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Abstract. Let G be a group and let F be a field of characteristic
different from 2. Denote by (FG)+ the set of symmetric elements and
by U+(FG) the set of symmetric units, under an oriented classical
involution of the group algebra FG. We give some lower and upper
bounds on the Lie nilpotency index of (FG)+ and the nilpotency class
of U+(FG).

1. Introduction

Let FG denote the group algebra of a groupG over a field F with char(F ) =
p 6= 2. A homomorphism σ : G → {±1} is called an orientation of the
group G. Working in the context of K-theory, Novikov [11], introduced an
oriented involution ∗ of FG, given by∑

g∈G
αgg

∗ =
∑
g∈G

αgσ(g)g−1.

When σ is trivial this involution coincides with the so called classical invo-
lution of FG.

We denote (FG)+ = {α ∈ FG : α∗ = α} and (FG)− = {α ∈ FG : α∗ =
−α} the set of symmetric and skew-symmetric elements of FG under ∗,
respectively. We denote by N the kernel of σ. It is obvious that the invo-
lution ∗ coincides on the group algebra FN with the classical involution.

2010 Mathematics Subject Classification. 16W10, 16U80, 16U60.
Key words: Involution, symmetric elements, Lie nilpotent, strongly Lie nilpotent,

Lie nilpotency index, nilpotency class.

69



70 J.H. Castillo

It is easy to see that, as an F -module, (FG)+ is generated by the set

S = {g + g−1 : g ∈ N} ∪ {g − g−1 : g ∈ G \N, g2 6= 1}
and (FG)− is generated by

L = {g + g−1 : g ∈ G \N} ∪ {g − g−1 : g ∈ N, g2 6= 1}.

Given g1, g2 ∈ G, we define the commutator (g1, g2) = g−1
1 g−1

2 g1g2 and re-
cursively,
(g1, . . . , gn) = ((g1, . . . , gn−1), gn) for n elements g1, . . . , gn of G. By the
commutator (X,Y ) of the subsets X and Y of G we mean the subgroup
of G generated by all commutators (x, y) with x ∈ X, y ∈ Y . In this
way, we can define the lower central series of a nonempty subset H of G
by: γ1(H) = H and γn+1(H) = (γn(H), H), for n ≥ 1. We say that H
is nilpotent if γn(H) = 1, for some n. For a nilpotent subset H ⊆ G the
number cl(H) = min{n ∈ N0 : γn+1(H) = 1} is called the nilpotency class
of H. It can be proved that H is a nilpotent set if and only if H satisfies
the group identity (g1, . . . , gn) = 1 for some n ≥ 2.

In an associative ring R, the Lie bracket on two elements x, y ∈ R is
defined by [x, y] = xy − yx. This definition is extended recursively via
[x1, . . . , xn+1] = [[x1, . . . , xn], xn+1]. For X,Y ⊆ R by [X,Y ] we denote the
additive subgroup generated by all Lie commutators [x, y] with x ∈ X, y ∈
Y . The lower Lie central series of a nonempty subset S of R is defined
inductively by setting γ1(S) = S and γn+1(S) = [γn(S), S]. We say that
the subset S is Lie nilpotent if there exists a natural number n, such that
γn(S) = 0. The smallest natural number with the last property, denoted
by t(S), is called the Lie nilpotency index of S. It is possible to show
that S is Lie nilpotent if and only if S satisfies the polynomial identity
[x1, . . . , xn] = 0 for some n ≥ 2.

Given a nonempty subset S of R, we let S(1) = R, and then for each i ≥ 2,
let S(i) be the (associative) ideal of R generated by all elements of the form

[a, b], with a ∈ S(i−1), b ∈ S. We say that S is strongly Lie nilpotent if

S(i) = 0 for some i. The minimal n for which S(n) = 0 is called the upper
Lie nilpotency index and denoted by tL(S). Clearly, strong Lie nilpotence
implies Lie nilpotence and t(S) ≤ tL(S). Denote by U(S) the set of units
in the subset S of R and suppose that it is nonempty. By the equality
(x, y) = 1 + x−1y−1[x, y], it is easy to see that γn(U(S)) ⊆ 1 + S(n) for all
n ≥ 2. In consequence, the set of units of a strongly Lie nilpotent subset S
is nilpotent, and

cl(U(S)) < tL(S). (1)

In 1973, Passi, Passman and Sehgal [12] showed that the group algebra
FG is Lie nilpotent if and only if G is nilpotent and G′ is a finite p-group,
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where p is the characteristic of F . Actually, see [14], a group algebra is
Lie nilpotent if and only if it is strongly Lie nilpotent. Next, S.K. Sehgal
characterized group algebras which are Lie n-Engel, for some n.

In 1993, Giambruno and Sehgal [6] began the study of Lie nilpotence of sym-
metric and skew-symmetric elements under the classical involution. They
proved that given a group G without elements of order 2 and a field F with
char(F ) 6= 2, if either (FG)+ or (FG)− is Lie nilpotent, then FG is Lie
nilpotent. This work was completed by G.T. Lee [8], for groups in general.
More specifically, he proved that the Lie nilpotence of the symmetric ele-
ments under the classical involution is equivalent to the Lie nilpotence of
FG when the group G does not contain a copy of Q8, the quaternion group
of order 8 and he also characterized the group algebras such that the set of
symmetric elements is Lie nilpotent when G contains a copy of Q8.

Recently, Castillo and Polcino Milies, see [5], studied Lie properties of the
symmetric elements under an oriented classical involution. They extended
some previous results from [6], [8] and [9]. In particular, they gave some
groups algebras such that the Lie nilpotence of the symmetric set implies
the same property in the whole group algebra. Also, they obtained a com-
plete characterization of the group algebras FG, such that Q8 ⊆ G and
(FG)+ is Lie nilpotent.

Lately, Z. Balogh and T. Juhász in [2] and [3] studied the Lie nilpotency
index of (FG)+ and the nilpotency class of the U+(FG) under the classi-
cal involution in group algebras. They gave a necessary condition to the
numbers t((FG)+) and cl(U+(FG)) be maximal, as possible, in a nilpotent
group algebra. Also, they studied this two numbers to group algebras such
that (FG)+ is Lie nilpotent but FG is not.

In this article we study the Lie nilpotency index of (FG)+ and the nilpo-
tency class of U+(FG) under an oriented classical involution. In the next
section we give some preliminary results. In the third section we study the
numbers t((FG)+) and cl(U+(FG)) in Lie nilpotent group algebras. In the
fourth section we study the case when Q8 ⊆ G and (FG)+ is Lie nilpotent.

Throughout this paper F will always denote a field of characteristic not 2,
G a group and σ a nontrivial orientation of G. In a number of places, all
over this paper, we use arguments from [2], [3] and [10]. Some of them are
reproduced here for the sake of completeness.

2. Preliminaries

We recall the following result from [10].
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Lemma 2.1. Let R be a ring and S a subset of R. Suppose, for some
i ≥ 1, that S(i) ⊆ zR, where z is central in R. Then for all j > 0, we have
S(i+j) ⊆ zS(j). In particular, for any positive integer m, S(mi) ⊆ zmR.

Proof. The proof is by induction on j. If j = 1, then S(i+1) ⊆ S(i), there
is nothing to do. Assume that S(i+j) ⊆ zS(j). Take a ∈ S(i+j), b ∈ S. So
a = za1, for some a1 ∈ S(j). Thus, [a, b] = [za1, b] = z[a1, b] ∈ zS(i+j), as
we want to prove.

To get the second part, notice that

S(2i) = S(i+i) ⊆ zS(i) ⊆ z2R.

Suppose that S((m−1)i) ⊆ zm−1R. So S(mi) = S((m−1)i+i) ⊆ zS((m−1)i) ⊆
zmR. �

Throughout this article we denote byQ8 =
〈
x, y : x4 = 1, x2 = y2, xy = x−1

〉
the quaternion group of order 8. Castillo and Polcino Milies [5] character-
ized the group algebras of groups containing Q8 and with a nontrivial orien-
tation, such that (FG)+ is Lie nilpotent. Here we prove that the conditions
obtained by them are also satisfied when (FG)+ is strongly Lie nilpotent.

Theorem 2.1. Let F be a field of characteristic p 6= 2, G a group with
a nontrivial orientation σ and x, y elements of G such that 〈x, y〉 ' Q8.
Then (FG)+ is strongly Lie nilpotent if and only if either

(i) char(F ) = 0, N ' Q8 × E and G ' 〈Q8, g〉 × E, where E2 = 1 and
g ∈ G \N is such that (g, x) = (g, y) = 1 and g2 = x2; or,

(ii) char(F ) = p > 2, N ' Q8 × E × P , where E2 = 1, P is a finite
p-group and there exists g ∈ G \ N such that G ' 〈Q8, g〉 × E × P ,
(g, x) = (g, y) = 1 and g2 = x2.

Proof. If (FG)+ is strongly Lie nilpotent, then (FG)+ is Lie nilpotent and
from [5, Theorem 4.2] we get (i) and (ii).

Conversely, assume that |P | = pn. We claim that, ((FG)+)(2pn) = 0. The
proof will be by induction on n. If n = 0, then G ' 〈Q8, g〉 × E and thus,
from [5, Lemma 4.3], (FG)+ is commutative. Assume that |P | = pn > 1.
Take z ∈ ζ(P ) with o(z) = p, applying our inductive hypothesis on G =

G/ 〈z〉. Then, ((FG)+)(2pn−1) = 0. Thus

((FG)+)(2pn−1) ⊆ ∆(G, 〈z〉) = (z − 1)FG.

By Lema 2.1,

((FG)+)(2pn) ⊆ (z − 1)pFG = 0,

as we claimed.
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�

From the equality, (x, y) = 1 + x−1y−1[x, y] we know that γn(U+(FG)) ⊆
1 + ((FG)+)(n) and thus we get the following.

Corollary 2.1. Let F be a field of characteristic different from 2. Assume
that Q8 ⊆ G and (FG)+ is Lie nilpotent. Then, U+(FG) is nilpotent.

We need the following easy observation.

Lemma 2.2. Let G be a group, H any subgroup and A a normal subgroup
such that A ⊆ N . If (FG)+ is Lie nilpotent, then so are (FH)+ and
(F (G/A))+. Furthermore, t((FH)+) ≤ t((FG)+) and t((F (G/A))+) ≤
t((FG)+).

Proof. Note that (FH)+ is a subset of (FG)+, and thus it has the required
properties.

Since A is a normal subgroup contained in the kernel of the orientation σ,
we can define in F (G/A) an induced oriented classical involution from ∗ in
FG as follows:  ∑

ḡ∈G/A

αg ḡ

?

=
∑
ḡ∈G/A

αgσ(g)ḡ−1.

Now, simply observe that the symmetric elements in F (G/A), under ?,
are linear combinations of terms of the form gA + σ(g)g−1A, with g ∈ G.
That is, every element of (F (G/A))+ is the homomorphic image of an
element of (FG)+ under the natural map εA : FG → F (G/A), defined by
εA(
∑

g∈G αgg) =
∑

g∈G αg ḡ.

So assume that (FG)+ is Lie nilpotent, therefore there exists n = t((FG)+)
such that [α1, . . . , αn] = 0 for all αi ∈ (FG)+. Let β1, . . . , βn ∈ (F (G/A))+.
Thus

[β1, . . . , βn] = [εA(α1), . . . , εA(αn)]

= εA([α1, . . . , αn]) = εA(0) = 0.

Consequently, t((F (G/A))+) ≤ t((FG)+). �

3. Lie nilpotent group algebras

In this section we assume that FG is Lie nilpotent. By [15], tL(FG) ≤
|G′| + 1 and by [4] the equality holds if and only if G′ is cyclic, or G′ is a
noncentral elementary abelian group of order 4.
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Note that a group G of odd finite order has trivial orientation. Indeed, let
a be an element of G. So 1 = σ(a|G|) = σ(a)|G| and as |G| is odd we get
that σ(a) = 1. For the last reason when G is a group of odd finite order,
the involution ∗ is the classical involution. In this way, we can use the
following result, that is a combination from [2, Lemma 2] and [3, Lemma
2].

Lemma 3.1. Let G be a finite p-group with a cyclic derived subgroup. Then
t((FG)+) ≥ |G′|+ 1 and cl(U+(FG)) ≥ |G′|.

We recall that a group G is called p-abelian if G′, the commutator subgroup
of G, is a finite p-group and 0-abelian means abelian.

Theorem 3.1. Let FG be a Lie nilpotent group algebra of odd characteris-
tic and nontrivial orientation. Then, t((FG)+) = |G′|+ 1 if and only if G′

is cyclic. Moreover, assuming that G is a torsion group, cl(U+(FG)) = |G′|
if and only if G′ is cyclic.

Proof. Assume that t((FG)+) = |G′|+ 1. As G′ is a finite p-group, if G′ is
not cyclic, from [4], we know that t((FG)+) ≤ tL(FG) < |G′| + 1 and we
get a contradiction. Thus, G′ is cyclic.

Conversely, suppose that G′ is cyclic. By the hypotheses, G is a nilpotent
p-abelian group and from [1, Lemma 1] there exists a finite p-group P which
is isomorphic to a subgroup of factor group of G and P ′ ' G′. Actually,
from the proof of [1, Lemma 1], we know that P ' H/A, where A is a
maximal torsion-free central subgroup of G.

Assume that there exists g ∈ A such that σ(g) = −1. In this way, as
G = N ∪ gN , we get G′ = N ′. Using in FP the classical involution, by
lemmas 3.1 and 2.2, we obtain that

|G′|+ 1 = |N ′|+ 1 = |P ′|+ 1 ≤ t((FP )+) ≤ t((FN)+) ≤ t((FG)+).

In the other hand, suppose that A ⊆ N . Then we can define an induced
oriented classical involution in P ' H/A, from that one in FG. Conse-
quently,

|G′|+ 1 = |P ′|+ 1 ≤ t((FP )+) ≤ t((FG)+).

The proof of the second part is similar. �

4. Groups that contain a copy of Q8

We assume that Q8 ⊆ G and (FG)+ is Lie nilpotent. This means that the
group algebra FG is not Lie nilpotent. Recently, this kind of group algebras
was characterized by Castillo and Polcino Milies [5]. This characterization
is the same as in Theorem 2.1, so during this section we assume that G is
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as in that result. In this section, we will study the Lie nilpotency index of
the symmetric elements under oriented classical involutions.

It is easy to show that

gm − 1 ≡ m(g − 1) (mod ∆(G)2). (2)

for every g ∈ G and any integer m.

We begin with the following result.

Lemma 4.1. Consider FG with an oriented classical involution. Then

((FG)+)(n) ⊆ FG∆(P )n

for all n ≥ 2

Proof. Recall that the symmetric elements are spanned as an F -module by
the set

S = {z + z−1 : z ∈ N} ∪ {z − z−1 : z ∈ G \N}.
If z ∈ N , then z = ah with a ∈ Q8 × E and h ∈ P . Note that if a2h = 1,
then h = 1 and a2 = 1. Thus, a ∈ ζ(Q8 × E). Assuming a2h 6= 1, follows
that z + z−1 = ah+ a−1h−1 = ah+ a3h−1 = a(h+ a2h−1).

Also, if z ∈ G \ N ; we can write z = gah with a ∈ Q8 × E and h ∈ P .
If a2h = 1, then a2 = h = 1. Again, a ∈ ζ(Q8 × E) and thus z − z−1 =
gah− g−1a−1h−1 = ga− g−1a = ga(1− g2) ∈ ζ(Q8 ×E). Now we suppose
that a2h 6= 1 and we get the following cases:

(1) If a2 = 1 and h 6= 1, then z − z−1 = gah − g−1a−1h−1 = ag(h −
g2h−1).

(2) If a2 6= 1 and h = 1, then z−z−1 = gah−g−1a−1h−1 = ga−g3a3 =
ga− ga = 0.

(3) If a2 6= 1 and h 6= 1, then z − z−1 = gah − g−1a−1h−1 = agh −
a3g3h−1 = ag(h− h−1), because a3g3 = ag.

From the above considerations, we obtain that

S = A ∪ B ∪ C ∪ ζ(Q8 × E),

where

A = {a(h+ a2h−1) : a ∈ Q8 × E, h ∈ P and a2h 6= 1},
B = {ag(h− g2h−1) : a ∈ Q8 × E, h ∈ P and (a2 = 1 and h 6= 1)},
C = {ag(h− h−1) : a ∈ Q8 × E, h ∈ P and (a2 6= 1 and h 6= 1)}.

Given a ∈ Q8×E, such that a2 6= 1 we know that 1 + a2 is symmetric and
a2 ∈ ζ(Q8 × E). In this way,

a(h+ a2h−1) + 1 + a2 = a(h− 1) + a3(h−1 − 1) + 1 + a+ a2 + a3,
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where 1+a+a2 +a3 is a central element in FG and a(h−1)+a3(h−1−1) ∈
FG∆(P ). It is clear that, ag(h− h−1) ∈ FG∆(P ). Furthermore, if a2 = 1
and h 6= 1, then ag(h− g2h−1) = ag(h− 1)− ag3(h−1 − 1) + a(g − g−1) ∈
FG∆(P ) + ζ(FG).

So

S̃ = A′ ∪ B ∪ C ∪ ζ(Q8 × E),

also spans (FG)+ as an F -module, where

A′ = {a(h+ a2h−1) + 1 + a2 : a ∈ Q8 × E, h ∈ P and a2h 6= 1}
and B, C are as above.

In consequence,

(FG)+ ⊆ FG∆(P ) + ζ(FG). (3)

The proof follows by induction on n. Indeed, if n = 2

[(FG)+, (FG)+] ⊆ [FG∆(P ), FG∆(P )] ⊆ FG∆(P )2.

Suppose that the lemma is true for some n ≥ 2. Take α ∈ ((FG)+)(n) and
β ∈ (FG)+. So

[α, β] ∈ [FG∆(P )n, FG∆(P )] ⊆ FG∆(P )n+1.

and we get that ((FG)+)(n+1) ⊆ FG∆(P )n+1 as required. �

Denote by c the central element of Q8 × E, such that (Q8 × E)2 = 〈c〉.
Given n ≥ 2, we denote with Mn the F -subspace of the vector space FG
generates by the set

{(h1−h−1
1 ) · · · (hn−h−1

n )(1−c)a : h1, . . . , hn ∈ P, a ∈ (Q8×E)\ζ(Q8×E)}.

To simplify, we write f1,...,n instead of (h1 − h−1
1 ) · · · (hn − h−1

n ).

Let Sn be the symmetric group of degree n and FSn its group algebra over
the field F . It is possible to define a group action of Sn on Mn via: for a
σ ∈ Sn and a generator element f1,...,n(1− c)a of Mn let

σ · f1,...,n(1− c)a = fσ(1),...,σ(n)(1− c)a.

Naturally, this group action on a generator set of Mn can be extended
linearly to the whole Mn. We extend this group action to a group algebra
action: for x =

∑
σ∈Sn

ασσ ∈ FSn and z ∈Mn, let

x · z =
∑
σ∈Sn

ασ(σ · z).
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For n ≥ 2 we define the elements x2,n, x3,n, . . . , xn,n of FSn recursively as:

x2,n = 1 + (2, 1), (4)

xi,n = xi−1,n + xi−1,n(i, i− 1, . . . , 1); for 3 ≤ i ≤ n. (5)

Since (FN)+ ⊆ (FG)+, from Lemma 4 and Lemma 5 in [3], we get the
following results.

Lemma 4.2. xn,nMn ∈ γn((FG)+)(1− c) for all n ≥ 2.

Lemma 4.3. If |P | = pk, then P̂ (1 − c)a ∈ γk(p−1)((FG)+) for some
a ∈ Q8 × E

We recall that the augmentation ideal ∆(P ) of a finite p-group P is a
nilpotent ideal, see [13, Theorem 6.3.1], we will denote by tnil(P ) its nilpo-
tency index. Also, we remind that a finite p-group P , is called powerful if
P ′ ⊆ P p. Let P be a powerful group. We denote with Di = Di(FP ) the
i-th dimensional subgroup. By Theorem 5.5 in [7], D1 = P and for n > 1,

Dn =
〈

(Dn−1, P ), (Ddn
p
e)
p
〉
.

It can be showed that, (P p
i
)p

j
= P p

i+j
and (P p

i
, P ) ⊆ P pi+1

for every pair

i, j. So, if pi−1 < n ≤ pi then Dn = P p
i
.

Lemma 4.4. Let P be a powerful group and hi− 1 ∈ ∆(P )ki and hj − 1 ∈
∆(P )kj , where ki and kj are positive integers. Then

(hi − 1)(hj − 1) ≡ (hj − 1)(hi − 1) (mod ∆(P )ki+kj+1). (6)

Proof. First, we prove that (Di, Dj) ⊆ Di+j+1, for every i, j. Take hi ∈ Di

and hj ∈ Dj . We get the following equation

(hi, hj)− 1 = h−1
i h−1

j ((hi − 1)(hj − 1)− (hj − 1)(hi − 1)). (7)

If either i or j, say i, is not a power of p, then hi ∈ Di = Di+1, so by (7),
(hi, hj)−1 ∈ ∆(P )i+j+1; thus (hi, hj) ∈ Di+j+1. If both i and j are powers
of p, then i + j cannot be a power of p and consequently Di+j = Di+j+1.
By (7) follows (hi, hj) ∈ Di+j+1; therefore our claim is proved.

Let hi − 1 ∈ ∆(P )ki and hj − 1 ∈ ∆(P )kj for some positive integers ki, kj .
Then

(hi − 1)(hj − 1) = (hj − 1)(hi − 1) + hjhi((hi, hj)− 1),

and as (hi, hj) ∈ Dki+kj+1, the result follows. �

Now we can prove our main result in this section.
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Theorem 4.1. Let F be a field of characteristic p > 2. Consider the group
algebra FG with an oriented classical involution. Assume that Q8 ⊆ G,
(FG)+ is Lie nilpotent and the Sylow p-group P of G is of order pm, with
m ≥ 1. Then

(i) 1 + m(p− 1) ≤ t((FG)+) ≤ tL((FG)+) ≤ tnil(P ) and cl(U+(FG)) ≤
tnil(P )− 1.

(ii) If t((FG)+) = tnil(P ), then cl(U+(FG)) + 1 = t((FG)+).
(iii) If P is powerful, then t((FG)+) = tnil(P ).
(iv) If P is abelian, then, for all k ≥ 2, the F -space γk((FG)+) is generated

by the set

Mk ={(h1 − h−1
1 ) · · · (hk − h−1

k )(1− a2)a : hi ∈ P, a ∈ (Q8 × E) \ ζ(Q8 × E)}∪
{g(h1 − h−1

1 ) · · · (hk − h−1
k )(1− a2)a : hi ∈ P, a ∈ (Q8 × E) \ ζ(Q8 × E)}.

Proof. From Theorem 2.1, we know that N ' Q8×E×P , where E2 = 1, P
is a finite p-group and there exists g ∈ G\N such that G ' 〈Q8, g〉×E×P ,

(g, x) = (g, y) = 1 and g2 = x2. By Lemma 4.3, there exists 0 6= P̂ (1−c)a ∈
γm(p−1)((FG)+) for some a ∈ Q8×E. In this way, 1+m(p−1) ≤ t((FG)+).
Furthermore, Lemma 4.1 implies that tL((FG)+) ≤ tnil(P ).

To show (ii), consider the symmetric elements
ui = 1 − ai(1 + a2

i ) + xi, where xi = ai(hi + a2
ih
−1
i ) ∈ S, ai ∈ Q8 × E

and hi ∈ P . Thus, ui = 1 + ai(hi − 1) + a3
i (h
−1
i − 1) ∈ 1 + FG∆(P ).

Since FG∆(P ) is a nilpotent ideal, we get that 1 + FG∆(P ) is a normal
subgroup of U(FG) and in consequence ui is a unit in FG. We will prove,
by induction, that

(u1, u2, . . . , un) ≡ 1 + [x1, x2, . . . , xn] (mod FG∆(P )n+1). (8)

Since u−1
1 u−1

2 ≡ 1 (mod FG∆(P )), Lemma 4.1 implies that

(u1, u2) = 1 + u−1
1 u−1

2 [u1, u2] = 1 + (u−1
1 u−1

2 − 1)[u1, u2] + [u1, u2]

≡ 1 + [u1, u2] (mod FG∆(P )3).

We recall that âi = 1 + ai + a2
i + a3

i and 1 + a2
i , for each ai ∈ Q8 × E, are

central elements of FG. So

[u1, u2] = [1− a1(1 + a2
1) + x1, 1− a2(1 + a2

2) + x2]

= [x1, x2] + [a1(1 + a2
1), a2(1 + a2

2)]− [x1, a2(1 + a2
2)]− [a1(1 + a2

1), x2]

= [x1, x2] + [â1, â2]− [x1, â2]− [â1, x2]

= [x1, x2],

which proves the congruence (8) when n = 2.
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Suppose that (8), is true to n− 1; that is

(u1, u2, . . . , un−1) ≡ 1 + [x1, x2, . . . , xn−1] (mod FG∆(P )n). (9)

Then, Lemma 4.1 and as (u1, u2, . . . , un−1)−1u−1
n − 1 ∈ FG∆(P ) imply

(u1, u2, . . . , un)

= 1 + ((u1, u2, . . . , un−1)−1u−1
n − 1)[(u1, u2, . . . , un−1), un]+

[(u1, u2, . . . , un−1), un]

≡ 1 + [(u1, u2, . . . , un−1), un] (mod FG∆(P )n+1)

≡ 1 + [[x1, x2, . . . , xn−1], 1− an(1 + a2
n) + xn] (mod FG∆(P )n+1)

≡ 1 + [x1, x2, . . . , xn]− [[x1, x2, . . . , xn−1], ân] (mod FG∆(P )n+1)

≡ 1 + [x1, x2, . . . , xn] (mod FG∆(P )n+1),

and the statement (8) is true for all n ≥ 2.

Let n = tnil(P ) − 1. If t((FG)+) = tnil(P ), then there are x1, . . . , xn ∈ S
such that [x1, . . . , xn] 6= 0. Thus, by the congruence (8), γn(U+(FG)) 6= 1.
So n ≤ cl(U+(FG)). Moreover, we know that cl(U+(FG)) < tL((FG)+) ≤
tnil(P ) = n+ 1 and we get (ii).

Assume that P is powerful. Then, by Lemma 4.4, we obtain

xn,nf1,...,n(1− c)a ≡ 2nf1,...,n(1− c)a (mod FG∆(P )n+1).

Furthermore, if hi − 1 ∈ ∆(P )ki , then by (2)

hi − h−1
i = (hi − 1)− (h−1

i − 1) ≡ 2(hi − 1) (mod ∆(P )ki+1),

thus

xn,nf1,...,n(1− c)a ≡ 2n(h1 − h−1
1 ) · · · (hn − h−1

n )(1− c)a
≡ 22n(h1 − 1) · · · (hn − 1)(1− c)a (mod FG∆(P )n+1).

It is clear that, if n < tnil(P ), there exist h1, . . . , hn ∈ P such that
∏n
i=1(hi−

1) 6= 0, and then xn,nMn 6= 0. Thus, tnil(P ) ≤ t((FG)+) and (iii) follows.

Finally, assume that P is abelian. Let a, b ∈ (Q8 × E) \ ζ(Q8 × E), and
h1, h2 ∈ P , such that (a, b) 6= 1. Then

[a(h1 + a2h−1
1 ), b(h2 + b2h−1

2 )] = (h2 + b2h−1
2 )(h1 + a2h−1

1 )[a, b]

= (h2 − h−1
2 )(h1 − h−1

1 )(1− c)ab.
(10)

If α ∈ FP , h ∈ P , then

[α(1− c)a, b(h+ b2h−1)] = α(1− c)(h+ b2h−1)[a, b]

= α(h− h−1)(1− c)2ab = 2α(h− h−1)(1− c)ab.
(11)
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[a(h1 + a2h−1
1 ), bg(h2 − h−1

2 )] = (h2 − h−1
2 )(h1 + a2h−1

1 )[a, bg]

= g(h2 − h−1
2 )(h1 + ch−1

1 )(1− c)ab
= g(h2 − h−1

2 )(h1 − h−1
1 )(1− c)ab,

(12)

and

[ag(h1 − h−1
1 ), bg(h2 − h−1

2 )] = (h2 − h−1
2 )(h1 − h−1

1 )[ag, bg]

= (h2 − h−1
2 )(h1 − h−1

1 )g2(1− c)ab
= −(h2 − h−1

2 )(h1 − h−1
1 )(1− c)ab.

(13)

The equations (11), (12) and (13) imply that γ2((FG)+) =M2. Suppose
that
γn−1((FG)+) = Mn−1 for some n ≥ 3. Take α ∈ FP , h ∈ P and
a, b ∈ (Q8 × E) \ ζ(Q8 × E), such that (a, b) 6= 1. We get the following
equalities:

[α(1− c)a, gb(h− h−1)] = α(h− h−1)(1− c)[a, gb]
= gα(h− h−1)(1− c)[a, b]
= gα(h− h−1)(1− c)2ab

= 2gα(h− h−1)(1− c)ab,

(14)

and

[gα(1− c)a, gb(h− h−1)] = g2α(h− h−1)(1− c)[a, b]
= cα(h− h−1)(1− c)[a, b]
= cα(h− h−1)(1− c)2ab

= −2α(h− h−1)(1− c)ab.

(15)

By substituting f1,...,n−1 for α in (11), (14) and (15), we get that
[Mn−1, (FG)+] =Mn and therefore

γn((FG)+) = [γn−1((FG)+), (FG)+] = [Mn−1, (FG)+] =Mn,

as we wanted to prove. �
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