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1. Introduction

Dynkin diagrams first appeared in [20] in the connection with classifica-
tion of simple Lie groups. Among Dynkin diagrams a special role is played
by the simply laced Dynkin diagrams A,,, D,, Eg, F7 and Eg. Dynkin dia-
grams are closely related to Coxeter graphs that appeared in geometry (see
[8]). After that Dynkin diagrams appeared in many braches of mathematics
and beyond, em particular em representation theory.

In [22] P. Gabriel introduced a notion of a quiver (directed graph) and
its representations. He proved the famous Gabriel’s theorem on represen-
tations of quivers over algebraically closed field.

Let Q be a finite quiver and @ the undirected graph obtained from Q by
deleting the orientation of all arrows.
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Theorem 1.1. (Gabriel’s Theorem). A connected quiver Q is of finite
type if and only if the graph @ is one of the following simply laced Dynkin
diagrams: Ay, Dy, Fg, E7 or Eg.

L.N. Bernstein, .M. Gelfand and V.A. Ponomarev [5] gave a proof of
Gabriel’s Theorem using roots, Weyl groups and Coxeter functors.

The terms “tame type” and “wild type” were introduced by P. Donovan
and M.R. Freislich [16]. Extended Dynkin diagrams or Euclidean diagrams
are A, D,, Eg, E7r and Eg (see, for example, [2]). Tame quivers in terms
of extended Dynkin diagrams were classified by L.A. Nazarova [39] and by
P. Donovan-M.R. Freislich [16]. For finite dimensional algebras and some
other algebraic structures the tame-wild dichotomy problem was solved by
Yu.A. Drozd [17]-[19]. The theory of K-species was first considered by
P. Gabriel in [23]. He obtained the characterization of K-species of finite
type in a special case. His result was extended by V. Dlab and C.M. Ringel
(see [14, Theorem B]).

Theorem 1.2. (Theorem B). A K-species is of a finite type if and only
if its diagram is a finite disjoint union of Dynkin diagrams.

The problem of the ubiquity of the symply laced Dynkin diagrams A,,,
D,,, E,, was formulated by V.I. Arnold [1] as follows.

A-D-E classification. The Coxeter-Dynkin graphs A,, D, and FE,
appear in many independent classification theorems. For instance

(a) the classification of the platonic solids (or finite orthogonal groups in
euclidean 3-space),

(b) the classification of the categories of linear spaces and maps (repre-
sentations of quivers,

(c) the classification of the singularities of algebraic hypersurfaces, with
a definite intersection form of the neighboring smooth fibre,

(d) the classification of the critical points of functions having no moduli,

(e) the classification of the Coxeter groups generated by reflections, or,
of Weyl groups with roots of equal length.

The problem is to find the common origin of all A-D-E classification
theorems and to substitute a priori proofs to a posteriori verifications of
the parallelism of the classifications. An introduction to the A-D-E-problem
can be found in [30].

Dynkin diagrams and extended Dynkin diagrams are widely used in the
study of generalized Cartan matrices and Kac-Moody algebras [2]-[4], [6],
[31], [35], [36], [40] and [42].
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Let G be a finite graph without loops and multiple edges (G is a finite
simple graph). J.H. Smith [41] formulated the following result:

Theorem 1.3. Let G be a finite simple graph with the spectral radius (in-
dex) rg. Then rg = 2 if and only if each connected component of G is one
of the extended Dynkin diagram A,, D,, Eg, E7, Eg. Moreover, ra¢ < 2 if

and only if each connected component of G is one of Dynkin diagrams Ay,
DTL; E67 E?; ES'

For the full proofs of this Smith’s theorem see, for example, [27, chap-
ter I and Appendix 1], [37] and [21, Theorem 2.12]. Note that Theorem
1.3 was obtained also in [33, Theorem 5.1] and [7]. In 1975 (see [11])
D.M. Cvetkovich and I. Gutman introduced for extended Dynkin diagrams
of type A and D the symbols C,, and W,,. Moreover, they used the follow-
ing notations: P, for A,; Z, for Do, T1 for Eg, Ty for Er, T3 for Eg, Ty
for Eg, Ty for E; and Ty for Eg.

The following terminology is used in [12, pp. 77-79]: “Smith’s graphs”
means extended Dynkin diagrams and “reduced Smith’s graphs” means
simply laced Dynkin diagrams A,,, Dy, Es, E7, Eg (see also [9] and [10]).

In this paper we consider spectral properties of graphs based on Perron-
Frobenius theory of non-negative matrices. We will use terminology and
results from [29, Section 6.5] and [25].

2. Symmetric non-negative matrices

Let G be an undirected finite graph without loops and multiple edges,
i.e., G is a finite simple graph.

Let VG = {1,...,n} be the vertex set of G and EG be the edge set of G.
Two vertices ¢ and j are called adjacent if they are connected by an edge.

The adjacency matrix [G] of a simple graph with n vertices is a square
matrix [G] = (o) of order n, whose (i,j)-entry oyj; is 1, if the vertices
i and j are adjacent, otherwise a;; = 0. Therefore, [G] is a symmetric
(0, 1)-matrix with zero main diagonal.

Denote by M, (R) the ring of all n x n matrices with real entries. Let A =

(a;j) € My(R) be a non-negative symmetric permutationally irreducible
matrix.

From the Perron-Frobenius Theorem it follows that A has the largest
positive eigenvalue r 4 such that any eigenvalue A of A one has that |A| < ry,

and there exists a positive eigenvector 2 = (21,...,2,)7 with AZ = rsZ.
We give the next.
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Theorem 2.1. Let A = (a;;) € Mp(R) be a nonnegative symmetric per-
mutationally irreducible matrix and B be its proper main submatriz. Then
rg < TA.

Before the proof of the theorem we give necessary information about the
properties of A.

Lemma 2.1. [26] Eigenvectors of a matriz belonging to different eigenval-
ues are orthogonal.

Corollary 2.1. Let A € M, (R) be a permutationally irreducible symmetric
matriz and Z = (21,...,2,)" be its positive eigenvector, then AZ = r4%.

Proof. Suppose that AZ = AZ and A # 4. Let @ = (wy,...,w,)" be a

positive eigenvector of A with eigenvalue 4. Then by Lemma 2.1 the inner
product (2, ) is zero. We obtain a contradiction:

n
Z ziw; > 0.
i=1

Now we give a proof of Theorem 2.1.

Proof. Let B be a proper principal m x m-submatrix of A. We enumerate
the rows and columns of A such that:

B ... 0 |X;
a-| oo
0 ... B | X,
X ... XF]cC
B ... 0
where B = : .. 1| and the matrices B, ..., B; are permutation-
0o ... B

ally irreducible.

We may assume that rg = rp,, Bi € My, (R),...,B; € My, (R),
X1

mi+ ...+ my = m. Then, C € M,_,,(R) and X = : |, where
Xt
X; € Mmix(nfm) (R)

The matrix A is permutationally irreducible, so X7 # 0.
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Let 2= (21,...,2,)T be the Perron-Frobenius positive eigenvector of A,
ie., AZ=r4Z. Denote by Z; = (21,..., 2m, ) th evector formed by the first
mq coordinates of Z and by Ze = (zn—m+1,---,2n)-

Then we obtain: B1Zs+ X1z, = r4Zzs. Obviously the non-negative vector
X17Z, is nonzero (vector Z. is positive and X; # 0 and non-negative). We
have y; > 0 for ¢ = 1,...,my. Therefore y; < raz; for i =1,...,m; and
there exists 1 < k < m;y such that y, < TAZE- Let f = (fi,o s fo)¥
be a Perron-Frobenius vector of Bj, so Blf = rBf Then (ZS,Blﬁ =

(ZsuTBlf) _TBl(stf) (Blzsvf) (TAstf) _TA(ZS7f) Le. TBl('gSuf) <
ra(Zs, f) Then Z, f ) > 0 as inner product of positive vectors. Therefore
rg =rp, < 74. Theorem is proved. O

3. Spectra of Dynkin diagrams and extended Dynkin dia-
grams

In this section we give a list of characteristic polynomials and spectra of
Dynkin diagrams and of extended Dynkin diagrams.

Theorem 3.1. (L. Kronecker, [32]) Suppose that all the real roots of a
monic polynomial with integer coefficients belong to the interval [—2,2] and
are given in the form

2cosa,2cos 3,2c087,. ...

Then the angles «, B, 7, ... are rational multiples of /2.
The following simple graphs are simply laced Dynkin diagrams:
Ay,n>1: e—e—e o—o—o
°

/
Dy, n>4: \

FEs :

S&o Paulo J.Math.Sci. 7, 1 (2013), 83-104



88 M. A. Dokuchaev, N. M. Gubareni, V. M. Futorny, M.A. Khibina, and V. V. Kirichenko

°
E7: ‘
oe—e—o0—0o—0—0
°
Eg: ‘
o—eo—o0—o0o—0—0—0o

The following simple graphs are extended versions of simply laced Dynkin

diagrams:
./ | )
A, (n>2)
~
D, (n>4)
.\o PR ° o/.
0/ \0
R S

S&o Paulo J.Math.Sci. 7, 1 (2013), 83-104
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Eg N
e— 90— 90— 90— 0—0—0—0o
Often extended Dynkin diagrams are called Euclidean diagrams.

Proposition 3.1. For the Dynkin diagram A, (n > 1) we have

xa@ = ][ ($ — 2cos n"‘L)

1<k<n

Consequently,

k
S(Ap) = {2cosnf1 ]kzl,...,n}

and ra, = 2cos 7, where S(Ay,) denotes the spectrum of Ay,.

Proposition 3.2. For the Dynkin diagram D,, (n > 4) we have

(1+2k)7

XD, (z) == H (;U—QCOSW

0<k<n—2

Consequently, S(Dy,) consists of zero and of the following set:

1+2

2COSM|I<::O,...,TL—2
2(n—1)

and rp, = 2cos ﬁ

Proposition 3.3. For the Dynkin diagram Eg we have

xEs(2) = 2% — 52t + 527 — 1 = H (a: — 2cos
1<k<6

mmr)
12 /7

where my, = 1,4,5,7,8,11. Then

m
1

S(Eg) = {2 cos

and rg, = 2cos 5.
6 12

’;W]mkzl,4,5,7,8,11}

Proposition 3.4. For the Dynkin diagram E; we have

xe, (z) = 2(2% — 62 + 922 — 3) = H (a:—QCos
1<k<7

mmr)
18 /7
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where my, = 1,5,7,9,11,13,17. Then

mpm

18

S(Er) = {2 cos "y = 1,5,7,9, 11,13, 17}
and rg, = 2cos 1“—8.

Proposition 3.5. For the Dynkin diagram Eg we have

XEs(2) = 2% — 72® + 142 — 822 + 1 = H (x—QCosmkﬁ),
30
1<k<8

where my, = 1,7,11,13,17,19,23,29. Then

S(By) = {2COS m’a” Imy = 1,7,11,13,17, 19, 23, 29}

3
and 1y = 2cos 35.

Proposition 3.6. For the extended Dynkin diagram A, (n > 2) we have

2km
XAn(x) :N"+1+M_”_1—2: H <a:—2cosn+1>,
1<k<n

where x = 1 + i Then consequently,

~ 2k
S(A,) = {2(:0871_:1 ]k:O,...,n}

and ri = 2.

Proposition 3.7. For the extended Dynkin diagram D, (n > 4) we have

Xﬁn(x) = XAS(x)ang(:E) = 22(2% — 4) H (x — 2cos k7r2> )

n —_—
0<k<n—3

Then

km
n—2

S(Dn):{QCOS |k:1,...,n—3}u[—2,0,0,2]

and rH = 2.
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Proposition 3.8. For the extended Dynkin diagrams FEg, Bz, Es we have

X (@) = o(a? — 1)(a? — 4);

Then
S(Eg) = [0,£1,+1,£2] and rj = 2.
S(E7) = {2cos 5 [k =1,2,3} U{0, +1,42} and rj = 2.

S(Es) = {2cos * [k =1,2,3,4} U{0,£1,£2} and rp =2.

4. Perron-Frobenius vectors of extended Dynkin diagrams

We consider simply laced extended Dynkin diagrams and its Perron-
Frobenius vectors.

We give the list of these graphs with the numbering of vertices suitable
for us:

e 6
By .3
o —0 — 0 e — O
5 2 1 4 7
o 3
E;:
7 o —0 — 0 — 0 o —0 — 0o
7 5 2 1 4 6 8
e 3
By |
8 e —0 —0— 0 e —0 —0—©
5 2 1 4 6 7 8 9
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3

/.

2 ) e n—1

A, (n>2)

1 ° ° n

\./
n—+1
D, (n>4)
n—1 n—+1
[ ] [ ]

\/
/

n —

Case Eﬁ.
The adjacency matrix is

r01 1100 07
10007100
i 1000010
[Eg]=|1 0000 01
0100000
0010000
000100 0]

Let 2 = (21, 22, 23, 24, 25, %6, 27) | be a positive eigenvector of Eg.
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[N Nl )

SO OO

O OOoOOoOOoO

RO OO OoO o

z3
Z1
21
21

OO OoOoOoO RO

++++

SO OoOOoOrr OO

[NeNal o N Na)

Z1
22
z3
24
Z5
Z6
z7

)\21
)\2’2
)\23
AZ4
)\25
)\ZG
Az7

zo + 23+ 214 = A(25 + 26 + 27) = Az1;
z21 =25+ 26 + 27, 421 = )\221, ie., A=2.

Zzo = 2z5, 23 = 2zg and 29 = z3 = 24 = 2, 221 = 6, z1 = 3.

We obtain Z = (3,2,2,2,1,1,1)7.

Case E7.

The adjacency matrix is

As above

1
SO O =R EFO

SO ODOO ==

SO oOoOoOooOooOoOoO

SO OO -

OR OO O

i NeNal N Na)

SO OO O

0 1
1 0
1 0
1 0
01
0 0
00
0 0
01 T
0
0
0
0
1
0
01 L

SO OoOOoOD OO

22
z3
24
25
26
27
z8

SO OOoOOoOOoO

i )\Zl
)\ZQ
)\23
)\2’4
)\Z5
)\2’6
)\27

0 0
1 0
0 0
01
00
0 0
1 0
01
= A

OO OOOO

21
22
z3
24
Z5
26
=7
z8

SO OOOoOO O
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(21 + 23 4+ z4 = Az
21+ oz = Az

z1 = )\23

21+ oz = Az

zo + 2z = Azy

zZ4 + zg = Azg

zZ5 = )\27

26 = A3

We have 26 = Azg, 24 = (A2 — 1)zg, 21 = (A3 — 2)\)zs,

z3 = (A2 — 2)z5, 20 = (A — 402 + 3)zg,

z5 = (A° — BA% + 5X) 28, 27 = (A* — BA? + 5)2s.

Let zg = 1. Then from z9 + 27 = Az5 it follows that

A AN 34+ M =52+ 5 =X -5\ +5)2 e,

N — 7t 1402 -8 =0.

Obviously, 26 —7-2% +14.22 - 23 =22(16 - 28+ 14 —2) = 0, i.e., A =2
is a root. Therefore 7= (4,3,2,3,2,2,1,1)7.

Case F.
The adjacency matrix is

0111 00O0O0O0

10001 0O0O0T0O

1 0000O0O0O0ODO

_ 10000 1O0O00O

[Es]=0 1 0 0 0 0 0 0 O
0001 00100

0 00O0OO0O1O0T10O0

000 0O0O0OT1TPO0OS1

|00 000001 0]

As above

0 1 1 1.0 0 0 0 07 [ 211 [ 21 ]
1 0001 0O0O00O0 z92 z9
1 0000O0O0OO0OTDO Z3 23
100001O0O00O0 24 24
01 00O0O0O0O0O0 z5 | = M| 2z
00 010O01O00O0 26 26
00 0O0OO0OT1TUO0T1ODO0 27 27
00 0O0O0OO0OT1TGO0OT1 Z8 z8
[ 000 0000 1 0] [ 2 | | 29 |
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(20 + 23 + 24 = A1
21+ oz = Az

z1 = )\23

21+ oz = Az

zZ9 = >\Z5

z4 + 2z = Azg

z6 + 2z = Az

zZ7 4+ z9g = Azg

z8 = )\29

We have zg = Azg, 27 = (A2 — 1)29, 26 = (A3 — 2)\) 29,

24 = ()\4 — —3\2+ 1)Z9, z21 = ()\5 — 43 + 3)\)Z9,

z3 = ()\4 — 4)\2 + 3)2’9, Z9 = ()\6 - 6)\4 + 10)\2 - 4)2’9,

z5 = 9N — TA% = 143 — T)\)zg.

Let z9 = 1. From z5 = Az5 we obtain

A —6ATH10MA2—4 = N8 —TAO 414N =72 fe., AB—8A04+200*—17)\%2+4 =
0. Obviously, 28 +8-26420-2% —17-22 4+ 4 =4(26 - 2" +20-4 — 16) =
4(64 —128+80—16) = 0, i.e., 2 is a root. Then Z = (6,4,3,5,2,4,3,2,1)7.

Case A, (n > 2).

[ ]
A2 N / \
o ———©0
1 3
The adjacency matrix

011
[Ag]—ll 0 1]

1 1 0
and
1 1
[A2] [ 1] =2 1]. Therefore, r; =2.
1 1 ’
2 e—e 3
For As ‘
1l e—0o 4
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01 01 1 1
. . 1 010 1 1 1
the adjacency matrix is [As] = 010 1 and [As] =21
1 010 1 1
Therefore, 7z, = 2.
3
In general case, obviously, [An]Z:Q_’,Z:(l,...,l)T and ri, = 2.
3
[}
Case 134: 2 0 o o 4
1
[}
5
Clearly, the adjacency matrix of Dy is:
01 111
R 10000
[Dgf=1]1 0 0 0 0 | and
10000
10 000
01111 z1 Z1
1 0 0 0 O z9 z9
1 0 000 z3| =AM 23
1 0 0 0 O Z4 Z4
1 0 0 0O 25 25
Therefore,
2o+ 23 4 24 + 25 = Azy;
21 = Az;
21 = Az3;
21 = Azy;
21:)\25.

If A <0, then 2’ is a non-positive eigenvector. So, A > 0 and zo = z3 =
24 = z5. Let z5 = 1. We obtain z; = A and \> = 4. Thus, A = 2 and
Z7=1(2,1,1,1,1). We have Th, = 2.

For 135 :
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-
2\.

)T

4

[}
\.
//////1

[ ]

3

and [Ds]Z = \Z, where Z = (21, 20, 23, 24, 25, %6

2 A3-3)
23 = 24. 21 = Az3, 22 = (A — 2)23, 25 = 25""23.

Let z3 = 1. Then Z = (A, A2 — 2,1, 1, 22532 X=3MT From 25 = Az5 we
obtain: A2 —2 = X532 and At 5X2 44 =10. 21 —5.444=0. So,2is a
root and

7=(2,2,1,1,1,1)". Therefore, r5_ = 2.

5

. We have z5 = zg and

Consider Dy :

7
[ ] o
[ ] [ ] [ ] [ ] ./
/1 P 3 4 5\
[ ] [ )
6 8
We have
0 1 00 01 1 0O07T 27 2 7
101 00O0O0O0DO0 2 2
01 010O0O0O00O0 2 2
001 0100O0O00 2 2
000100011 21 =21 2
10000 0O0O0TDO 1 1
1 000 0O0O0O0OTDO 1 1
000 O0OT1O0O0O0TO0 1 1
00001 O0O0O0O0] |1, | 1]

Therefore, The = 2.

Consider the general case Dy,:

S&o Paulo J.Math.Sci. 7, 1 (2013), 83-104
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n—1 n—+1

[} [ ]
n— n
1 01 0O 0 1 1 0 0 - 9
2 1 01 0 0 0 0 O 0 9
3 01 01 0 0 0 O 0 9
4 0 010 0 0 0 0 0 9
wsloooo . o o o1 1|i[=2]]
n2|1 0 0 0 0 0 0 O 0 1 1
n-l1 |1 0 0 O 0 0 0 O 0 1 1
n [0 0 0 O 1 0 0 O 0 1 1
n+1(0 0 0 O 1 0 0 O 0 1 1

1 2 3 4 n-3 n2 n-1 n n+l1|L - L=
Thus, rp, = 2.

Corollary 4.1.
(a) For each extended Dynkin diagram G € {fln, D, Es, Ex, Eg} rg = 2.
(b) For each Dynkin diagram G € {Ay, Dy, Eg¢, E7, Eg} we have rg < 2.

Proof. (a) For any extended Dynkin diagram G we already gave a positive

eigenvector with eigenvalue 2. Therefore, rg = 2.

. (b) We h~ave the following inclusions: A, C A,,, D, C D,, Es C Eg, E7 C

E;, Es C Es. By Theorem 2.1 r¢ < 2 for any G € {A,,, D, Eg, E7, Eg}.
O

Proof of Smith’s theorem. Corollary 4.1 gives the “if” part of Smith’s the-
orem.

Conversely, let G be a connected finite simple graph with rqg < 2. If G
is not a tree, then G must be the extended Dynkin diagram A,. So, G is a
tree. It is easy to see G must be a tree of the form T}, ,, (see [31, Exercise
4.3]). Using Theorem 2.1 we obtain that T, ,, is either one of simply laced
Dynkin diagrams or one of simply laced extended Dynkin diagrams.
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5. Some examples

Let Eg be given in the form:

e 3
EG :
*o—0 — o e—0
5 2 1 4 6
Then
01 1100 Z1 Z1
1 00 010 Z2 Z9
1 0 00 0O | %
1 0 0 0 0 1 za | 24
01 00 0O zs5 25
000100 26 26
2ot 23+24 = A1
214+ 25 = Az
zZ21 = )\23
z1+26 = Az
Z9 = )\25
z4 = MAzg

Let z6 = 1. Then zy = A, z)1 = A2 —1 and z3 = % Obviously,
Zz9 = M+>‘2H Therefore, z5; = %. On the other hand, z5 =
Azo — 21 = A —4X? +2. Consequently, % =\ —4)X%2 4+ 2. We obtain
that A8 — 5% + 502 — 1 =0.

Let E7 be given as follows:

e 3
FE7:
o —0 —© e —0 — 0
) 2 1 4 6 7
Then
0 1 1 1 0 0 07 21 21
1 0 00100 Z9 Z9
1 0 00 0 00 z3 23
1 0 00010 2| = AN 2
01 0 0O0O0O0 z5 25
00 01001 26 26
L0 00 0 0 1 0] \z¢ 27
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o4+ 2z3+24 = A7
z1+25 = Azo

zZ1 = )\23

21tz = Az

Z9 = )\Z5

4+ 27 = Azg

zZ6 = )\27

Let z7 = 1 and 2z = A\. Then z4 = Azg — 27. We obtain z4 = \? — 1.
Therefore, z; = A3 — 2. Obviously, z3 = A2 — 2. We have zo = Az} —
23 — 24 and 2o = A\* — 4)\? 4+ 3. From the equality zo = Az5 it follows that
z5 = %. On the other hand, 25 = Az — 21 = A> — 5A3 + 5. So,

AdAN43 A5 533 1 5\ and A6 — 601 + 9A\2 — 3 = 0.

A
Let Eg be given in the following form:
o 3
Eg :
e —0 — 0o o —0 — 06— 0
5 2 1 4 6 7 8
Then
0 1 1 1.0 0 0 07 /= 21
10001000 22 22
100 00O0O0O z3 z3
10000100 | oy |
01 00O0O0O0O O zs | z5
00010010 26 26
00 0O0O0OT1QO01 27 27
|00 00O 0O 1 0] \=zs z8

We obtain the following system of linear equations

z9+z3+24 = A1
z1+ 25 = Azo

z21 = Az3

1tz = Az

z9 = )\25

e+ 27 = MAzg

z6 +28 = Az7
VA )\28

Let zg = 1. Then 27 = X and 26 = A?> — 1. Obviously, we have: z4 =
4932 6_ry\4 2_
A3 2X, 2 = M = 3A2 41, gy = AL ) = XSSO apd o5 =
A —5A 4621
3 )
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Hence, 25 = Azo — 21 = A6 — 6A* + 9X%2 — 2. Consequently, A& — 6)* +

A2 — 2 = AWBNHON =L g A8 — 70 4 1401 — 82 +1 =0

In conclusion we consider the following simple graph Gs:

with the adjacency matrix [G5):

== O
S oo oOoOoO
(>N e NeNe el o
[N e NN Ra il S
S OO OoOoOoO
S oo oOoOoO

‘We have

[Gs]Z = AZ, (1)

where 7 = (21, 22, 23, 24, 25, 26) . From 1 we obtain

Zo4+z34+z4at+z25+26 = A7y
z21 = )\22
z1 = Az
21 = Azg
zZ1 = )\25
zZ1 = )\26

Consequently, 521 = A(zo + 23 + 24 + 25 + 26) = A\221. Since, z; # 0, we
obtain A = /5 and z= (v/5,1,1,1,1,1) and rg, = v/5 > 2.
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