mathfrak{g}_{\bar{1}},\mathfrak{g}_{\bar{1}}] \subseteq \mathfrak{g}_{\bar{0}}$.

Definition 10.5. A Lie superalgebra \mathfrak{g} is simple, if it is not abelian and the only \mathbb{Z}_2 -graded ideals of \mathfrak{g} are $\{0\}$ and \mathfrak{g} .

Remark 10.2. Sign Rule. If an element x with parity p(x) moves through an element y with parity p(y), then the sign $(-1)^{p(x)p(y)}$ appears in the formula.

11. Main examples of Lie superalgebras

Example 11.1. The General Linear Lie superalgebra.

$$\begin{split} \mathfrak{g} &= \mathfrak{gl}(m|n) = \mathfrak{g}_{\bar{0}} \oplus \mathfrak{g}_{\bar{1}}, \ where \\ \mathfrak{g}_{\bar{0}} &= \big\{ \left(\begin{array}{c|c} A & 0 \\ \hline 0 & B \end{array} \right) \mid A \ is \ a \ m \times m \ matrix, B \ is \ a \ n \times n \ matrix \, \big\}, \\ \mathfrak{g}_{\bar{1}} &= \big\{ \left(\begin{array}{c|c} 0 & C \\ \hline D & 0 \end{array} \right) \mid C \ is \ a \ m \times n \ matrix, D \ is \ a \ n \times m \ matrix \, \big\}. \end{split}$$

Definition 11.1. Super-bracket:

$$[X,Y] = XY - (-1)^{p(X)p(Y)}YX \text{ for } X,Y \in \mathfrak{g}.$$

Super-trace:

$$str\left(\begin{array}{c|c} A & C \\ \hline D & B \end{array}\right) = tr(A) - tr(B).$$

Example 11.2. The Special Linear Lie superalgebra:

$$\mathfrak{sl}(m|n):=\{X\in\mathfrak{gl}(m|n)\mid str X=0\}.$$

Note that $\mathfrak{sl}(m|n)$ is simple if and only if $m \neq n$. If m = n then $\mathfrak{sl}(n|n)/<1_{2n}>$ is simple.

Example 11.3. The Orthogonal-Symplectic Lie superalgebra.

Let F be a non-degenerate super symmetric bilinear form on a superspace $V = V_{\bar{0}} \oplus V_{\bar{1}}$, where dim V = (m|n):

$$F(v, w) = (-1)^{p(v)p(w)} F(w, v)$$
 $v, w \in V$.

The restriction of F to $V_{\bar{0}}$ is symmetric, and to $V_{\bar{1}}$ is skew-symmetric, hence n is even.

 $\mathfrak{vsp}(m|n) := \{X \in \mathfrak{gl}(m|n) \mid F(X(v),w) + (-1)^{p(X)p(v)} F(v,X(w)) = 0, \ \forall v,w \in V\}.$

For instance, let m = 2l, n = 2r.

$$F = \begin{pmatrix} 0 & 1_l & 0 & 0 \\ 1_l & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1_r \\ 0 & 0 & -1_r & 0 \end{pmatrix},$$

where 1_l is the identity $l \times l$ -matrix, 1_r is the identity $r \times r$ -matrix. Then

$$\mathfrak{vsp}(m|n) = \begin{pmatrix} A & B & X & P \\ C & -A^t & Y & Q \\ \hline Q^t & P^t & D & E \\ -Y^t & -X^t & F & -D^t \end{pmatrix},$$

where A is any $l \times l$ matrix, B and C are skew-symmetric $l \times l$ matrices, D is any $r \times r$ matrix, E and F are symmetric $r \times r$ matrices, X, Y, P, Q are any $l \times r$ matrices.

12. Classification of simple finite-dimensional Lie superalgebras

Definition 12.1. [K]. A Lie superalgebra $\mathfrak{g} = \mathfrak{g}_{\bar{0}} \oplus \mathfrak{g}_{\bar{1}}$ is called classical, if it is simple, and the representation of the Lie algebra $\mathfrak{g}_{\bar{0}}$ on $\mathfrak{g}_{\bar{1}}$ is completely reducible.

Definition 12.2. A classical Lie superalgebra g is called basic, if g admits an even non-degenerate g-invariant bilinear form.

Definition 12.3. A classical Lie superalgebra \mathfrak{g} is of Type I, if $\mathfrak{g}_{\bar{1}}$ is a direct sum if two simple $\mathfrak{g}_{\bar{0}}$ -submodules.

Remark 12.1. Notations:

$$\begin{split} &A(m,n)=\mathfrak{sl}(m+1|n+1) \ for \ m\neq n, \quad m,n\geq 0,\\ &A(n,n)=\mathfrak{sl}(n+1|n+1)/<1_{2n+2}>, \quad n>0,\\ &B(m,n)=\mathfrak{vsp}(2m+1|2n), \quad m\geq 0,n>0,\\ &D(m,n)=\mathfrak{vsp}(2m|2n), \quad m\geq 2,n>0,\\ &C(n)=\mathfrak{vsp}(2|2n-2), \quad n\geq 2. \end{split}$$

Theorem 12.1. V. G. Kac (1977) [K].

A simple finite-dimensional Lie superalgebra over an algebraically closed field of characteristic zero is isomorphic either to one of the simple Lie algebras, or to one of classical Lie superalgebras:

$$A(m,n), B(m,n), C(n), D(m,n), D(2,1;\alpha), F(4), G(3), P(n), \tilde{Q}(n),$$
 or to one of Lie superalgebras of Cartan type: $W(n), S(n), H(n), \tilde{S}(n)$.

13. Finite W-algebras for Lie superalgebras (joint work with V. Serganova)

Finite *W*-algebras for Lie superalgebras have been studied by C. Briot, E. Ragoucy, J. Brundan, J. Brown, S. Goodwin, W. Wang, L. Zhao and other mathematicians and physicists [BR, BBG, W, Z]. Analogues of finite *W*-algebras for Lie superalgebras in terms of BRST cohomology were defined in [DK].

We consider the case when \mathfrak{g} is a classical simple Lie superalgebra, i.e. $\mathfrak{g} = \mathfrak{g}_{\bar{0}} \oplus \mathfrak{g}_{\bar{1}}$, $\mathfrak{g}_{\bar{0}}$ is a reductive Lie algebra, and \mathfrak{g} has an invariant super-symmetric bilinear form $(\cdot|\cdot)$.

Remark 13.1. The Premet's definition makes sense for Lie superalgebras. One should consider a good \mathbb{Z} -grading $\mathfrak{g} = \bigoplus_{j \in \mathbb{Z}} \mathfrak{g}_j$ for $e \in (\mathfrak{g}_2)_{\bar{0}}$ (i.e. a \mathbb{Z} -grading which satisfies properties (2) and (3) of Def. 6). Note that good \mathbb{Z} -gradings of basic Lie superalgebras over an algebraically closed field of characteristic zero were classified in [H].

Let $e \in \mathfrak{g}_{\bar{0}}$ be an even nilpotent element, and we fix $\mathfrak{sl}(2) = \langle e,h,f \rangle$. As in the Lie algebra case, the linear operator ad(h) defines a \mathbb{Z} -grading $\mathfrak{g} = \bigoplus_{j \in \mathbb{Z}} \mathfrak{g}_i$. Let $\mathfrak{g}^e := \operatorname{Ker}(ad(e))$. Note that $\dim \mathfrak{g}^e = \dim \mathfrak{g}_0 + \dim \mathfrak{g}_1$. Let \mathfrak{l} be a Lagrangian subspace in \mathfrak{g}_{-1} , with respect to the super-skew-symmetric bilinear form (x,y) = ([x,y]|e). We consider a nilpotent subalgebra $\mathfrak{m} = \bigoplus_{j \leq -2} \mathfrak{g}_j \oplus \mathfrak{l}$ of \mathfrak{g} . Let $\chi \in \mathfrak{g}^*$ be defined by $\chi(x) = (x|e)$. Let $\mathbb{C}_{\chi} = \langle v \rangle$ be the one-dimensional \mathfrak{m} -module with character χ . Let I_{χ} be the left ideal of $U(\mathfrak{g})$ generated by $a - \chi(a)$ for all $a \in \mathfrak{m}$.

The generalized Whittaker module Q_{χ} is defined as in Def.8. The finite W-algebra W_{χ} associated to the nilpotent element e is defined as in Def.9.

Remark 13.2.

- (1) The isoclasses of W_{χ} do not depend on the choice of Lagrangian subspace [Z].
- (2) Theorem of Kostant does not hold for Lie superalgebras, since W_{χ} must have a non-trivial odd part, and the center $Z(\mathfrak{g})$ of $U(\mathfrak{g})$ is even.
- (3) Kazhdan filtration on W_{χ} can be defined exactly as in the Lie algebra case (see Def. 13).

Proposition 13.1. $Gr(W_{\gamma})$ is supercommutative.

Remark 13.3. If $\dim(\mathfrak{g}_{-1})_{\bar{1}}$ is even, then one can construct the similar map

$$P: W_{\gamma} \longrightarrow S(\mathfrak{g}^e)$$

by taking the highest weight component in the highest degree component.

If $\dim(\mathfrak{g}_{-1})_{\bar{1}}$ is odd, then there exists an odd element θ in $\mathfrak{g}_{-1} \cap \mathfrak{l}^{\perp}$ such that $\pi(\theta) \in W_{\chi}$ and $\pi(\theta)^2 = 1$.

In what follows we study the *principal* finite *W*-algebras, which are the finite *W*-algebras associated to even *regular* nilpotent elements.

14. **Defect**

Definition 14.1. [KW].

Let \mathfrak{g} be a classical Lie superalgebra, and let \triangle be the set of roots with respect to a maximal torus in $\mathfrak{g}_{\bar{0}}$. If \mathfrak{g} is a basic Lie superalgebra, then the defect of \mathfrak{g} def(\mathfrak{g}) is the dimension of a maximal isotropic subspace in the \mathbb{R} -span of \triangle .

Example 14.1.

$$def(\mathfrak{sl}(m|n)) = min(m,n),$$

$$def(\mathfrak{vsp}(2m|2n)) = def(\mathfrak{vsp}(2m+1|2n)) = min(m,n).$$

The exceptional Lie superalgebras

$$D(2,1;\alpha),G(3),F(4)$$

have defect one.

Remark 14.1. [PS1]. If e is a regular nilpotent element in g, then

$$\dim(\mathfrak{g}^e)_{\bar{1}} = 2def(\mathfrak{g}) \text{ or } 2def(\mathfrak{g}) + 1.$$

$$\dim(\mathfrak{g}^e)_{\bar{1}} = 2def(\mathfrak{g}), \text{ if } \mathfrak{g} = \mathfrak{sl}(m|n), \text{ } \mathfrak{vsp}(2m+1|2n), \text{ } m \geq n; \text{ } \mathfrak{vsp}(2m|2n), \text{ } m \leq n, \text{ } G(3);$$

$$\dim(\mathfrak{g}^e)_{\bar{1}} = 2def(\mathfrak{g}) + 1$$
, if $\mathfrak{g} = \mathfrak{vsp}(2m+1|2n)$, $m < n$; $\mathfrak{vsp}(2m|2n)$, $m > n$; $D(2,1;\alpha)$, $F(4)$.

15. The case of $\mathfrak{g} = \mathfrak{sl}(1|n)$

In this section, we describe the principal finite W-algebra for $\mathfrak{sl}(1|n)$ and more generally, for a Lie superalgebra of Type I and defect one.

Form:
$$(a|b) = -\operatorname{str}(ab)$$

$$h = diag(0|n-1, n-3, \dots, 3-n, 1-n)$$

Note that e is a regular nilpotent element. We will use the following notations for some elementary matrices in $\mathfrak{gl}(1|n)$:

$$E_{ij} = \begin{pmatrix} h_0 & \mu_1 & \mu_2 & \mu_3 & \cdots & \mu_n \\ \xi_1 & h_1 & e_1 & \cdots & \cdots & \cdots \\ \xi_2 & f_1 & h_2 & e_2 & \cdots & \cdots \\ \xi_3 & \cdots & f_2 & h_3 & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots & e_{n-1} \\ \xi_n & \cdots & \cdots & \cdots & f_{n-1} & h_n \end{pmatrix}.$$

h defines a Dynkin \mathbb{Z} -grading of \mathfrak{g} whose degrees on the elementary matrices E_{ij} are

$$\begin{pmatrix}
0 & 1-n & 3-n & \cdots & n-3 & \mathbf{n-1} \\
\mathbf{n-1} & 0 & 2 & 4 & \cdots & 2n-2 \\
n-3 & -2 & 0 & 4 & \cdots & 2n-4 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
3-n & 4-2n & \cdots & \cdots & 0 & 2 \\
1-n & 2-2n & \cdots & \cdots & -2 & 0
\end{pmatrix}.$$

$$\mathfrak{g}^e = \langle e, e^2, \cdots, e^{n-1}, c \mid \xi_1, \mu_n \rangle, \quad \dim(\mathfrak{g}^e) = (n|2).$$

Let $\mathfrak{m} = (\bigoplus_{i \le -2} \mathfrak{g}_i) \bigoplus \mathfrak{l}$. Note that if *n* is odd, then $\mathfrak{l} = 0$, and if n = 2k, then $\mathfrak{l}=<\xi_{k+1}>$. Note also that \mathfrak{m} is generated by $f_1,\ldots,f_n;\mu_1,\ldots,\mu_{k-1},\xi_{k+1},\ldots,\xi_n,$ if n=2k, and by $f_1,\ldots,f_n;\mu_1,\ldots,\mu_k,\xi_{k+2},\ldots,\xi_n,$ if n=2k+1.

$$\chi(f_i) = 1 \quad \chi(\mu_i) = \chi(\xi_i) = 0.$$

Let n be an ad(h)-invariant subspace of g: $g = m \oplus n$. Recall that g admits \mathbb{Z} grading $\mathfrak{g} = \mathfrak{g}^{-1} \oplus \mathfrak{g}^0 \oplus \mathfrak{g}^1$ consistent with the \mathbb{Z}_2 -grading:

$$\mathfrak{g}^{0} = \begin{pmatrix} & * & 0 & \dots & 0 \\ \hline 0 & * & * & * \\ \dots & \dots & \dots & \dots \\ 0 & * & * & * \end{pmatrix}, \quad \mathfrak{g}^{1} = \begin{pmatrix} & 0 & * & \dots & * \\ \hline 0 & 0 & 0 & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ \hline 0 & 0 & 0 & 0 & 0 \end{pmatrix},$$
$$\mathfrak{g}^{-1} = \begin{pmatrix} & 0 & 0 & \dots & 0 \\ \hline * & 0 & 0 & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ * & 0 & 0 & 0 & 0 \end{pmatrix}$$

Fix an ad(h)-homogeneous bases:

 $B(\mathfrak{m}_{-1})$ of $\mathfrak{m} \cap \mathfrak{g}^{-1}$, $B(\mathfrak{m}_1)$ of $\mathfrak{m} \cap \mathfrak{g}^1$, $B(\mathfrak{n}_{-1})$ of $\mathfrak{n} \cap \mathfrak{g}^{-1}$, $B(\mathfrak{n}_1)$ of $\mathfrak{n} \cap \mathfrak{g}^1$. Set

$$R_1 = \left(\prod_{x \in B(\mathfrak{m}_1)} x\right) \left(\prod_{y \in B(\mathfrak{n}_{-1})} y\right),$$

$$R_2 = \left(\prod_{y \in B(\mathfrak{m}_{-1})} y\right) \left(\prod_{x \in B(\mathfrak{n}_1)} x\right).$$

Note that $\pi(R_1)$ and $\pi(R_2)$ are both Whittaker vectors, hence $\pi(R_1), \pi(R_2) \in W_{\chi}$. Let

$$p(E_{ij}) = p(i) + p(j)$$

 $p(E_{ij}) = p(i) + p(j), \label{eq:period}$ where E_{ij} is an elementary matrix, and

$$p(i) = \left\{ \begin{array}{ll} 0 & \quad if \quad 1 \leq i \leq m, \\ 1 & \quad if \quad m+1 \leq i \leq m+n. \end{array} \right.$$

Remark 15.1. Casimir elements of $\mathfrak{gl}(m|n)$ are

$$\Omega_k = \sum_{i_1, i_2, \dots, i_k} (-1)^{p(i_2) + \dots + p(i_k)} E_{i_1 i_2} E_{i_2 i_3} \dots E_{i_k i_1}.$$

Even generators of W_{χ} are $\pi(\Omega_k)$, for k = 2, ... n and $\pi(c)$.

The generators of W_{χ} can be identified with elements of \mathfrak{g}^e :

$$(-1)^{k+1} \frac{1}{k} \pi(\Omega_k) \xrightarrow{P} e^{k-1}, \quad k = 2, \dots, n,$$

$$\pi(c) \xrightarrow{P} c,$$

$$\pi(R_1) \xrightarrow{P} \xi_1,$$

$$\pi(R_2) \xrightarrow{P} \mu_n.$$

Theorem 15.1. [PS1]. Let \mathfrak{g} be a Lie superalgebra of Type I and defect one (i.e. $\mathfrak{g} = \mathfrak{sl}(1|n)$ or $\mathfrak{vsp}(2|2n-2)$). Let n be the rank of $\mathfrak{g}_{\bar{0}}$, c be a central element of $\mathfrak{g}_{\bar{0}}$, and $\Omega_2, \ldots, \Omega_n$ be the first n-1 Casimir elements in $Z(\mathfrak{g})$. Then the principal finite W-algebra W_{χ} is a finite extension of $\mathbb{C}[\pi(c), \pi(\Omega_2), \ldots, \pi(\Omega_n)]$ with odd generators $\pi(R_1), \pi(R_2)$ and defining relations

$$\pi(R_1)^2 = \pi(R_2)^2 = 0, \quad [\pi(c), \pi(R_1)] = -\pi(R_1), \quad [\pi(c), \pi(R_2)] = \pi(R_2), \\ [\pi(\Omega_i), \pi(R_1)] = [\pi(\Omega_i), \pi(R_2)] = 0, \quad i = 2, \dots, n, \\ [\pi(R_1), \pi(R_2)] = \pi(\tilde{\Omega}),$$

where

$$\tilde{\Omega} = \prod_{y \in B(\mathfrak{q}^{-1})} ad \ y (\prod_{x \in B(\mathfrak{q}^1)} x)$$

is an element of $Z(\mathfrak{g})$. In this case $W_{\chi} \cong U(\mathfrak{g}^e)$.

16. The case of $g = \mathfrak{gl}(n|n)$

In this section, we outline the principal finite W-algebra for $\mathfrak{gl}(n|n)$.

Form: (a|b) = str(ab). We will use the following notations for some elementary matrices in $\mathfrak{gl}(n|n)$:

Let $\mathfrak{sl}(2)=\langle e,h,f>$, where $e=e_1+e_2+\cdots e_{2n-2},f=\sum_{i=1}^{n-1}i(n-i)(f_i+g_i),$ $h=\operatorname{diag}(n-1,n-3,\cdots,1-n\mid n-1,n-3,\cdots,1-n).$ Note that e is a regular nilpotent element. Let $z=\operatorname{diag}(1,\cdots,1|1,\cdots,1),\,c=\operatorname{diag}(1,\cdots,1|-1,\cdots,-1).$ Note that $\operatorname{dim}(\mathfrak{g}^e)=(2n|2n).$ Explicitly, $\mathfrak{g}^e=\mathfrak{g}^e_0\oplus\mathfrak{g}^e_1$, where $\mathfrak{g}^e_0=\langle (e_1+\cdots+e_{n-1})^i,(e_n+\cdots+e_{2n-2})^i,z,c>,$ $\mathfrak{g}^e_1=\langle (x_1+\cdots+x_n),(y_1+\cdots+y_n),(x_{n+1}+\cdots+x_{2n-1})^i,(y_{n+1}+\cdots+y_{2n-1})^i>$, where $i=1,\ldots,n-1,$ and the powers are considered in the corresponding $n\times n$ matrices.

Theorem 16.1. [PS1]. In the case when $\mathfrak{g} = \mathfrak{gl}(n|n)$, \mathfrak{g}^e is isomorphic to the truncated Lie superalgebra of polynomial currents in $\mathfrak{gl}(1|1)$.

$$\mathfrak{gl}(1|1) = \{ \left(\frac{a_{11} \mid a_{12}}{a_{21} \mid a_{22}} \right) \mid a_{ij} \in \mathbb{C} \}.$$

The isomorphism

$$\varphi: \mathfrak{g}^e \longrightarrow \mathfrak{gl}(1|1) \otimes \mathbb{C}[t]/(t^n)$$

is given as follows:

$$\varphi((e_1 + \dots + e_{n-1})^i) = E_{11} \otimes t^i, \qquad \varphi((e_n + \dots + e_{2n-2})^i) = E_{22} \otimes t^i,
\varphi((x_{n+1} + \dots + x_{2n-1})^i) = E_{21} \otimes t^i, \qquad \varphi((y_{n+1} + \dots + y_{2n-1})^i) = E_{12} \otimes t^i,
\text{for } i = 1, \dots, n-1,$$

$$\varphi(\frac{z+c}{2}) = E_{11}, \ \varphi(\frac{z-c}{2}) = E_{22}, \ \varphi(x_1 + \dots + x_n) = E_{21}, \ \varphi(y_1 + \dots + y_n) = E_{12}.$$

h defines an even Dynkin \mathbb{Z} -grading of $\mathfrak{gl}(n|n)$ whose degrees on the elementary matrices are

$$\begin{pmatrix} 0 & 2 & \cdots & 2n-2 & 0 & 2 & \cdots & 2n-2 \\ -2 & 0 & \cdots & 2n-4 & -2 & 0 & \cdots & 2n-4 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 2-2n & \cdots & 0 & 2-2n & \cdots & \cdots & 0 \\ \hline 0 & 2 & \cdots & 2n-2 & 0 & 2 & \cdots & 2n-2 \\ -2 & 0 & \cdots & 2n-4 & -2 & 0 & \cdots & 2n-4 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 2-2n & \cdots & 0 & 2-2n & \cdots & 0 \end{pmatrix}.$$

$$\mathfrak{m} = \bigoplus_{j=2}^n \mathfrak{g}_{2-2j},$$

m is generated by ξ_i, μ_i, f_i, g_i for $i = 1, \dots, n-1$ Note that

$$\chi(f_i) = -\chi(g_i) = 1;$$
 $\chi(\mu_i) = \chi(\xi_i) = 0$, for $i = 1, \dots, n-1$.

Note that W_{χ} is generated by 2n even elements and 2n odd elements.

The generators of W_{χ} can be identified with elements of \mathfrak{g}^e using the map

$$P: W_{\gamma} \longrightarrow S(\mathfrak{g}^e).$$

17. The super-Yangian of $\mathfrak{gl}(m|n)$

In this section, we outline the correspondence between finite W-algebras for $\mathfrak{gl}(m|n)$ and super-Yangians.

Recall that for a finite-dimensional semi-simple Lie algebra \mathfrak{g} , the Yangian of \mathfrak{g} is an infinite-dimensional Hopf algebra $Y(\mathfrak{g})$. It is a deformation of the universal enveloping algebra of the Lie algebra of polynomial currents of \mathfrak{g} [M].

Definition 17.1. The super-Yangian $Y(\mathfrak{gl}(m|n))$ of $\mathfrak{gl}(m|n)$ is an associative unital superalgebra over $\mathbb C$ with a countable set of generators

$$T_{i,j}^{(1)}, T_{i,j}^{(2)}, \dots, \text{ where } i, j = 1, \dots, m+n.$$

The \mathbb{Z}_2 -grading of the algebra $Y(\mathfrak{gl}(m|n))$ is defined as follows:

$$p(T_{i,j}^{(n)}) = p(i) + p(j).$$

To write down defining relation for the generators of $Y(\mathfrak{gl}(m|n))$ we employ the formal series in $Y(\mathfrak{gl}(m|n)[[u^{-1}]]$:

$$T_{i,j}(u) = \delta_{ij} \cdot 1 + T_{i,j}^{(1)} u^{-1} + T_{i,j}^{(2)} u^{-2} + \dots$$

For all indices i, j, k, l we have the relations

$$(u-v)[T_{i,j}(u), T_{k,l}(v)] =$$

$$(-1)^{p(i)p(k)+p(i)p(l)+p(k)p(l)} ((T_{k,j}(u)T_{i,l}(v) - T_{k,j}(v)T_{i,l}(u)),$$
(2)

where v is a formal parameter independent of u, so that (2) is an equality in the algebra of formal Laurent series in u^{-1} , v^{-1} with coefficients in $Y(\mathfrak{gl}(m|n))$.

The following Proposition follows from [BR].

Proposition 17.1. *In the case when* $\mathfrak{g} = \mathfrak{gl}(n|n)$, *the corresponding principal finite W-algebra is isomorphic to the truncated super-Yangian* $Y(\mathfrak{gl}(1|1))/(n)$.

Remark 17.1. The principal finite W-algebras for $\mathfrak{gl}(m|n)$ associated to regular nilpotent elements were described as certain truncations of a shifted version of the super-Yangian $Y(\mathfrak{gl}(1|1))$ by J. Brown, J. Brundan and S. Goodwin in 2012 [BBG]. They also classified irreducible modules over principal finite W-algebras for $\mathfrak{gl}(m|n)$ by highest weight theory and proved that they are finite-dimensional. In 2003 C. Briot and E. Ragoucy observed that certain finite W-algebras based on $\mathfrak{gl}(m|n)$ can be realized as truncations of the super-Yangian of $\mathfrak{gl}(m|n)$ [BR]. They also observed that finite W-algebras for $\mathfrak{gl}(m|n)$ associated to non-regular nilpotent elements are connected to higher rank super-Yangians.

18. The case of $\mathfrak{g} = \mathbf{Q}(\mathbf{n})$

In this section, we construct a complete set of generators of the principal finite W-algebra for Q(n).

The *queer* Lie superalgebra is defined as follows

$$Q(n) := \left\{ \left(\begin{array}{c|c} A & B \\ \hline B & A \end{array} \right) \mid A, B \text{ are } n \times n \text{ matrices} \right\}.$$

Let otr
$$\left(\begin{array}{c|c} A & B \\ \hline B & A \end{array}\right) = \text{tr}B$$
.

Remark 18.1. Q(n) has one-dimensional center $\langle z \rangle$, where $z = 1_{2n}$. Let

$$SQ(n) = \{X \in Q(n) \mid otrX = 0\}.$$

Note that the Lie superalgebra $\tilde{Q}(n) := SQ(n)/\langle z \rangle$ *is simple.*

Let $e_{i,j}$ and $f_{i,j}$ be standard bases in A and B respectively:

$$e_{i,j} = \left(\begin{array}{c|c} E_{ij} & 0 \\ \hline 0 & E_{ij} \end{array}\right), \quad f_{i,j} = \left(\begin{array}{c|c} 0 & E_{ij} \\ \hline E_{ij} & 0 \end{array}\right),$$

where E_{ij} are elementary $n \times n$ matrices.

Note that $\mathfrak{g} = Q(n)$ admits an *odd* non-degenerate \mathfrak{g} -invariant super symmetric bilinear form

$$(x|y) := otr(xy) \text{ for } x, y \in \mathfrak{g}.$$

Therefore, we identify the coadjoint module \mathfrak{g}^* with $\Pi(\mathfrak{g})$, where Π is the functor changing the parity.

Let $\mathfrak{sl}(2) = \langle e, h, f \rangle$, where

$$e = \sum_{i=1}^{n-1} e_{i,i+1}, \quad h = \operatorname{diag}(n-1, n-3, \dots, 3-n, 1-n), \quad f = \sum_{i=1}^{n-1} i(n-i)e_{i+1,i}.$$

Note that e is a regular nilpotent element, h defines an even Dynkin \mathbb{Z} -grading of \mathfrak{g} whose degrees on the elementary matrices are

$$\begin{pmatrix} 0 & 2 & \cdots & 2n-2 & 0 & 2 & \cdots & 2n-2 \\ -2 & 0 & \cdots & 2n-4 & -2 & 0 & \cdots & 2n-4 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 2-2n & \cdots & 0 & 2-2n & \cdots & \cdots & 0 \\ \hline 0 & 2 & \cdots & 2n-2 & 0 & 2 & \cdots & 2n-2 \\ -2 & 0 & \cdots & 2n-4 & -2 & 0 & \cdots & 2n-4 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 2-2n & \cdots & 0 & 2-2n & \cdots & 0 \end{pmatrix}.$$

Let $E = \sum_{i=1}^{n-1} f_{i,i+1}$. Since we have an isomorphism $\mathfrak{g}^* \cong \Pi(\mathfrak{g})$, an even regular nilpotent $\chi \in \mathfrak{g}^*$ can be defined by $\chi(x) := (x|E)$ for $x \in \mathfrak{g}$. Note that

$$\mathfrak{g}^E = \{z, e, e^2, \dots, e^{n-1} \mid H_0, H_1, \dots, H_{n-1}\}, \quad \dim(\mathfrak{g}^E) = (n|n),$$
 where $H_0 = \sum_{i=1}^n (-1)^{i-1} f_{i,i}, H_1 = \sum_{i=1}^{n-1} (-1)^i f_{i,i+1}, \dots, H_{n-1} = (-1)^{n-1} f_{1,n}.$ Let

$$\mathfrak{m} = \bigoplus_{j=2}^n \mathfrak{g}_{2-2j}.$$

Note that m is generated by $e_{i+1,i}$ and $f_{i+1,i}$, where i = 1, ..., n-1, and

$$\chi(e_{i+1,i}) = 1$$
, $\chi(e_{i+k,i}) = 0$ if $k \ge 2$, $\chi(f_{i+k,i}) = 0$ if $k \ge 1$.

The left ideal I_{χ} and W_{χ} are defined now as usual.

A. Sergeev defined by induction the elements $e_{i,j}^{(m)}$ and $f_{i,j}^{(m)}$ belonging to $U(\mathfrak{g})$ [S]:

$$e_{i,j}^{(m)} = \sum_{k=1}^{n} e_{i,k} e_{k,j}^{(m-1)} + (-1)^{m+1} \sum_{k=1}^{n} f_{i,k} f_{k,j}^{(m-1)}$$

$$f_{i,j}^{(m)} = \sum_{k=1}^n e_{i,k} f_{k,j}^{(m-1)} + (-1)^{m+1} \sum_{k=1}^n f_{i,k} e_{k,j}^{(m-1)}.$$

Then

$$\begin{split} [e_{i,j},e_{k,l}^{(m)}] &= \delta_{j,k}e_{i,l}^{(m)} - \delta_{i,l}e_{k,j}^{(m)}, \quad [e_{i,j},f_{k,l}^{(m)}] = \delta_{j,k}f_{i,l}^{(m)} - \delta_{i,l}f_{kj}^{(m)}, \\ [f_{i,j},e_{k,l}^{(m)}] &= (-1)^{m+1}\delta_{j,k}f_{i,l}^{(m)} - \delta_{i,l}f_{k,j}^{(m)}, \quad [f_{i,j},f_{k,l}^{(m)}] = (-1)^{m+1}\delta_{j,k}e_{i,l}^{(m)} + \delta_{i,l}e_{k,j}^{(m)}, \end{split}$$

Proposition 18.1. A. Sergeev [S].

The elements $\sum_{i=1}^{n} e_{i,i}^{(2m+1)}$ generate $Z(\mathfrak{g})$.

Theorem 18.1. [PS2]. $\pi(e_{n,1}^{(m)})$ and $\pi(f_{n,1}^{(m)})$ are Whittaker vectors.

 W_{χ} has n even generators $\pi(e_{n,1}^{(n+k-1)})$ and n odd generators $\pi(f_{n,1}^{(n+k-1)})$, for $k=1,\ldots,n$. The generators of W_{χ} can be identified with elements of \mathfrak{g}^E :

$$\pi(e_{n,1}^{(n)}) \xrightarrow{P} z, \quad \pi(e_{n,1}^{(n+k-1)}) \xrightarrow{P} e^{k-1}, \quad k = 2, \dots, n,$$

$$\pi(f_{n,1}^{(n+k-1)}) \xrightarrow{P} H_{k-1}, \quad k = 1, \dots, n.$$

Corollary 18.1. The natural homomorphism $U(\mathfrak{g})^{ad\mathfrak{m}} \longrightarrow W_{\chi}$ is surjective.

Let $\mathfrak{p} := \bigoplus_{j \geq 0} \mathfrak{g}_j$. Let $\mathfrak{f} = \langle e_{i,i}, f_{i,i} \mid i = 1, ..., n \rangle$, and let $\vartheta : U(\mathfrak{p}) \longrightarrow U(\mathfrak{f})$ be the Harish-Chandra homomorphism.

Denote

$$x_i = e_{i,i}, \quad \xi_i = (-1)^{i+1} f_{i,i}.$$

Theorem 18.2. [PS2]. The Harish-Chandra homomorphism is injective. Under the Harish-Chandra homomorphism:

$$\vartheta(\pi(e_{n,1}^{(n+k-1)})) = [\sum_{i_1 \ge i_2 \ge \dots \ge i_k} (x_{i_1} + (-1)^{k+1} \xi_{i_1}) \dots (x_{i_{k-1}} - \xi_{i_{k-1}}) (x_{i_k} + \xi_{i_k})]_{even},$$

$$\vartheta(\pi(f_{n,1}^{(n+k-1)})) = [\sum_{i_1 \ge i_2 \ge \dots \ge i_k} (x_{i_1} + (-1)^{k+1} \xi_{i_1}) \dots (x_{i_{k-1}} - \xi_{i_{k-1}}) (x_{i_k} + \xi_{i_k})]_{odd}.$$

Theorem 18.3. [PS2].

$$\pi(e_{n,1}^{(n+1)}) = \pi(\frac{1}{2}\sum_{i=1}^{n}e_{i,i}^{2} + \sum_{i=1}^{n-1}e_{i,i+1} + \sum_{i < i}(-1)^{i-j}f_{i,i}f_{j,j} + \frac{1}{2}z^{2} - z).$$

One can define odd generators $\Phi_0, ..., \Phi_{n-1}$ of W_{χ} as follows:

São Paulo J.Math.Sci. 7, 1 (2013), 1-32

$$\begin{split} \Phi_0 &= \pi(f_{n,1}^{(n)}) = \pi(H_0), \\ \Phi_1 &= [\pi(e_{n,1}^{(n+1)}), \Phi_0], \\ \dots &\\ \Phi_{n-1} &= [\pi(e_{n,1}^{(n+1)}), \Phi_{n-2}]. \end{split}$$

Then

$$[\Phi_m, \Phi_p] = 0$$
, if $m + p$ is odd,
 $[\Phi_m, \Phi_p] \in Z(\mathfrak{g})$, if $m + p$ is even.

Lemma 18.1. For odd m and p we have

$$[\pi(e_{n,1}^{(n+m)}),\pi(e_{n,1}^{(n+p)})]=0.$$

We set

$$z_i = \pi(e_{n,1}^{(n+i)})$$
 for odd i , $z_i = [\Phi_0, \Phi_i]$ for even i .

Theorem 18.4. [PS2]. Elements $z_0, ..., z_{n-1}$ are algebraically independent in W_{χ} . Together with $\Phi_0, ..., \Phi_{n-1}$ they form a complete set of generators in W_{χ} .

Example 18.1. n = 2, g = Q(2).

Let

$$e = e_{1,2}, \quad h = diag(1,-1), \quad f = e_{2,1}, \quad z = e_{1,1} + e_{2,2}, \\ E = f_{1,2}, \quad H_0 = f_{1,1} - f_{2,2}, \quad H_1 = -f_{1,2}.$$

Then

$$\mathfrak{g}^{E} = \{z, e \mid H_0, H_1\}, \quad dim(\mathfrak{g}^{E}) = (2|2).$$

According to Theorem 7, W_{χ} has 2 even generators: $\pi(e_{2,1}^{(2)})$, $\pi(e_{2,1}^{(3)})$, and 2 odd generators: $\pi(f_{2,1}^{(2)})$, $\pi(f_{2,1}^{(3)})$. Let

$$\Phi_0 = \pi(f_{2,1}^{(2)}) = \pi(H_0),$$

$$\Phi_1 = [\pi(e_{2,1}^{(3)}), \Phi_0] = 2\pi(f_{2,1}^{(3)}) = 2\pi(-f_{1,2} + f_{1,1}e_{2,2} + f_{2,2}e_{1,1}).$$

Let

$$z_0 = 2\pi(e_{2,1}^{(2)}) = 2\pi(z),$$

$$z_1 = \pi(e_{2,1}^{(3)}) = \pi(e_{1,2} + e_{1,1}^2 + e_{2,2}^2 + e_{1,1}e_{2,2} - e_{1,1} - e_{2,2} - f_{1,1}f_{2,2}).$$

The nonzero commutation relations between the generators of W_{χ} are as follows:

$$[z_1, \Phi_0] = \Phi_1, \quad [z_1, \Phi_1] = 4z_1\Phi_0 - 2\Phi_1 - z_0^2\Phi_0 + 2z_0\Phi_0,$$

$$[\Phi_0, \Phi_0] = z_0, \quad [\Phi_1, \Phi_1] = 4\Phi_1\Phi_0 - 4z_0z_1 + \frac{3}{4}z_0^3 - z_0^2.$$

Note that

$$[\Phi_1, \Phi_1] = \frac{1}{3}\pi(-8(e_{1,1}^{(3)} + e_{2,2}^{(3)}) + 2z^3 + 4z^2).$$

Hence by Proposition 5

$$[\Phi_1,\Phi_1] \in \pi(Z(\mathfrak{g})).$$

Remark 18.2. L. Zhao studied finite W-algebras for $\mathfrak{g} = Q(n)$ [Z]. He proved that the definition of the finite W-algebra is independent of the choices of the isotropic subspaces \mathfrak{l} and the good \mathbb{Z} -gradings. He also established a Skryabin type equivalence between the category of W_{χ} -modules and a category of certain \mathfrak{g} -modules.

Conjecture 18.1. [PS2]. Irreducible modules over the principal finite W-algebra for Q(n) are finite-dimensional.

Conjecture 18.2. [PS2]. In the case when $\dim(\mathfrak{g}_{-1})_{\bar{1}}$ is even, it is possible to find a set of generators of the principal finite W-algebra for \mathfrak{g} such that even generators commute, and the commutators of odd generators are in $\pi(Z(\mathfrak{g}))$.

19. The super-Yangian of Q(n)

In this section, we describe the principal finite W-algebra for Q(n) as a factor algebra of the super-Yangian of Q(1).

The super-Yangian Y(Q(n)) was studied by M. Nazarov and A. Sergeev [N, NS]. Note that Y(Q(n)) is the associative unital superalgebra over $\mathbb C$ with the countable set of generators

$$T_{i,j}^{(m)}$$
, where $m = 1, 2, ...$ and $i, j = \pm 1, \pm 2, ..., \pm n$.

The \mathbb{Z}_2 -grading of the algebra Y(Q(n)) is defined as follows:

$$p(T_{i,i}^{(m)}) = p(i) + p(j)$$
, where $p(i) = 0$ if $i > 0$ and $p(i) = 1$ if $i < 0$.

To describe defining relations for the generators of Y(Q(n)) we employ the formal series in $Y(Q(n))[[u^{-1}]]$:

$$T_{i,j}(u) = \delta_{ij} \cdot 1 + T_{i,j}^{(1)} u^{-1} + T_{i,j}^{(2)} u^{-2} + \dots$$

For all indices i, j, k, l we have the relations

$$(u^{2} - v^{2})[T_{i,j}(u), T_{k,l}(v)] \cdot (-1)^{p(i)p(k) + p(i)p(l) + p(k)p(l)}$$

$$= (u + v)(T_{k,j}(u)T_{i,l}(v) - T_{k,j}(v)T_{i,l}(u))$$

$$-(u - v)(T_{-k,j}(u)T_{-i,l}(v) - T_{k,-j}(v)T_{i,-l}(u)) \cdot (-1)^{p(k) + p(l)},$$
(3)

where v is a formal parameter independent of u, so that (3) is an equality in the algebra of formal Laurent series in u^{-1} , v^{-1} with coefficients in Y(Q(n)). We also have the relations

$$T_{i,j}(-u) = T_{-i,-j}(u).$$
 (4)

Relations (3) and (4) are equivalent to the following defining relations:

$$\begin{split} &([T_{i,j}^{(m+1)},T_{k,l}^{(r-1)}]-[T_{i,j}^{(m-1)},T_{k,l}^{(r+1)}])\cdot (-1)^{p(i)}p(k)+p(i)p(l)+p(k)p(l)} = \\ &T_{k,j}^{(m)}T_{i,l}^{(r-1)}+T_{k,j}^{(m-1)}T_{i,l}^{(r)}-T_{k,j}^{(r-1)}T_{i,l}^{(m)}-T_{k,j}^{(r)}T_{i,l}^{(m-1)} \\ &+(-1)^{p(k)+p(l)}(-T_{-k,j}^{(m)}T_{-i,l}^{(r-1)}+T_{-k,j}^{(m-1)}T_{-i,l}^{(r)}+T_{k,-j}^{(r-1)}T_{i,-l}^{(m)}-T_{k,-j}^{(r)}T_{i,-l}^{(m-1)}), \\ &T_{-i,-j}^{(m)}=(-1)^{m}T_{i,j}^{(m)}, \end{split} \tag{3'}$$
 where $m,r=1,\ldots$ and $T_{ij}^{(0)}=\delta_{ij}$.

Theorem 19.1. [PS2]. There exists a surjective homomorphism:

$$\varphi: Y(Q(1)) \longrightarrow W_{\gamma},$$

defined as follows:

$$\varphi(T_{1,1}^{(k)}) = (-1)^k \pi(e_{n,1}^{(n+k-1)}), \quad \varphi(T_{-1,1}^{(k)}) = (-1)^k \pi(f_{n,1}^{(n+k-1)}) \text{ for } k = 1, 2, \dots.$$

20. The case of $\mathfrak{g} = \Gamma(\sigma_1, \sigma_2, \sigma_3)$

In this section, we describe the principal finite W-algebra for the exceptional Lie superalgebra $\Gamma(\sigma_1, \sigma_2, \sigma_3)$ in terms of generators and relations. We follow the construction of this Lie superalgebra given by M. Scheunert [Sch].

Let $\sigma_1, \sigma_2, \sigma_3$ be complex numbers such that $\sigma_1 + \sigma_2 + \sigma_3 = 0$. The family of Lie superalgebras $\Gamma(\sigma_1, \sigma_2, \sigma_3)$ is defined as follows:

$$\Gamma(\sigma_1, \sigma_2, \sigma_3) = \Gamma_{\bar{0}} \oplus \Gamma_{\bar{1}}$$
, where

$$\Gamma_{\bar{0}} = \mathfrak{sl}(2)_{\bar{1}} \oplus \mathfrak{sl}(2)_{\bar{2}} \oplus \mathfrak{sl}(2)_{\bar{3}}, \quad \Gamma_{\bar{1}} = V_1 \otimes V_2 \otimes V_3,$$

where V_i is the standard $\mathfrak{sl}(2)_i$ -module for i = 1, 2, 3.

Let $\mathfrak{sl}(2)_i = \langle X_i, H_i, Y_i \rangle$, where $\{X_i, H_i, Y_i\}$ is the standard basis in each $\mathfrak{sl}(2)_i$ for i = 1, 2, 3. Let $V_i = \langle e_i, f_i \rangle$ and let $P_i : V_i \times V_i \to \mathfrak{sl}(2)_i$ be the $\mathfrak{sl}(2)_i$ -invariant bilinear mapping given by

$$P_i(e_i, e_i) = 2X_i$$
, $P_i(f_i, f_i) = -2Y_i$, $P_i(e_i, f_i) = P_i(f_i, e_i) = -H_i$.

Let ψ_i be a non-degenerate skew-symmetric form on V_i :

$$\psi_i(e_i, f_i) = -\psi_i(f_i, e_i) = 1.$$

Note that $[\Gamma_{\bar{0}}, \Gamma_{\bar{1}}]$ is the tensor product of the standard representations of $\mathfrak{sl}(2)_i$ in V_i , and $[\Gamma_{\bar{1}}, \Gamma_{\bar{1}}]$ is given by the formula

$$[x_1 \otimes x_2 \otimes x_3, y_1 \otimes y_2 \otimes y_3] = \sigma_1 \psi_2(x_2, y_2) \psi_3(x_3, y_3) P_1(x_1, y_1) + \sigma_2 \psi_1(x_1, y_1) \psi_3(x_3, y_3) P_2(x_2, y_2) + \sigma_3 \psi_1(x_1, y_1) \psi_2(x_2, y_2) P_3(x_3, y_3),$$

where $x_i, y_i \in V_i$, i = 1, 2, 3.

Remark 20.1. The superalgebra $\Gamma(\sigma_1, \sigma_2, \sigma_3)$ is simple if and only if $\sigma_i \neq 0$ for i = 1, 2, 3. $\Gamma(\sigma_1, \sigma_2, \sigma_3) \cong \Gamma(\sigma_1', \sigma_2', \sigma_3')$ if and only if the sets $\{\sigma_i'\}$ and $\{\sigma_i\}$ are obtained from each other by a permutation and multiplication of all elements of one set by a nonzero complex number (see [Sch]). Thus $\Gamma(\sigma_1, \sigma_2, \sigma_3)$ is a one-parameter family of deformations of osp(4|2). Note that $\Gamma(1, -1 - \alpha, \alpha) \cong D(2, 1; \alpha)$, where $\alpha \neq 0, -1$ (see [K]).

We consider the non-degenerate invariant symmetric bilinear form on $\mathfrak g$ given as follows:

$$(X_i, Y_i) = \frac{1}{\sigma_i}, \quad (H_i, H_i) = \frac{2}{\sigma_i},$$

$$(e_1 \otimes e_2 \otimes e_3, f_1 \otimes f_2 \otimes f_3) = -2, \quad (e_1 \otimes e_2 \otimes f_3, f_1 \otimes f_2 \otimes e_3) = 2,$$

$$(e_1 \otimes f_2 \otimes e_3, f_1 \otimes e_2 \otimes f_3) = 2, \quad (f_1 \otimes e_2 \otimes e_3, e_1 \otimes f_2 \otimes f_3) = 2.$$

Let $\mathfrak{sl}(2) = \langle e, h, f \rangle$, where

$$e = X_1 + X_2 + X_3$$
, $h = H_1 + H_2 + H_3$, $f = Y_1 + Y_2 + Y_3$.

Then e is a regular nilpotent element, h defines a Dynkin \mathbb{Z} -grading of g:

$$\mathfrak{g}=\oplus_{j=-3}^3\mathfrak{g}_j, \text{ where}$$

$$\mathfrak{g}_3=< e_1\otimes e_2\otimes e_3>, \quad \mathfrak{g}_2=< X_1, X_2, X_3>,$$

$$\mathfrak{g}_1=< e_1\otimes e_2\otimes f_3, e_1\otimes f_2\otimes e_3, f_1\otimes e_2\otimes e_3>,$$

$$\mathfrak{g}_0=< H_1, H_2, H_3>, \quad \mathfrak{g}_{-1}=< e_1\otimes f_2\otimes f_3, f_1\otimes e_2\otimes f_3, e_1\otimes e_2\otimes f_3>,$$

$$\mathfrak{g}_{-2}=< Y_1, Y_2, Y_3>, \quad \mathfrak{g}_{-3}=< f_1\otimes f_2\otimes f_3>.$$

Note that $\dim(\mathfrak{g}^e) = (3|3)$. Explicitly,

$$(\mathfrak{g}^e)_{\bar{0}} = \langle X_1, X_2, X_3 \rangle,$$

$$(\mathfrak{g}^e)_{\bar{1}} = \langle e_1 \otimes f_2 \otimes e_3 - e_1 \otimes e_2 \otimes f_3, f_1 \otimes e_2 \otimes e_3 - e_1 \otimes e_2 \otimes f_3, e_1 \otimes e_2 \otimes e_3 \rangle.$$

In \mathfrak{g} we consider a nilpotent subalgebra $\mathfrak{m} = \mathfrak{g}_{-3} \oplus \mathfrak{g}_{-2} \oplus \mathfrak{l}$, where \mathfrak{l} is a one-dimensional Lagrangian subspace of \mathfrak{g}_{-1} : $\mathfrak{l} = \langle e_1 \otimes f_2 \otimes f_3 \rangle$. Note that \mathfrak{m} is generated by Y_1, Y_2, Y_3 and $e_1 \otimes f_2 \otimes f_3$. We have that

$$\chi(Y_i) = \frac{1}{\sigma_i}, \quad \chi(e_1 \otimes f_2 \otimes f_3) = 0.$$

Let
$$\theta = f_1 \otimes e_2 \otimes f_3 - f_1 \otimes f_2 \otimes e_3$$
. Then $\theta \in \mathfrak{g}_{-1} \cap \mathfrak{l}^{\perp}$, $\pi(\theta) \in W_{\chi}$, $\pi(\theta)^2 = -2$.

Even generators of W_{γ} are:

$$C_1 = \pi (2X_1 + \sigma_1(\frac{1}{2}H_1^2 - H_1)),$$

$$C_2 = \pi(2X_2 + \frac{1}{2}\sigma_2H_2^2 + (f_1 \otimes e_2 \otimes f_3)(e_1 \otimes e_2 \otimes f_3)),$$

$$C_3 = \pi(2X_3 + \frac{1}{2}\sigma_3H_3^2 + (f_1 \otimes f_2 \otimes e_3)(e_1 \otimes f_2 \otimes e_3)).$$

Odd generators of W_{γ} are

$$R_1 = \pi(2(e_1 \otimes f_2 \otimes e_3 - e_1 \otimes e_2 \otimes f_3) + \sigma_1 H_1(f_1 \otimes e_2 \otimes f_3 - f_1 \otimes f_2 \otimes e_3)),$$

$$R_2 = \pi(2(f_1 \otimes e_2 \otimes e_3 - e_1 \otimes e_2 \otimes f_3)$$

$$+(\sigma_1 H_1 - \sigma_3 H_3)(f_1 \otimes e_2 \otimes f_3) - \sigma_2 H_2(f_1 \otimes f_2 \otimes e_3),$$

$$R_3 = \pi(4(e_1 \otimes e_2 \otimes e_3) - \sigma_1 H_1 R_2 - 4\sigma_1 (f_1 \otimes e_2 \otimes f_3) X_1$$

$$-2(\sigma_1H_1(e_1\otimes e_2\otimes f_3)+\sigma_2H_2(e_1\otimes f_2\otimes e_3)+\sigma_3H_3(e_1\otimes e_2\otimes f_3))),$$

and $\pi(\theta)$. Note that the generators C_i and R_i for i = 1, 2, 3 can be identified with the corresponding elements of \mathfrak{g}^e under the mapping P (see Remark 8). The quadratic Casimir element of \mathfrak{g} is

$$\Omega = \sum_{i=1}^{3} \left(\frac{\sigma_i}{2} H_i^2 + 2X_i\right) - \left(e_1 \otimes e_2 \otimes f_3\right) \left(f_1 \otimes f_2 \otimes e_3\right) - \left(e_1 \otimes f_2 \otimes e_3\right) \left(f_1 \otimes e_2 \otimes f_3\right).$$

Hence

$$\pi(\Omega) = C_1 + C_2 + C_3 - \frac{1}{2}R_1\pi(\theta).$$

Theorem 20.1. [P]. The principal finite W-algebra W_{χ} is generated by even elements $\pi(\Omega)$, C_1 and C_2 , and odd element $\pi(\theta)$. The relations are

$$\begin{split} [C_1,C_2] &= 0, \quad [\pi(\theta),C_i] = R_i \mp \frac{\sigma_i}{2}\pi(\theta), \quad i = 1,2, \\ [C_2,R_1] &= -\frac{\sigma_2}{2}R_1 + R_3, \quad [C_1,R_2] = \frac{\sigma_1}{2}R_2 + R_3, \\ [R_i,R_i] &= 8\sigma_iC_i - 2\sigma_iR_i\pi(\theta), \quad i = 1,2, \\ [R_1,R_2] &= -4(\sigma_1C_2 + \sigma_2C_1 + \sigma_3\pi(\Omega)) + (\sigma_1R_2 + \sigma_2R_1)\pi(\theta), \\ [R_i,\pi(\theta)] &= \mp 2\sigma_i, \quad i = 1,2, \quad [\pi(\theta),\pi(\theta)] = -4, \\ [\pi(\Omega),\pi(\theta)] &= 0, \quad [\pi(\Omega),C_i] = 0, \quad i = 1,2, \quad [\pi(\Omega),R_i] = 0, \quad i = 1,2,3. \end{split}$$

21. The case of $\mathfrak{g} = \mathfrak{vsp}(1|2)$

In this section, we describe the principal finite W-algebra for $\mathfrak{vsp}(1|2)$.

Form: $(a|b) = \frac{1}{2}\operatorname{str}(ab)$

 $\mathfrak{g} = \langle e, f, h \mid \theta, r \rangle$, where

$$e = \begin{pmatrix} 0 & 0 & 0 \\ \hline 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, f = \begin{pmatrix} 0 & 0 & 0 \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, h = \begin{pmatrix} 0 & 0 & 0 \\ \hline 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix},$$

$$\theta = \begin{pmatrix} 0 & 1 & 0 \\ \hline 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}, r = \begin{pmatrix} 0 & 0 & 1 \\ \hline 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Note that e is a regular nilpotent element, and h defines a \mathbb{Z} -grading of \mathfrak{g} :

$$\mathfrak{g} = \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1 \oplus \mathfrak{g}_2,$$

where

$$\begin{split} \mathfrak{g}_{-2}=, &\quad \mathfrak{g}_{-1}=<\theta>, \quad \mathfrak{g}_{0}=, \quad \mathfrak{g}_{1}=, \quad \mathfrak{g}_{2}=. \\ \\ \mathfrak{m}=\mathfrak{g}_{-2}=, \quad \chi(f)=-\frac{1}{2}. \\ \\ \mathfrak{g}^{e}=, \quad \dim \mathfrak{g}^{e}=(1|1). \end{split}$$

Note that $\pi(\theta) \in W_{\chi}$, and $\pi(\theta)^2 = \frac{1}{2}$.

Even generator of W_{χ} is $\pi(\Omega)$, where $\Omega = 2e + h - h^2 + 2r\theta$ is the Casimir element of \mathfrak{g} .

Odd generators of W_{χ} are $R = \pi(r - h\theta)$ and $\pi(\theta)$.

Note that generators $\pi(\Omega)$ and R are identified with elements of \mathfrak{g}^e :

$$\frac{1}{2}\pi(\Omega) \xrightarrow{P} e,$$

$$R \xrightarrow{P} r$$

Theorem 21.1. The principal finite W-algebra W_{χ} is generated by $\pi(\Omega)$ and two odd generators: $\pi(\theta)$ and R. The defining relations are

$$\begin{split} [\pi(\Omega),R] &= [\pi(\Omega),\pi(\theta)] = 0,\\ [R,R] &= \pi(\Omega), \quad [R,\pi(\theta)] = -\frac{1}{2}, \quad [\pi(\theta),\pi(\theta)] = 1. \end{split}$$

São Paulo J.Math.Sci. 7, 1 (2013), 1-32

22. The case of $\mathfrak{g} = \mathfrak{vsp}(1|2n)$

In this section, we present partial results for the principal finite W-algebra for $\mathfrak{vsp}(1|2n)$, where $n \geq 2$, and make a conjecture for this case.

Form: $(a|b) = -\operatorname{str}(ab)$.

We will use the following notations for some elementary matrices in $\mathfrak{vsp}(1|2n)$:

$$\begin{pmatrix} 0 & s_1 & s_2 & \dots & \mathbf{s_n} & r_1 & r_2 & \dots & r_n \\ \hline r_1 & h_1 & x_1 & \dots & \dots & p_1 & \dots & \dots & \dots \\ \dots & y_1 & h_2 & x_2 & \dots & \dots & p_2 & \dots & \dots \\ \dots & \dots & \dots & \dots & x_{n-1} & \dots & \dots & \dots & \dots \\ \hline r_n & \dots & \dots & y_{n-1} & h_n & \dots & \dots & \dots & p_n \\ \hline s_1 & q_1 & \dots & \dots & \dots & h_1 & y_1 & 0 & 0 \\ \dots & \dots & \dots & q_2 & \dots & \dots & x_1 & h_2 & 0 & 0 \\ \dots & y_{n-1} \\ \mathbf{s_n} & \dots & \dots & \dots & \dots & \dots & \dots & y_{n-1} \\ \mathbf{s_n} & \dots \end{pmatrix}.$$

Let
$$\mathfrak{sl}(2) = \langle e, h, f \rangle$$
, where $e = (x_1 + \dots + x_{n-1}) + p_n$,
 $h = \operatorname{diag}(0|2n - 1, 2n - 3, \dots, 3, 1; -2n + 1, -2n + 3, \dots, -3, -1)$,
 $f = (\sum_{k=1}^{n-1} k(2n - k)y_k) + n^2 q_n$.

Note that e is a regular nilpotent element, and h defines a Dynkin \mathbb{Z} -grading of \mathfrak{g} whose degrees on the elementary matrices are

$$\begin{pmatrix} 0 & | -2n+1 & \dots & | -3 & | -1 & | 2n-1 & \dots & | 3 & | 1 \\ \hline 2n-1 & 0 & 2 & | \dots & | & \dots & | 4n-2 & | \dots & | 2n+2 & | 2n \\ \hline \dots & | -2 & 0 & 2 & | \dots & | 4n-4 & | \dots & | 2n & | 2n-2 \\ \hline 3 & | \dots & | \dots & 0 & 2 & | \dots & | \dots & | 6 & | 4 \\ \hline 1 & | \dots & | -4 & | -2 & | 0 & | | 2n & | \dots & | 4 & | 2 \\ \hline -2n+1 & | -4n+2 & | \dots & | -2n-2 & | -2n & | 0 & | -2 & | 0 & | \\ \hline \dots & | -4n+4 & | \dots & | -2n & | -2n+2 & | 2 & | 0 & | -2 & | 0 \\ \hline -3 & | \dots & | \dots & | -6 & | -4 & | \dots & | \dots & | 0 & | -2 \\ \hline -1 & | -2n & | \dots & | -4 & | -2 & | \dots & | \dots & | 2 & | 0 \end{pmatrix}$$

Note that
$$\dim \mathfrak{g}^e = (n|1), (\mathfrak{g}^e)_{\bar{1}} = < r_1 >, \mathfrak{g}_{-1} = < \theta >$$
, where $\theta = s_n$, $\dim \mathfrak{g}_{-1} = 1$.
Note that $\mathfrak{m} = \bigoplus_{j \le -2} \mathfrak{g}_j$, and $\mathfrak{g}_{-2} = < y_i, q_n >, i = 1, \ldots, n-1$.
 \mathfrak{m} is generated by $y_i, q_n, \chi(y_i) = 2$, for $i = 1, \ldots, n-1$, and $\chi(q_n) = 1$. $\pi(\theta) \in W_{\chi}, \pi(\theta)^2 = -1$.

Conjecture 22.1. [P]. The principal finite W-algebra W_{χ} is generated by the first n Casimir elements in $\pi(Z(\mathfrak{g}))$ and odd elements $\pi(\theta)$ and R, where R is induced

by r_1 so that

$$[R,R] \in \pi(Z(\mathfrak{g})), \quad [R,\pi(\theta)] \in \pi(Z(\mathfrak{g})), \quad [\pi(\theta),\pi(\theta)] = -2.$$

Acknowledgments

The author would like to thank V. Serganova for very helpful discussions.

23. References

- [A] Eiichi Abe, *Hopf Algebras*, Cambridge Tracts in Mathematics **74**, Cambridge University Press (2004).
- [B] J. Balog, L. Fehér and L. O'Raifeartaigh, *Toda theory and W-algebra from a gauged WZNW point of view*, Ann. Phys. **203** (1990) 76–136.
- [BR] C. Briot, E. Ragoucy, *W-superalgebras as truncations of super-Yangians*, J. Phys. A **36** (2003), no. 4, 1057–1081.
- [BG] J. Brundan and S. Goodwin, *Good grading polytopes*. Proc. London Math. Soc. **94** (2007) 155–180.
- [BBG] J. Brown, J. Brundan, S. Goodwin, *Principal W-algebras for GL*(m|n), arXiv:1205.0992.
- [BK1] J. Brundan and A. Kleshchev *Shifted Yangians and finite W-algebras*, Adv. Math. **200** (2006) 136–195.
- [BK2] J. Brundan and A. Kleshchev *Representations of shifted Yangians and finite W-algebras*, Mem. Amer. Math. Soc. **196** (2008), no. 918, 107 pp.
 - [C] R. Carter, Finite groups of Lie type: Conjugacy classes and complex characters. Pure and Applied Math., John Wiley & Sons, Inc., New York (1985).
- [DK] A. De Sole and V. Kac, *Finite vs affine W-algebras*, Jpn. J. Math. **1** (2006) 137–261.
- [EK] A. G. Elashvili and V. G. Kac, *Classification of good gradings of simple Lie algebras*, Lie groups and invariant theory (E. B. Vinberg ed.), Amer. Math. Soc. Transl. **213** (2005) 85–104.
- [F1] L. Fehér, L. O'Raifeartaigh, P. Ruelle, I. Tsutsui, and A. Wipf, *Generalized Toda theories and W-algebras associated with integral gradings*, Ann. Phys. **213** (1992) 1–20.
- [F2] L. Fehér, L. O'Raifeartaigh, P. Ruelle, I. Tsutsui, and A. Wipf, *On Hamiltonian reductions of the Wess-Zumino-Novikov-Witten theories*, Phys. Rep. **222** (1992) 1–64.
- [GG] W. L. Gan and V. Ginzburg, *Quantization of Slodowy slices*. Internat. Math. Res. Notices **5** (2002) 243-255.
 - [H] C.Hoyt, *Good gradings of basic Lie superalgebras*, Israel J. Math. **192** (2012) 251–280.

- [K] V. G. Kac, *Lie superalgebras*, Adv. Math. **26** (1977) 8–96.
- [KW] V. G. Kac and M. Wakimoto, *Integrable highest weight modules over affine superalgebras and number theory*. Lie theory and geometry, 415–456, Progr. Math., **123**, Birkhäuser Boston, Boston, MA, 1994.
 - [Ko] B. Kostant, On Wittaker vectors and representation theory, Invent. Math. 48 (1978) 101–184.
- [L1] I. Losev, *Finite W-algebras*, Proceedings of the International Congress of Mathematicians. Volume III, 1281–1307, Hindustan Book Agency, New Delhi, 2010. arXiv:1003.5811v1.
- [L2] I. Losev, *Quantized symplectic actions and W-algebras*, J. Amer. Math. Soc. **23** (2010) 35–59.
- [L3] I. Losev, *Finite-dimensional representations of W-algebras*, Duke Math. J. **159** (2011), no.1, 99–143.
- [M] A. Molev, *Yangians and classical Lie algebras*, Mathematical Surveys and Monographs, **143**, Amer. Math. Soc., Providence, RI, (2007).
- [N] M. Nazarov, *Yangian of the Queer Lie superalgebra*, Commun. Math. Phys. **208** (1999) 195–223.
- [NS] M. Nazarov, A. Sergeev, Centralizer construction of the Yangian of the queer Lie superalgebra, Studies in Lie Theory, 417–441, Progr. Math., 243 (2006).
 - [P] E. Poletaeva, *On Kostant's Theorem for Lie superalgebras*. In: Springer INdAM Series: Advances in Lie Superalgebras, P. Papi, M. Gorelik (eds). To be published.
- [PS1] E. Poletaeva, V. Serganova, On finite W-algebras for Lie superalgebras in the regular case, In: "Lie Theory and Its Applications in Physics", V. Dobrev (ed), IX International Workshop. 20-26 June 2011, Varna, Bulgaria. Springer Proceedings in Mathematics and Statistics, Vol. 36 (2013) 487–497.
- [PS2] E. Poletaeva, V. Serganova, On Kostant's theorem for the Lie superalgebra Q(n), in preparation.
- [Pr1] A. Premet, *Special transverse slices and their enveloping algebras*, Adv. Math. **170** (2002) 1–55.
- [Pr2] A. Premet, Enveloping algebras of Slodowy slices and the Joseph ideal, J. Eur. Math. Soc. 9 (2007) 487–543.
- [Pr3] A. Premet, *Primitive ideals, non-restricted representations and finite W-algebras*, Mosc. Math. J. **7** (2007) 743–762.
 - [S] A. Sergeev, *The centre of envelloping algebra for Lie superalgebra* $Q(n,\mathbb{C})$, Letters in Math. Phys. 7 (1983) 177–179.
- [Sch] M. Scheunert, *The Theory of Lie Superalgebras*. In: Lecture Notes in Mathematics, **716**, Springer, Berlin (1979).
- [W] W. Wang, *Nilpotent orbits and finite W-algebras*, Geometric representation theory and extended affine Lie algebras, Fields Inst. Commun. **59**, Amer. Math. Soc., Providence, RI, (2011), 71–105; arXiv:0912.0689v2.

[Z] L. Zhao, Finite W-superalgebras for queer Lie superalgebras. arXiv:1012.2326v2.