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Abstract. The finite W-algebras are certain associative algebras associated to a
complex semi-simple or reductive Lie algebra g and a nilpotent element e of g.
Due to recent results of 1. Losev, A. Premet and others, finite W-algebras play
a very important role in description of primitive ideals. In the full generality,
the finite W-algebras were introduced by A. Premet. It is a result of B. Kostant
that for a regular nilpotent (principal) element e, the finite W-algebra coincides
with the center of U(g). Premet’s definition makes sense for a simple Lie su-
peralgebra g = g5 & g7 in the case when gj is reductive, g admits an invariant
super-symmetric bilinear form, and e is an even nilpotent element. We show
that certain results of A. Premet can be generalized for classical Lie superalge-
bras. We consider the case when e is an even regular nilpotent element. The
associated finite W-algebra is called principal. Kostant’s result does not hold in
this case. This is joint work with V. Serganova.

1. Introduction

A finite W-algebra is certain associative algebra associated to a complex semi-
simple Lie algebra g and a nilpotent element e € g. It is a generalization of the
universal enveloping algebra U (g).

The finite W-algebras are quantizations of Poisson algebras of functions on the
Slodowy (i.e. transversal) slice at e to the adjoint orbit Ad(G)e, where g = Lie(G)
[Pr1]. Due to recent results of I. Losev, A. Premet and others, finite W-algebras
play a very important role in description of primitive ideals [L2, L3, Pr2, Pr3].

The key ideas for finite W-algebras appeared in the study of classical and quan-
tum affine W-algebras [B, F1, F2]. In the full generality, the finite W-algebras for
semi-simple Lie algebras were introduced by A. Premet [Prl]. The construction
of finite W-algebras is based on the study of Whittaker vectors and Whittaker
modules in the famous work of B. Konstant [Ko].

This survey was presented during the 3rd Graduate Research Conference in Algebra and Repre-
sentation Theory at Kansas State University.
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Finite W-algebras for Lie algebras have been extensively studied by I. Loseyv,
V. Ginzburg, W. L. Gan, J. Brundan, S. Goodwin, A. Kleshchev, W. Wang and
other mathematicians and physicists [L1, BG, GG, BK1, BK2, W].

In Section 2 we discuss Dynkin and good Z-gradings of g. In Sections 3-5
we review various equivalent definitions of finite W-algebra for g. In Section 6
we describe Kazhdan filtration on finite W-algebras. In Sections 7 and 8 we give
examples of the principal finite W-algebra for g = gl(2) and gl(n).

In Sections 9-11 we recall the definition of a Lie superalgebra, main examples
and classification of simple finite-dimensional Lie superalgebras. In Section 12
we review the definition of finite W-algebras for Lie superalgebras. In Section
13 we recall the notion of defect of a basic Lie superalgebra. In section 14 we
describe the principal finite W-algebras for Lie superalgebras of type I and defect
one. In Section 15 we outline the case when g = gl(n|n). J.Brown, J.Brundan and
S. Goodwin have recently described the principal finite W-algebra of the Lie su-
peralgebra gl(m|n) as a certain truncation of a shifted version of the super-Yangian
of gl(1|1). In Section 16 we review the notion the super-Yangian of gl(m|n). In
sections 17 and 18 we consider the case when g = Q(n). We describe the principal
finite W-algebra for Q(n) in terms of generators and relations, and show that it is
isomorphic to a factor algebra of the super-Yangian of Q(1). In Section 19 we
describe the principal finite W-algebras for the family of simple exceptional Lie
superalgebras I'(o7, 02,03). In Sections 20 and 21 we describe the principal finite
W -algebra for vsp(1|2) and obtain partial results and formulate a conjecture for
osp(1[2n).

2. Preliminaries

Let g be a finite-dimensional semi-simple or reductive Lie algebra over C and
(+|-) be a non-degenerate invariant symmetric bilinear form on g.

Definition 2.1. A bilinear form (-|-) on g is g-invariant if

(k3 2) = (x| [v2]) forallx,yzeg.
Definition 2.2. Adjoint representation of g.
For any x € g, ad(x) is the endomorphism of g defined as follows:
ad(x)(y) = [x.)] forall y € g.

Definition 2.3. An element e € g is called nilpotent if ad(e) is a nilpotent endo-
morphism of g.

Example 2.1. g = gl(n), (a|b) = tr(ab).
e € gl(n) is nilpotent if and only if e is an n X n-matrix with eigenvalues zero.

Sao Paulo J.Math.Sci. 7, 1 (2013), 1-32
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Definition 2.4. A nilpotent element e € g is regular nilpotent if ¢¢ := Ker(ad(e))
attains the minimal dimension, which is equal to the rank of g.

Example 2.2. g = gl(n).

010 0 0O
001 0 0O
000 -~ 00 . .
e=J, = 000 0 10 is a regular nilpotent element.
000 O 01
000 O OO
ge =< 6762,.”761171& > z=<1,>, dimge =n.

Theorem 2.1. Jacobson-Morozov [C].

Associated to a nonzero nilpotent element e € g, there always exists an sl(2)-triple
{e,h, f} which satisfies

[e’f] = h’ [hve] = 26, [haf] = _zf
Proof. Induction on dimg.

Example 2.3. g =gl(n), e =J,. Let h=diag(n—1,n—3,...,3—n,1—n) and

00 0 0 0 0
a 0 0 O 0 0

=l %" 0 o ol wheea=in—ifori<i<n-1
o 0 o0 ... 0 0
0 0 0 0 anp 1 0

Then e,h and f span an s|(2).

3. Z-gradings
Definition 3.1. A Lie algebra g is Z-graded if
9="®cz9;, (8% Cgji-

Definition 3.2. A Dynkin Z-grading.
Let 51(2) =< e, h, f >. The eigenspace decomposition of the adjoint action

ad(h):g—g
provides a Z-grading: 9 = @ ;7,8;, where g; = {x € g | ad(h)(x) = jx}.

Sdo Paulo J.Math.Sci. 7, 1 (2013), 1-32
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A Dynkin Z-grading satisfies the following properties:
(1) e€ g,
(2) ad(e) : gj — 942 is injective for j < —1,
(3) ad(e) : g; —> g4, is surjective for j > —1,
4) ¢g° C Dj>08,
(5) (gilg;) = O unless i+ j =0,
(6) dimg® = dimg, + dimg;.

Proof. (1) follows from the definition of sI(2), (2) and (3) follow from the theory
of finite-dimensional irreducible s(2)-modules, (4), (5) and (6) are easy to prove.
We will show that these properties are valid for more general type of Z-gradings,
called good Z-gradings.

Definition 3.3. A good Z-grading.
A Z-grading g =@ ;c7,9; for a semi-simple Lie algebra g is good for e, if it satisfies
the conditions (1)-(3).

For a reductive g, there is an additional condition: the center of g is in gy. Note
that good 7-gradings of simple finite-dimensional Lie algebras over an alge-
braically closed field of characteristic zero were classified in [EK].

Proposition 3.1. Properties (4)-(6) remain to be valid for every good Z-grading
of g.

Proof. (see [W])

(4) g° is a Z-graded Lie subalgebra of g, and (4) follows from (2).

(5) For any Z-grading g = ®,.74; there exists a semi-simple element / € [g, g
such that

gj={x€a|lhx] = jx}.
Let 0 : g — g be the degree operator:
d(x) = jxforx g,
then d is a derivation of the semi-simple Lie algebra [g,g], hence J is an in-
ner derivation of [g, g], given by ad(h) for some semi-simple element 4 € [g, g].

Then d = ad(h) as derivations of [g, g] @ center(g), since the equality hold on the
center(g) too. For x € g;, y € g;, we have

—i(x]y) = ([x, Ally) = (xl[h,y]) = j(x]y).
Then (5) holds.
(6) From (2) and (3),
ad(e) : g_; — g is a bijection.

Sao Paulo J.Math.Sci. 7, 1 (2013), 1-32
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An exact sequence of vector spaces

d(e)
0—g°— g, @go@(@j>09]’> Cﬁ) ®j>08; — 0
is well-defined by (2) and (3). Then (6) holds.

Example 3.1. Associated to e =0, we have a good Z-grading with g, = g.

Exercise 1. Properties (2) and (3) are equivalent for any Z-grading g = ®,.74;.

Remark 3.1. Obviously, if a Z-grading is Dynkin, then it is a good Z-grading.
However, not every good Z-grading is Dynkin.

Example 3.2. g = gI(3)

0 01 1 0 O 0 0O
e=Esz=(0001], h=[ 0 0 0 |, f=Ey=( 00 0 |.
000 00 -1 1 00

Note that e is a non-regular nilpotent element, s\(2) =< e, h, f > defines a Dynkin
Z-grading of gl(3), whose degrees on the elementary matrices E;; are

0o 1 2
-1 0 1 ].
-2 -1 0

dim(g°) = dimgy+dimg, =5, ¢°=<E +E33,E0,E2,E3,E13> .
Example 3.3. g = g((3).

0 01 1 0 O
e=Ex=(00 0|, A= 0 1 0 .
0 00 0 0 -1

h defines a good but non-Dynkin Z-grading for e, whose degrees on the elementary
matrices E;; are
0O 0 2
< 0o 0 2 ) .
-2 -2 0

4. Definition of finite W-algebras

Let g be a reductive Lie algebra, (-|-) be a non-degenerate invariant symmetric
bilinear form, e be a nilpotent element. Let g = & .79, be a good Z-grading for

e. Let x € g* by defined as follows: x(x) := (x|e) for x € g.

Sdo Paulo J.Math.Sci. 7, 1 (2013), 1-32
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Define a bilinear form on g_; by

(x,) := ([x,y] [ €) = x([x,y]) forx,y € g_;.

Remark 4.1. The bilinear form on g_; is skew-symmetric and non-degenerate.

Proof. The skew-symmetry follows by definition.
The non-degeneracy follows from the bijection
ad(e) g1 — g
and the identity
(x,y) = (.5 [ €) = (x [ [y,e]).
(]

Hence dimg_, is even. Pick a Lagrangian (i.e. a maximal isotropic) subspace [ of
g_ with respect to the form (+,-). Then dim[ = %dim g_1.

Let m = (©<_29;) ® . Note that m is a nilpotent subalgebra of g. The restric-
tion of ¥ tom

x:m—C

defines a one-dimensional representation C,, =<v > of m. In fact, if x € g;, y € g;
and i < —2 or j < —2, then x([x,y]) = 0 by Proposition 1. If x,y € [ C g_;, we
have that x ([x,y]) = (x,y) = 0 thanks to the Lagrangian condition on .

Let I, be the left ideal of U(g) generated by a — x/(a) for all a € m.
Definition 4.1. The generalized Whittaker module is

Oy =U(9) ®y(m)Cy = U(9)/1Iy

Definition 4.2. [Pri]. The finite W-algebra associated to the nilpotent element e
is

Example 4.1. Lete=0. Then y =0, go =g, m =0,
Qx = U(Q)a Wx = U(g).

Theorem 4.1. B. Kostant (1978) [Ko].
For a regular nilpotent element e € g, Wy = Z(g), the center of U(g).

Remark 4.2. The isoclasses of finite W-algebras do not depend on good Z-
grading ([BG]) and Lagrangian subspace | ([GG]).

Sao Paulo J.Math.Sci. 7, 1 (2013), 1-32
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5. The Whittaker model definition of finite W-algebras

We have given endomorphism algebra definition of W,. Note that W, can also
be identified as the space of Whittaker vectors in U(g)/I,.

Definition 5.1. A g-module L is called a Whittaker module if a — x(a) for all
a € macts on L locally nilpotently. A Whittaker vector in a Whittaker g-module L
is a vector x € L which satisfies (a — x(a))x =0 for all a € m.

Proposition 5.1. (see [W]). Let w : U(g) — U(g)/I, be the natural projection,
and let y € U(g). Then

Wy = {n(y) € Ula)/I | (a— x(a))y € Ly for all a € m).

Proof. Since O, = U(g)/1 is a cyclic module, then any endomorphism of the
g-module Q is determined by the image of v. The image of v must be annihilated
by I,,. Hence W,, can be identified as the space of Whittaker vectors in U(g) /1.

O

By definition of I, W, can be further identified with the subspace of ad m-
invariants in Q:

Wy = (Q)“™ = {n(y) € Ula) /I | [ay] € Ly forallaem}). (1)
The algebra structure on Wy, is given by

n(y1)m(y2) = m(y1y2)

for y; € U(g) such that [a,y;] € I, foralla € mand i = 1,2.

Exercise 2. Check directly that

(1) The ideal I, is ad m-invariant, hence (QX)“dm as a vector space is well-
defined.

(2) For y; satisfying [a,y;] € I foralla € m and i = 1,2, we have [a,yy»] € I, for
all a € m. Hence (Qy)?“™ as an algebra is well-defined.
6. Finite W-algebras for even good Z-gradings

Definition 6.1. A good Z-grading g = @ jegg; is called even, if g; = 0 unless j is
an even integer.

The definition of W, for an even good Z-grading is simpler, since in this case
g_; = 0. Hence there is no complications of choice of a Lagrangian subspace [
and m = @< 2g;.

Sdo Paulo J.Math.Sci. 7, 1 (2013), 1-32
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Let p := @ >09, be a parabolic subalgebra of g. From the PBW theorem,
U(g) =U(p) B 1y
The projection
pry:U(g) — Ulp)
along this direct sum decomposition induces an isomorphism:
pry U(g) /Iy — U(p).

The algebra W, can be regarded as a subalgebra of U (p).

Consider a x-twisted adjoint action of m on U(p) by

a-y:= pry(la,y]) foraemandy e U(p).
Identify Wy as
W, =U(p)“™:={ycU(p) | [a,y] €I, forall a € m}.

Since pr,, : U(g)/Iy — U(p) is an isomorphism of m-modules, this definition is
equivalent to the definition (1) (for even Z-gradings) [W].

7. Filtration on W,

To introduce a filtration on Wy, first we will recall the definition of a filtered
algebra [A].

Definition 7.1. A filtered algebra is an algebra A, which has an increasing se-
quence of subspaces such that

{0} ckhckRc..CcFc...A, A=|JF,

1

which is compatible with the multiplication:
F,-F; CFyjforalli,j.

As a vector space the associated graded algebra is
Gr(A) =G,
i

where
G,'ZF,'/Fl',lfOFalli>0, Gy =Fy,
with multiplication

(x+F_1)y+Fji—1)=xy+F4j1, x€F, ycF;.

Sao Paulo J.Math.Sci. 7, 1 (2013), 1-32
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Definition 7.2. Kazhdan filtration on W,,.
Let g be a reductive Lie algebra with a Dynkin Z-grading: g = & ;c79;, and let

m = (Dj< 29;) DL Let n C g be an ad(h)-invariant subspace such that g = m S n
and Cy =< v > be one-dimensional representation of m. Then

W, ={X € U(g)/U(g)m = S(n) | aXv = x(a)Xv for all a € m}.
For anyy € n, let wi(y) be the weight of y with respect to ad(h) and

deg(y) = wi(y) +2

The degree function deg induces a Z-grading on S(n). This grading defines a
filtration on Wy.

Theorem 7.1. A. Premet [Prl].
The associated graded algebra Gr(Wy) is isomorphic to S(g°).

Idea of Proof. Introduce the map

P:W, — S(g°).
For X € W, C S(n), let P(X) be the highest weight component in the highest
degree component of X, then P(X) belongs to S(g).

Example 7.1. If e =0, then the statement of Theorem 3 is the PBW theorem. In
this case W, = U (g), ¢° = g and we have that

Gr(U(g)) = S(g)-

The finite W-algebras associated to regular nilpotent elements are called the
principal finite W-algebras.

8. The case of g = gi(2)
In this section, we describe the principal finite W-algebra for gl(2).

Form: (a|b) = tr(ab).

~(88) = (18) (b )

Note that e is a regular nilpotent element, / defines an even Dynkin Z-grading of
g whose degrees on the elementary matrices E;; are

0 2
-2 0/
Letz= ( (1) (1) > then z is a central element of g.

¢ =<z,e>, dimg®=dimg,=2.

Sdo Paulo J.Math.Sci. 7, 1 (2013), 1-32
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m=g ,=<f>, %(f):(ﬂe):l?
n=p=goDgm, Cy=<v>.
W, is the polynomial algebra generated by 7(z) and (e + %hz - %h)

1
Q=ef+ fe+ Ehz € Z(g) is the quadratic Cazimir element of g.

We have that

S Q) = om(ef + fe+ Ehz)) = 7(2ef —h+ Ehz)) =n(e+ th = 5h)-

The generators of Wy, can be identified with elements of g°:
7(z) a3
1

() Ly

9. The case of g = gi(n)
In this section, we describe the principal finite W-algebra for gl(n).

Form: (a|b) = tr(ab). Let

01 0 0 00 0 0 0 O 0 o0
001 0 0O n—1 0 0 0 0 0
,_| 000 00 | 0 202 0 00
~“1000 O 1 0| - 0 0 0 O 0 0
00 0 O 01 0 0 0 O 0 0
000 O 0O 0 0 0 0 n—1 0
h=diag(n—1,n—3,...,3—n,1—n). Note that e is a regular nilpotent element,

and & defines an even Dynkin Z-grading of g whose degrees on the elementary
matrices E;; are

0 2 4 6 2n—2
2 0 2 4 on—4
4 -2 0 2 2n—6
—6 -4 -2 0 2n—8
2-2n - —6 —4 -2 0

Let z = diag(1,...,1) be a central element of gl(n). Then

3

g =<zee ..., > dimg® =dimgy = n.

n
m=Eo ) 2(Eir)=1, x(Eipri)=0ifk>2.
Jj>2

Sao Paulo J.Math.Sci. 7, 1 (2013), 1-32
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Recall that the Casimir elements of g are generators of Z(g), the center of U(g).
If g = gl(n) they are given as follows:

.Qk = Z Eiliin2i3 .. 'Eikil’ for k > 1.
0150250050k

Note that W), is the polynomial algebra generated by n elements:
T[(Z)7 TC(QZ)a 71’-(93)7 R E(QI’L)
The generators of W, can be identified with elements of g°:
P
n(z) — z,

La() Lo fork=2,...,n.

10. Lie superalgebras

Let Z, = 7./27 = {0,1}.

Definition 10.1. A superspace is a Z,-graded vector space

V=V,®V;.
Definition 10.2.

The dimension of a superspace: dimV = (m|n), where dimVy = m, dim V5 = n.
The parity of an element: if v € Vi then p(v) =0, if v € Vj then p(v) = 1.
Definition 10.3. A superalgebra is a Z,-graded algebra

A=A;gDA;, AA;CAiqjfori,jE L.
Definition 10.4. A Lie superalgebra is a 7.;-graded algebra
9=00Doi
with an operation [ , | satisfying the following axioms:
1. super-anticommutativity:

byl = —(=1)PPO ] forallxy e,
2. super-Jacobi identity:
X, 2l = (1% ))52 + (= Y X5, 2 ora x7)’7269-
e, ) = [, 2+ (= 1)PPO [y, [ 2] forall
Remark 10.1. gj is a Lie algebra, [gg,97] C g7, hence gi is a module over g;,
[91,01] € g6-

Definition 10.5. A Lie superalgebra g is simple, if it is not abelian and the only
Z-graded ideals of g are {0} and g.

Sdo Paulo J.Math.Sci. 7, 1 (2013), 1-32
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Remark 10.2. Sign Rule. If an element x with parity p(x) moves through an
element y with parity p(y), then the sign (—1)P¥PO) appears in the formula.

11. Main examples of Lie superalgebras

Example 11.1. The General Linear Lie superalgebra.

90={<g
gi—{<g

Definition 11.1. Super-bracket:
(X,Y] = XY — (—1)PXPMyX for XY € g.

str (%‘%) =tr(A) —tr(B).

Example 11.2. The Special Linear Lie superalgebra:
sl(m|n) := {X € gl(m|n) | strX =0}.

g = gl(m|n) = g5 ® g7, where

Da‘o

) | A is a m X m matrix, B is a n X n matrix },

o

) |Cisamxnmatrix,Disanxmmatrix}.

Super-trace:

Note that s[(m|n)is simple if and only if m # n. If m = n then sl(n|n)/ < 12, >
is simple.

Example 11.3. The Orthogonal-Symplectic Lie superalgebra.
Let F be a non-degenerate super symmetric bilinear form on a superspace
V =V; @V, where dimV = (m|n):

F(v,w) = (—=1)POPMIE(y v) v,weV.

The restriction of F to Vj is symmetric, and to Vi is skew-symmetric, hence n is
even.

vsp(m|n) == {X € gi(m|n) | F(X(v),w)+ (—1)PXPOIF(y, X (w)) =0, Vv,we V}.

For instance, let m =2, n=2r.

p—
~

F=

o O

|
_—
r
o-loo

0
1,
0
0

(=N en)

Sao Paulo J.Math.Sci. 7, 1 (2013), 1-32
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where 1; is the identity | X [-matrix, 1, is the identity r X r-matrix. Then

A B |X P

c -AlY
vsp(ln) = | —5—pr 1 p—o— |

-yt -X'|F -D

where A is any | x | matrix, B and C are skew-symmetric | x | matrices, D is
any r X r matrix, E and F are symmetric r X r matrices, X,Y,P,Q are any | X r
matrices.

12. Classification of simple finite-dimensional Lie superalgebras

Definition 12.1. [K]. A Lie superalgebra g = g5 @ g7 is called classical, if it is
simple, and the representation of the Lie algebra gg on g1 is completely reducible.

Definition 12.2. A classical Lie superalgebra g is called basic, if g admits an even
non-degenerate g-invariant bilinear form.

Definition 12.3. A classical Lie superalgebra g is of Type 1, if g7 is a direct sum
if two simple g5-submodules.

Remark 12.1. Notations:
A(m,n) =sl(m+1n+1) form#n, mn>0,
A(n,n)=sl(n+1n+1)/ <lp2>, n>0,
B(m,n) =vsp(2m+1]2n), m>0,n>0,
D(m,n) = vsp(2m|2n), m>2,n>0,
C(n) =vosp(2]2n—2), n>2.

Theorem 12.1. V. G. Kac (1977) [K].

A simple finite-dimensional Lie superalgebra over an algebraically closed field of
characteristic zero is isomorphic either to one of the simple Lie algebras, or to
one of classical Lie superalgebras:

A(m,n),B(m,n),C(n),D(m,n),D(2,1;@),F (4),G(3),P(n),0(n),
or to one of Lie superalgebras of Cartan type: W (n),S(n),H(n),S(n).

13. Finite W-algebras for Lie superalgebras
(joint work with V. Serganova)

Finite W-algebras for Lie superalgebras have been studied by C. Briot, E.
Ragoucy, J. Brundan, J. Brown, S. Goodwin, W. Wang, L. Zhao and other math-
ematicians and physicists [BR, BBG, W, Z]. Analogues of finite W-algebras for
Lie superalgebras in terms of BRST cohomology were defined in [DK].
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We consider the case when g is a classical simple Lie superalgebra, i.e. g =

95 D g7, gp is a reductive Lie algebra, and g has an invariant super-symmetric
bilinear form (-|-).
Remark 13.1. The Premet’s definition makes sense for Lie superalgebras. One
should consider a good Z-grading g = D jcz8; for e € (g5 (i.e. a Z-grading
which satisfies properties (2) and (3) of Def. 6). Note that good Z-gradings of
basic Lie superalgebras over an algebraically closed field of characteristic zero
were classified in [H].

Let e € gy be an even nilpotent element, and we fix sl(2) =< e,h, f >. As in
the Lie algebra case, the linear operator ad(h) defines a Z-grading g = & jeZ9i-

Let g¢ := Ker(ad(e)). Note that dimg® = dimg, +dimg;. Let [ be a Lagrangian
subspace in g_;, with respect to the super-skew-symmetric bilinear form (x,y) =
([x,y]le). We consider a nilpotent subalgebra m = @ ;< 2g; @ [of g. Let y € g* be
defined by yx(x) = (x|e). Let C; =< v > be the one-dimensional m-module with
character . Let I,, be the left ideal of U(g) generated by a — x(a) for all a € m.

The generalized Whittaker module Q, is defined as in Def.8. The finite W-
algebra Wy, associated to the nilpotent element e is defined as in Def.9.

Remark 13.2.

(1) The isoclasses of Wy do not depend on the choice of Lagrangian subspace |
[Z].

(2) Theorem of Kostant does not hold for Lie superalgebras, since Wy, must have
a non-trivial odd part, and the center Z(g) of U(g) is even.

(3) Kazhdan filtration on W, can be defined exactly as in the Lie algebra case (see
Def. 13).

Proposition 13.1. Gr(Wy) is supercommutative.

Remark 13.3. [fdim(g_, )i is even, then one can construct the similar map
P:W, — S(g°)

by taking the highest weight component in the highest degree component.

If dim(g_)7 is odd, then there exists an odd element 6 in g_; N (+ such that
n(0) € Wy and m(0)* = 1.

In what follows we study the principal finite W-algebras, which are the finite
W -algebras associated to even regular nilpotent elements.

14. Defect

Definition 14.1. [KW].

Sao Paulo J.Math.Sci. 7, 1 (2013), 1-32



On finite W-algebras for Lie algebras and superalgebras 15

Let g be a classical Lie superalgebra, and let /\ be the set of roots with respect to
a maximal torus in gg. If g is a basic Lie superalgebra, then the defect of g def(g)
is the dimension of a maximal isotropic subspace in the R-span of /\.

Example 14.1.
def(sl(m|n)) = min(m,n),
def(vsp(2m|2n)) = def(vsp(2m+1|2n)) = min(m,n).
The exceptional Lie superalgebras
D(2,1;a),G(3),F(4)
have defect one.

Remark 14.1. [PS1]. If e is a regular nilpotent element in g, then
dim(g®); = 2def(g) or 2def(g) +1

dim(g®); = 2def(g), if g = sl(m|n), vsp(2m+ 1|2n), m > n; vsp(2m|2n),
m<n, G(3);

dim(g®); = 2def(g) + 1, if g = vsp(2m+ 1|2n), m < n; vsp(2m|2n), m > n;
D(2,1;a), F(4).

15. The case of g = si(1|n)

In this section, we describe the principal finite W-algebra for s((1|z) and more
generally, for a Lie superalgebra of Type I and defect one.

Form: (a|b) = —str(ab)
0[0 0 0 0 0 0] 0 0 0 0 0
0jo1 0 00 0] O 0 0 0 O
foloo 00 loln=1 0o - 0 o0
=l oloo o 10| /=0l 0o 2m-=2 0 0 o0
0/j0 0O 0 01 0] O 0 0 0 O
0j0 0 0 0O 0] O 0 0 n—-1 0

h=diag(Oln—1,n—3,...,3—n,1—n).
Note that e is a regular nilpotent element. We will use the following notations for
some elementary matrices in gl(1|n):

ho | W Mo M3 - Wy
E [h e -+ -
E. — Sl A M e
ij El- H I
R
én . fn—] hn
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16 Elena Poletaeva

h defines a Dynkin Z-grading of g whose degrees on the elementary matrices E;;
are

0 l-n 3-n --- n—3 n-1
n—1 0 2 4 - 2n-=-2
n-3| -2 0 4 - 2n—4
3-n| 4-2n - -0 2
l—=n|2=2n- v .. -2 0
Let ¢ = diag(n|1,---,1) be a central elements of gz. Then

g =<ee? " el L, >, dim(g®) = (n)2).
Letm = (D;<_,9;) D! Note that if n is odd, then [ = 0, and if n = 2k, then

[=< &1 >. Note also that m is generated by fi,..., fu; Uiy- - Mi—1,Ests- - - Ens
if n = 2k, andbyfl,...,fn;,ul,...,uk,§k+2,...,§n,ifn:2k+1.

x(fi)=1 x(w)=x(&) =0.

Let n be an ad(h)-invariant subspace of g: g = m@n. Recall that g admits Z-
grading g = g~ ® g” @ g' consistent with the Z,-grading:

* ‘ 0o ... 0 0 ‘ ke *
0 0] x *x = 1 0]0 0 O
g =1 ... 8= o ]
0| « *x = 0,0 0 O
-1 * 0 0 0
g =1 ...
*x | 0 0 O

Fix an ad(h)-homogeneous bases:
B(m_1)of mNg~", B(m;) of mNg', B(n_1) of nNg~", B(n;) of nNg'.

Set
Ri=( IT ©C IT »

xeB(my)  yeB(n_y)

R=( IT »(II ».

yeB(m_y) xeB(ny)
Note that (R ) and 7(R,) are both Whittaker vectors, hence w(R;),T(R2) € Wy.

Let
p(Eij) = p(i) +p(j),
where E;; is an elementary matrix, and
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On finite W-algebras for Lie algebras and superalgebras 17

Remark 15.1. Casimir elements of gl(m|n) are

E;

lkil *

Q= Z (_1)P(i2)+"'+P(ik)E‘ E.

iripBiyis -+
1502500k

Even generators of Wy, are w(Qy), for k =2,...n and 7t(c).
The generators of W, can be identified with elements of g°:
(—1)FF 1 () Pkl k=2.....n,
m(e) e,
(R,
(Ry

) L &1,
) P

— Uy

Theorem 15.1. [PS1]. Let g be a Lie superalgebra of Type I and defect one

(i.e. g=sl(1|n) orvsp(2|2n—2)). Let n be the rank of g;, ¢ be a central element of
g5, and Qa, ..., Q, be the first n — 1 Casimir elements in Z(g). Then the principal
finite W-algebra Wy, is a finite extension of C[m(c),m(Qs),...,m(,)] with odd
generators (Ry), n(R,) and defining relations

n(R1)* =n(R)* =0, [m(c),m(R1)]=—m(R1), [7(c),m(Ry)] = m(R2)
[(Q),n(R))] = [7(Qy),n(R)] =0, i=2,...,n,
[7(R1), n(R2)] = m(Q),
where
Q= ad y( x)
yEB(g™') xeB(g")

is an element of Z(g). In this case Wy, = U (g°).

16. The case of g = gl(n|n)
In this section, we outline the principal finite W-algebra for gl(n|n).

Form: (alb) = str(ab). We will use the following notations for some elementary
matrices in gl(n|n):
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18 Elena Poletaeva

hl el Y oo .« yl yn+l
fl hZ €2 K Y2 Yn+2
fn72 ho—1  en—1 cee tee Hn—2  Yn-1 Y2n—1
. f}’l—l hl’l ‘Lln_l yn
x] xn+1 e “ .. hn+1 en e . e e
Sl x2 Xppp e g1 hupo enn
Cno Xn1 Xou—1 | o+ o gnea hau1 e
&n_] X &n1 th

Letsl(2) =< e,h,f >, where e = ej +e2+ €2, f = X0 i(n—i)(fi + &),

h=diag(n—1,n—3,---,1—n|n—1,n—3,--- ;1 —n). Note that e is a regular
nilpotent element. Let z =diag(1,---,1|1,---,1), c =diag(l,---,1|—1,---,—1).

Note that dim(g°) = (2n|2n). Explicitly, g° = g5 g5, where
g =< (e1+-+en 1), (ent - +em2),z,c>,
908 =< (x4 x), 14 A V) (g1 - 220 1) s Gt -0 FY20-1) >,

where i = 1,...,n— 1, and the powers are considered in the corresponding n X n
matrices.

Theorem 16.1. [PSI]. In the case when g = gl(n|n), ¢° is isomorphic to the
truncated Lie superalgebra of polynomial currents in gl(1|1).

azy | a2

a1 = (242 ) o e c).

The isomorphism
¢ g — al(1]1) ©Clr] /(")
is given as follows:

o((er+--- +en—l)i) =E| ®t, o((en+--- +62n—2)i) =Ep ot
O((xn11 +"'+x2n71)i) =Ey ®t', O((yng1+--- +y2n71)i) =Ep®t,
fori=1,...,.n—1,

Z+c¢ z—cC
o( > ) =Ei1, (P(T)ZEzz, Q(x1+--+x,) = Ea1, @(y1+---+y,) =E2.

h defines an even Dynkin Z-grading of gl(n|n) whose degrees on the elementary
matrices are

Sao Paulo J.Math.Sci. 7, 1 (2013), 1-32



On finite W-algebras for Lie algebras and superalgebras 19

0 2 2n—72 0 2 2n—2

-2 0 2n—4 | -2 0 2n—4
2—-2n 0 2—2n 0

0 2 2n—72 0 2 2n—72

-2 0 2n—4 | =2 0 2n—4
2—-2n 0 2—2n 0

n
m= @Qz—zp
J=2

m is generated by &;, 1;, fi,g;i fori =1,--- ;n— 1 Note that
x(fi)=—x(g) =1 x(w)=x(&) =0, fori=1,--- ,n—1.

Note that W), is generated by 2n even elements and 2n odd elements.
The generators of W, can be identified with elements of g¢ using the map

P:W, —s S(g).

17. The super-Yangian of gl(m|n)

In this section, we outline the correspondence between finite W-algebras for
gl(m|n) and super-Yangians.

Recall that for a finite-dimensional semi-simple Lie algebra g, the Yangian of g
is an infinite-dimensional Hopf algebra Y (g). It is a deformation of the universal
enveloping algebra of the Lie algebra of polynomial currents of g [M].

Definition 17.1. The super-Yangian Y (g{(m|n)) of gl(m|n) is an associative unital
superalgebra over C with a countable set of generators

() 7@

Y IR wherei,j=1,..., m+n.

The Z,-grading of the algebra Y (gl(m|n)) is defined as follows:

P(1) = pli) +p(i).
To write down defining relation for the generators of Y (gl(m|n)) we employ the
formal series in Y (gl(m|n)[[u]]:
1) 2) _
Tij(u) =8 1+ T u 4+ T u 24
For all indices i, j, k,l we have the relations

Sdo Paulo J.Math.Sci. 7, 1 (2013), 1-32



20 Elena Poletaeva

(u—W)[T; (), Tia (v)] =
(— 1P PR OPOEPOPD (T, ()T (v) — Tiy (v) Ty (1)), (2)

where v is a formal parameter independent of u, so that (2) is an equality in the
algebra of formal Laurent series in «~!,v~! with coefficients in ¥ (gl(m|n)).

The following Proposition follows from [BR].

Proposition 17.1. In the case when g = gl(n|n), the corresponding principal finite
W-algebra is isomorphic to the truncated super-Yangian Y (gl(1[1))/(n).

Remark 17.1. The principal finite W -algebras for gl(m|n) associated to regular
nilpotent elements were described as certain truncations of a shifted version of
the super-Yangian Y (gl(1|1)) by J. Brown, J. Brundan and S. Goodwin in 2012
[BBG]. They also classified irreducible modules over principal finite W-algebras
for gl(m|n) by highest weight theory and proved that they are finite-dimensional.

In 2003 C. Briot and E. Ragoucy observed that certain finite W -algebras based
on gl(m|n) can be realized as truncations of the super-Yangian of gl(m|n) [BR].
They also observed that finite W-algebras for gl(m|n) associated to non-regular
nilpotent elements are connected to higher rank super-Yangians.

18. The case of g = Q(n)

In this section, we construct a complete set of generators of the principal finite
W-algebra for Q(n).

The queer Lie superalgebra is defined as follows

O(n) := {( g ﬁ > | A,B are n x n matrices}.
Let otr (%‘%) =tuB.

Remark 18.1. Q(n) has one-dimensional center < z >, where z = 1,,. Let
SO(n) ={X € Q(n) | otrX =0}.

Note that the Lie superalgebra Q(n) := SQ(n)/ < z > is simple.

Let e; ; and f; ; be standard bases in A and B respectively:

[ E;| 0 (0 |E;
ei,j—< 0 Eij>’ flj_<El] 0 >7

where E;; are elementary n X n matrices.
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Note that g = Q(n) admits an odd non-degenerate g-invariant super symmetric
bilinear form

(x|y) := otr(xy) for x,y € g.
Therefore, we identify the coadjoint module g* with I1(g), where IT is the functor
changing the parity.
Let sl(2) =< e,h, f >, where

n—1
e:Ze,-H], h=diag(n—1,n—3,...,3—n,1—n), f= Z n—i)eiil.
i=1

Note that e is a regular nilpotent element, s defines an even Dynkm Z-grading of
g whose degrees on the elementary matrices are

0 2 . 2n-—-2 0 2 . 2n—2
-2 0O --- 2n—-4| =2 0O --- 2n—4
2—-2n 0 2—2n 0
0 2 2n—72 0 2 2n—72
-2 0 2n—4 | -2 0 2n—4
2—-2n 0 2—2n 0

Let E = Z?:_ll fiiv1. Since we have an isomorphism g* = II(g), an even regular
nilpotent ¥ € g* can be defined by ¥ (x) := (x|E) for x € g. Note that

= {z,e e,....e" V| Hy,Hy,....,H, 1}, dim(gf) = (n|n),
whereHo— rL(=1)" lfl,,Hl Y- )f,,+1, ooy Hyoy = (=1)""1fi . Let
m= @9272]*
j=2
Note that m is generated by e; 1 ; and fi1;, wherei=1,...,n—1, and

xeivi) =1, x(eirri) =0if k=2, x(firxi) =0ifk=>1.
The left ideal I,, and W), are defined now as usual.

A. Sergeev defined by induction the elements e( and f belonging to U(g)
[SI:

e(m Zk €. kg/(:r; D + (_1)m+1 ZZZI fl',kfk(fl?_l)’

A =T e Y 4 (1 T fire
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Then

lei, j,ff/(;j)] = 5j,k€,$n) - 51',16,(:;-), lei, j,fk(:?)} = 5j,kﬁ€7l) - 5i,1f;§;"),
el = (01850t = 8 f . [fig £ = (21" 8 aely) + Gisel”).

Proposition 18.1. A. Sergeev [S].
(2m+1)

The elements Y., ¢;’; generate Z(g).

Theorem 18.1. [PS2]. ﬂ(e%)) and 7( frsnf)) are Whittaker vectors.

(n+k—1)
n,1

) and n odd generators n(f(nrkfl)), fork =

Wy, has n even generators T(e .

1,...,n. The generators of Wy, can be identified with elements of of:

Nz meE) Lkl k=2,

n:(ena n,l ) —> 4 Y .. ,I’l,
2(f"H ) L Hey, k=1,..n.

Corollary 18.1. The natural homomorphism U (g)*™ — W, is surjective.

Let p:= @09, Letf=<e; fii|i=1,...,n>,and let & : U(p) — U(f) be
the Harish-Chandra homomorphism.
Denote

xi=ei, &= (—1)"fi.

Theorem 18.2. [PS2]. The Harish-Chandra homomorphism is injective.
Under the Harish-Chandra homomorphism:

19(7[(65:;](71))) = [Zilzizz..‘zik (xil + (_l)k+1§i1 ) s (xikfl - gl‘kq)(xik + gik)]evena
O (fyT ) = [Bimm (i + (S1FE) o (= &) (6 + E)]oaa-
Theorem 18.3. [PS2].

1 n—1 . 1
wleny ) =y et Y e+ (-0 fiifi 457 —2).
i=1 i=1

i<j
One can define odd generators Py, ..., P, 1 of Wy as follows:
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Then
[®@,,,®,] =0, if m+ p is odd,
(D, D)) € Z(g), if m+ p is even.
Lemma 18.1. For odd m and p we have
[m(e,y ™). e, ) = 0.

n,l1 n,l1

We set
%= n(e,g'?;r”) for odd i,

zi = [ Do, D] for even i.

Theorem 18.4. [PS2]. Elements 2y, ...,2,—1 are algebraically independent in W,,.
Together with @y, ..., P, they form a complete set of generators in W,,.
Example 18.1. n =2, g = Q(2).

Let
e=e1p, h=diag(l,-1), f=ey, z=ei1+er,

E=fip, Ho=fi1—fr2, Hi=-fi2.
Then
E— {z,e | Hy,H; }, dim(gE) = (2]2).

According to Theorem 7, Wy, has 2 even generators: n(egzi), n(eé%i), and 2 odd
generators: (f2 1) r(f, 3)) Let

®) = n(f) = m(Ho),
3

D) = [n(e,, 1)) Do = 275(f2(,31)) =2n(—fio+ fiie2n + fr2e11).
Let
20 =21(ef) = 27(2),

3

71 = T(ey 1)) m(e2 +€%,1 +€%,2 +erexp—ei1—exn— fi1fr2).

)

The nonzero commutation relations between the generators of Wy, are as follows:
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(21, 0] = Py, [21,P1] = 421Dy — 2P| — 25Pp + 220D,

3
(@, @g] =20, [P, P1] =4P Py — 42021 + Zzg -z

Note that .
(@), @] = §71:(—8(e§?1) —|—e§3§) +27° +42%).

Hence by Proposition 5
(@1, P1] € w(Z(g)).

Remark 18.2. L. Zhao studied finite W-algebras for g = Q(n) [Z]. He proved
that the definition of the finite W-algebra is independent of the choices of the
isotropic subspaces | and the good 7Z-gradings. He also established a Skryabin
type equivalence between the category of Wy-modules and a category of certain
g-modules.

Conjecture 18.1. [PS2]. Irreducible modules over the principal finite W -algebra
for Q(n) are finite-dimensional.

Conjecture 18.2. [PS2]. In the case when dim(g_,)j is even, it is possible to
find a set of generators of the principal finite W-algebra for g such that even
generators commute, and the commutators of odd generators are in w(Z(g)).

19. The super-Yangian of Q(n)

In this section, we describe the principal finite W-algebra for Q(n) as a factor
algebra of the super-Yangian of Q(1).

The super-Yangian Y (Q(n)) was studied by M. Nazarov and A. Sergeev [N, NS].
Note that Y (Q(n)) is the associative unital superalgebra over C with the countable
set of generators

T, where m=1,2,... and i, j = £1,42, .., 4n.

The Z,-grading of the algebra Y (Q(n)) is defined as follows:

p(T) = p(i) + p(j), where p(i) = 0if i > 0 and p(i) = 1 if i < 0.

To describe defining relations for the generators of Y (Q(n)) we employ the formal
series in Y (Q(n))[[u~"]):

Ti7j(u> = 5,‘j -1 _'_7-;_7(})14—1 —1—7}7(]2)14_2—1— e
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For all indices i, j, k,I we have the relations
(u* =) [T; (u), T (v)] - (—1)POPE+PEP1+p(K)P(D)
= (u+v) (T j () Ty (v) = T j (v) T s (u))

— (U= V) (T (W) Ty (v) = T () Ti i (w)) - (= 1)PRO PO (3)
where v is a formal parameter independent of u, so that (3) is an equality in the

algebra of formal Laurent series in u~!,v~! with coefficients in ¥ (Q(n)). We also
have the relations

Tij(—u) =Ti—j(u). (4)
Relations (3) and (4) are equivalent to the following defining relations:

([]}S"JF”, Tk(;‘”] _ [];7(;"—1), ]}{{?*‘)]) (= 1)POPO+p(p+p(Rp() =

T(m)T(r_l) _|_Tk(’j’l_1)T(r) _ T(r_l)T(m) _ T(r)T(m_l)

k,j il il k,j il k,j “i,l

m r—1 m—1 r r—1 m r m—1
+(_1)p(k)+p(l)(_T£k,)JT—(1l )+T£k7j )T,(,’)]—i_Tk(,] )Tl(fl)_TkEf)JTl(fl )), (3/)
T = (1T, )

where m,r=1,... and 7}50) = §;j.

Theorem 19.1. [PS2]. There exists a surjective homomorphism:
(P . Y(Q(l)) — Wx)
defined as follows:

o(1)) = (~Dfm(e ), o(r)) = (1 a (s fork=1,2,....

)

20. The case of g =I'(01,0,,03)

In this section, we describe the principal finite W-algebra for the exceptional
Lie superalgebra I'(o}, 02, 03) in terms of generators and relations. We follow the
construction of this Lie superalgebra given by M. Scheunert [Sch].

Let 01,07, 63 be complex numbers such that 6; 4+ 6> 4+ 63 = 0. The family of Lie
superalgebras I'(01, 02, 03) is defined as follows:

F(G],62,63) =T15@1I75, where

[5=s12);®sl(2);Bsl(2);, [1=ViaVLaVs,
where V; is the standard s[(2);-module for i = 1,2, 3.
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Let sl(2); =< X;,H;,Y; >, where {X;, H;,Y;} is the standard basis in each s[(2);
fori=1,2,3. LetV; =< ¢;, f; > and let P, : V; X V; — s5l(2); be the s[(2);-invariant
bilinear mapping given by

I)i(eiaei)zzxia Pl(flafl):_zyla Pi(eiafi):Pi(fiaei):_Hi'
Let y; be a non-degenerate skew-symmetric form on V;:

ll/i(eiufi) = _llli(ﬁaei) =1
Note that [['5,I'7] is the tensor product of the standard representations of s[(2); in
V;, and [I'7,T'7] is given by the formula
[x1 ®@x2 @ 3,1 @ Y2 @3] = 12 (x2,y2) W3 (x3,y3) Pr (x1,1) +

O Y1 (x1, Y1) W3(x3,¥3) P2 (%2, 2) + 03 W1 (x1, y1) W2 (x2,¥2) P3 (x3, 3),
where x;,y; €V, i=1,2,3.
Remark 20.1. The superalgebra I'(01,0,,03) is simple if and only if o; # 0 for
i=1,2,3. I'(01,02,03) = I'(0],05,0%) if and only if the sets {c]} and {o;}
are obtained from each other by a permutation and multiplication of all elements
of one set by a nonzero complex number (see [Sch]). Thus I'(01,0,,03) is a
one-parameter family of deformations of osp(4|2). Note that T'(1,—1 —a, o) =
D(2,1; @), where o #0,—1 (see [K]).

We consider the non-degenerate invariant symmetric bilinear form on g given as
follows:
(X,Y) =L, (HyH)=%,
(1®e®es, IRLVf3)=-2, (a®ea®f3,1®HLQe)=2,
(e1® frRes, iRea®f3) =2, (fiRerResz,e1® H®f3)=2.
Let sl(2) =< e,h, f >, where
e=X1+Xo+X3, h=H +H,+H3;, f=Y1+1+Ys.
Then e is a regular nilpotent element, & defines a Dynkin Z-grading of g:
g= @§:_3gj, where
B=<e1Rer®e;>, g =<X,X2,X3>,
g =<e1Re® f,61R HRes, flReRes >,
go=<Hi ,Hy,H3;>, ¢ 1=<ea®@)Hh&f,1Qa®f3eQ@e®f>,
go=<N1Y3> g;3=<fi®LOfr>.
Note that dim(g¢) = (3|3). Explicitly,
(6%)0 =< X1, X2, X3 >,
()1 =<e1®frRe;—e1R®f3,fiRaRe; —e1Rer® f,e1Rer ®ez >.
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In g we consider a nilpotent subalgebra m = g_3® g_, ® [, where [ is a one-
dimensional Lagrangian subspace of g_;: [ =< e ® fo ® f3 >. Note that m is
generated by Y1,Y,,Y3 and e; ® f> ® f3. We have that

x¥)=—, xe®f£h®f;)=0.

Letd=fiRerRf3—f1¥ frRe3. Then B € g_; NI, m(0) e Wy, 77:(9)2 =-2.

Even generators of Wy are:
Ci = n(2X, + o1 (3H} — H))),
Cy=71(2X+ 50:H; + (f1®er® f3)(e1 ®e2 ® f3)),
C=7n(2X3+ 33H: +(fi® r®e3)(e1 ® L@ e3)).

Odd generators of Wy are
Ri=72(e1@fHivwes—e1®er® f3) +01HI(fi®Rer® f3— fi® fHr®es)),
Ry =7(2(fi®er®es —e1@ex® f3)

+(o1H1 — 03H3)(f1®er ® f3) — 0oH(f1 ® fr® e3)),
R3 = 7(4(e1 ®ex®e3) — 61HIRy — 401 (fi ®ex @ f3)X)

—2(01H (61 @ e2® f3) + OaHa(e1 ® fr @ e3) + 03Hz (e1 @ 2@ f3))),

and 7(6). Note that the generators C; and R; for i = 1,2,3 can be identified
with the corresponding elements of g¢ under the mapping P (see Remark 8). The
quadratic Casimir element of g is

Q=13 (%H,-2+2Xi) —(e1Rea@f3)([i®hLiRe;)— (1@ frRe3)(fi®er® f3).

Hence

1
n(Q)=C+C+C3— ERlﬂ'(Q).

Theorem 20.1. [P]. The principal finite W-algebra Wy, is generated by even ele-
ments m(Q), Cy and Cy, and odd element 7t(0). The relations are

[C17C2]:07 [ﬂ:(e)vcl]:Rl:F%n(9>7 i:1727

[C27Rl] :_%R1+R37 [ClaRZ] :%R2 +R3a
[Rl',R,'] :86,~Ci—20,~R,~n(9), i= 1,2,
[R1,Ry] = —4(01C2 + 02C1 + 0371(Q)) + (01R2 + 02R ) (6),
[Ri,m(0)] =F20;, i=1,2, [m(0),n(0)]=—4,
[TL’(Q),TL’(Q)]:O, [E(Q)vcl]:()a i=1,2, [ﬂ(Q),Rl]:O’ i=1,2,3.
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21. The case of g = vsp(1/2)

In this section, we describe the principal finite W-algebra for vsp(1]2).
Form: (a|b) = Lstr(ab)
g=<e,f,h|0,r>, where
0/0 0 0/0 0
e=(0[0 1T |, f=(0[0 0 |,h=
0/0 0 0|1 0

0110 0[0 1
6:(000,r2100.
~1]/0 0 0/0 0

Note that e is a regular nilpotent element, and % defines a Z-grading of g:

ocolo
o —lo
| ol
o

0=02Dg_1Dg D91 D9y,

where

92=<f> 9.1=<0> g=<h> g =<r> g=<e>.

1
5

g° =<e|lr>, dimg’=(1[1).
Note that 7() € Wy, and 71(6)? = 1.

Even generator of Wy is (Q), where Q = 2e+h—h*>+2r0 is the Casimir element
of g.
Odd generators of Wy are R = nt(r —h0) and ().

Note that generators 7(€2) and R are identified with elements of g°:

m=g,=<f> x(f)=-

P
R—r

Theorem 21.1. The principal finite W-algebra Wy, is generated by ©(Q) and two
odd generators: w(0) and R. The defining relations are
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22. The case of g = vsp(1|2n)

In this section, we present partial results for the principal finite W-algebra for
vsp(1|2n), where n > 2, and make a conjecture for this case.

Form: (a|b) = —str(ab).

We will use the following notations for some elementary matrices in vsp(1|2n):

0s1 s Sn | 71 1 Tn
ri h] X1 )22
i oh x - - P2
Xn—1
[ Voot hy | . . Pn
st 1491  --- hl Y1 0 0
e Q2 x1 hy O 0
Sn qn 0 0 X1 hy

Letsl(2) =< e,h,f >, where e = (x| +...X,—1) + Py,
h=diag(0]2n—1,2n—3,...,3,1;—2n+1,—2n+3,...,—3,—1),
f= (T k(2n—k)yi) +n*gy.

Note that e is a regular nilpotent element, and / defines a Dynkin Z-grading of g
whose degrees on the elementary matrices are

0 —2n+1 -3 -1 2n—1 .. 3 1
2n—1 0 2 dn—2 2n+2 2n
-2 0 2 dn—4 2n 2n—2
3 0 2 6 4
1 —4 -2 0 2n 4 2
—2n+1| —-4n+2 —2n—-2 —2n 0 -2 0 0
—4n+4 —2n —2n+2 2 0 -2 0
-3 —6 —4 0 -2
-1 —2n —4 -2 2 0

Note that dimg® = (n|1), (g°); =< r1 >, g_; =< 0 >, where 0 =5, dimg_; = 1.
Note thatm = @< 29, and g_» =< y;,qp >, i=1,...,n— 1.

m is generated by y;,q,, x(yi) =2, fori=1,....,n—1,and x(g,) = 1.

n(0) € Wy, (6)*

Conjecture 22.1. [P]. The principal finite W-algebra Wy, is generated by the first
n Casimir elements in w(Z(g)) and odd elements 7(0) and R, where R is induced
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by r so that
[R,R] € =(Z(g)), [R,7(0)] € ®(Z(9)), [m(6),7(6)] =—2.
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