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Abstract. We present a differential algebra of generalized functions
over a field of generalized scalars by means of several axioms in terms of
general algebra and topology. Our differential algebra is of Colombeau
type in the sense that it contains a copy of the space of Schwartz
distributions, and the set of regular distributions with C*°-kernels forms
a differential subalgebra. We discuss the uniqueness of the field of
scalars as well as the consistency and independence of our axioms. This
article is written mostly to satisfy the interest of mathematicians and
scientists who do not necessarily belong to the Colombeau community;
that is to say, those who do not necessarily work in the non-linear
theory of generalized functions.

1. Introduction

Our algebraic approach has three main goals:

(1) To improve the properties of the generalized scalars: In our ap-
proach the set of scalars (the constant functions) of our algebra of
generalized functions forms an algebraically closed Cantor complete
field, not a ring with zero divisors as in the original Colombeau the-
ory (Colombeau [4]-]9], Oberguggenberger [20], Biagioni [1]).

(2) To transfer more general theoretical tools from functional analysis to
Colombeau theory. In particular, the validity of the Hahn-Banach
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128 T. D. Todorov

extension principle in our approach is a direct consequence of the
improvement of the scalars (Todorov & Vernaeve [27], Section 8).

(3) To improve the accessibility of the theory outside the “Colombeau
Community”. Most of our axioms are algebraic in nature (hence,
the title “Algebraic Approach...”) and can be comprehended with-
out preliminary knowledge of Colombeau theory.

In our algebraic approach we follow the familiar examples of real and
functional analysis: The field of real numbers R is defined axiomatically;
R is a totally ordered complete field. These axioms characterize the field
R uniquely - up to isomorphism. The existence of R is guaranteed by a
construction of a model of R in terms of the rationals Q. We supply R
with the order topology. Next, we define the field of the complex numbers
by C = R(i) and supply C with the corresponding product topology. Let
Q be an open subset of R%. The space C*(f2) is consists of the functions
f:Q — C with continuous partial derivatives of any order.

Similarly, in order to define the algebra of generalized functions c‘f/(KT)
(of Colombeau type) over the field of scalars C first, we define the field of
real generalized scalars R by several axioms which determine R uniquely
up to a field 1som0rphlsrn Since R is a real closed (thus, totally ordered)
field, we can topologize R with the order topology. The field of scalars
in our approach is C = ]R( ). Let Q be an open set of R, We extend
Q to its monad A(Q) = {r+h :r € Q, h € R, |h| ~ 0}, which is
used as the common domain of the generalized functions. (Here |h| ~
means that |h| is infinitesimal.) Let C*°(u(€2), C) consists of all functions
fnQ) — C with continuous partial derivatives of all orders. The set
C>®(1n(Q), @) is a differential algebra over the field C, but it is too large
for developing any basic calculus: neither the intermediate value theorem,
nor the fundamental theory of calculus hold in C*(f(£2), (@) Next, we

select a differential subalgebra S/(ﬁ) of C*(11(92), (@) with several additional
axioms including the mean value theorem (treated as an axiom) and the

existence of a Colombeau type of embedding Eq : D'(2) — 5/((7) of the space

of Schwartz distributions D/(Q) (Vladimirov [29]). Thus £(f2) converts
to an algebra of generalized functions of Colombeau type (Colombeau [4]-
[9], Oberguggenberger [20], Biagioni[l]). The consistency of our axioms
is proved by models - one in the framework of Robinson non-standard
analysis (Oberguggenberger & Todorov [21]) and another in the framework
of standard analysis (Todorov & Vernaeve [27]). At the end of the article
we also discuss the partial independence of our axioms.
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Algebraic Approach to Colombeau Theory 129

This article is an improved and simplified version of the axiomatic ap-
proach in (Todorov [28]). Our set-theoretical framework is the usual ZFC
axioms in set theory together with the axiom: 2° = ¢*, where ¢ = card(R)
(known as General Continuum Hypothesis or GCH for short). Here ¢
stands for the cardinal number which is the successor of ¢. Tl}\e only role of
the GCH is to guarantee the uniqueness of the field of scalars C; the readers

who are not particularly concerned about the uniqueness of C might decide
to ignore this axiom.

Let Q be an open subset of R. We denote by £(Q) the differential
ring of the C*°-functions from 2 to C. We denote by D(£2) the space of
all functions in £(Q) with compact support in Q. Next, D'(£2) stands for
the space of Schwartz distributions on Q. We denote by L;,.(2) the set
of the locally integrable (by Lebesgue) functions from €2 to C. Finally,
we denote by Sq : L,c(2) — D'(Q) the Schwartz embedding defined by
(Sa(f),7) = Jo f(z)r(x)dz for all 7 € D(Q). Our notation is close to
(Vladimirov [29]).

2. Notational Bridge to Colombeau Theory

This article does not necessarily require a background in Colombeau’s
theory (known also as a “non-linear theory of generalized functions”). How-
ever, for those who already are familiar with Colombeau [4]-[9] theory, we
present a notational comparison which might facilitate the reading of the
rest of the article. Notice that on the right hand side of the list below
the symbols are borrowed either from Robinson’s non-standard analysis
(associated with the field *R of non-standard real numbers: Robinson [24],
Lindstrgm [18], Cavalcante [3]) or Robinson non-standard asymptotic anal-
ysis (associated with the field PR of real asymptotic numbers: Robin-
son [25], Lightstone & Robinson [17], Luxemburg [19], Pestov [23], Todorov
& Wolf [26]). No background in non-standard analysis, nor in non-standard
asymptotic analysis is expected from the reader; some readers might de-
cide to skip this section altogether and proceed with the next. Those who
browse through the list of comparisons should not take the comparison lit-
erary: for example, we look upon *R as a refinement of R(0:1] (similarly,
say, the Lebesgue integral is a refinement of the Riemann integral).

1) ROT  Sss>s>s>>> R

(1)

(2) R >>>>>>>>> PR =R
(3) e >>>>>>>>> p.

(4) [¢] >>>>>>>>>  p=s.
(5) C >>>>>>>>>>  C=R(9).
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130 T. D. Todorov

(6) Qc >>>>>>>>>>  U(Q) ={r+h:reQheR? b~
OF.

(7) C2(Q2)  >>>>>>>>>> £(Q) =C(Q).

(8) C®(Q, C)  >>>>>>>>>>  C*®°(u(N), C).

(9) G(Q) >>>>>>>>>> 575)

(10) G=(2)  >>>>>>>>>> R/OOE).

(11) G%(Q)  >>>>>>>>>> }{(5)

3. Background from Algebra

We review briefly some basic definitions from algebra related to totally
ordered (real) fields. We also present several examples of totally ordered
non-Archimedean fields (fields with non-zero infinitesimals). We complete
this section with two uniqueness results about totally ordered fields.

For general references on the topic we refer to: Dales & Woodin [10],
Lang ([15], Chapter XI), Waerden ([30], Chapter 11), Zariski & Pierre
Samuel [31]. For references about valuation fields we refer to: Bourbaki ([2]
Chapter VI), Lightstone & Robinson ([17], Chapter 1) and Ribenboim [22].

Readers without preliminary experience with infinitesimals (beyond the
context of history of calculus) are strongly encouraged to spend some time
with one of our simple examples of non-Archimedean fields - say the field
R(t%) of Laurent series (below) and try to become familiar with the concept
of non-zero infinitesimal elements (treated here as generalized numbers)
before proceeding to the next section. For those who are experiencing
philosophical doubts about the mere rights of the infinitesimals to exist, we
should mention that every totally ordered field - which contains a proper
copy of R - must also contain non-zero infinitesimals.

Here is our brief excursion into algebra:

(1) A field K is orderable if there exists a subset Ky of K\ {0} which
is closed under addition and multiplication in K, and is such that,
for every z € K\ {0} either x € Ky, or —z € K. We should
mention that a field K is orderable iff K is (formally) real in the
sense that for every n € N the equation ) ;" ; :c? = 0 only admits
the trivial solution 1 = x9 = -+ = x, = 0 in K". If K is orderable,
then every set K, defines an order relation on K by: = < y if
y —x € K4. In this case, we refer to K as a totally ordered field

and define the absolute value by |z| = max{xz,—x}. Notice that
every totally ordered field contains a copy of the field of rational
numbers Q.
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Algebraic Approach to Colombeau Theory 131

3.1. Example (Non-Orderable). The field of complex numbers C
and the field of real p-adic numbers Q, (Ingleton [14]) are both
non-orderable.

Let K be a totally ordered field. We denote by
I(K) = {z € K: |z| < 1/n for all n € N},
F(K) = {z € K: |z| < n for some n € N},
LK) ={ze€K:n < |z| for all n € N},

the sets of infinitesimal, finite and infinitely large elements in
K, respectively. It is customary to write x ~ 0 instead of z € Z(K).
We have F(K) U L(K) =K, F(K)NL(K) =2, 0 € Z(K) C F(K),
Q € F(K) and Q N Z(K) = {0}. Also, if x € K\ {0}, then =z €
Z(K) iff 1/z € L£(K). Finally, F(K) is an integral domain and
Z(K) is its unique convex maximal ideal. Consequently, the residue
ring 'K =: F(K)/Z(K) is a totally ordered subfield of R. We
denote by st : F(K) — 'K the canonical homomorphism and
observe that stg preserves the order in the sense that z < y implies
str(z) < stg(y). If 'K is a subfield of K, we refer to the mapping
stg : F(K) — K, as a standard part mapping.

A field K is Archimedean if Z(K) = {0} (or, equivalently, if K =
F(K) or if L(R) = @). Otherwise it is called non-Archimedean.

3.2. Example (Archimedean Fields). R is Archimedean, because
Z(R) = {0}. We also have F(R) = R and L(R) = @. Actually, a
totally ordered field is Archimedean iff it is a subfield of R.

Every totally ordered field K which contains a proper copy of R is
non-Archimedean. For example, the field R(t%) of Laurent series
with real coefficients is non-Archimedean. Here Y o2 a, t™" >
0if ag > 0. Also, we define the embedding Q — R(t*) by ¢ —
qt® + 0t + 0t> + .... The elements: ¢,t2,...t" ¢t + 2, > >0 nlt",
etc. are non-zero infinitesimals; 5,5 +t, 5 + t2, Yomey Nt etc. are
finite, but not infinitesimal and 1/¢,1/t +54+1¢, > >2 | n!t", etc.
are infinitely large. Let us show that, for example, ¢ is a positive
infinitesimal in R(¢%). It is clear that ¢ > 0 since ag = 1 > 0. We
have to show that that ¢ < 1/n for all n € N. Indeed, 1/n —t =
(1/n)t° 4+ (=1)t + 0t% 4+ 03 + - - - > 0 since ap = 1/n > 0.
3.3. Examples (Non-Archimedean Fields). Here are several exam-
ples of non-Archimedean fields.
1. The field R(¢) of rational functions with real coefficients.
2. The field R(t%) of Laurent series with real coefficients (men-
tioned above).
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132 T. D. Todorov

3. The field R(t*) of the Levi-Civit4 series with real coefficients
(Levi-Civitd [16]).

4. The field R((t®)) of the Hahn series with real coefficients and
valuation group R (Hahn [13]).

5. Any field *R of Robinson non-standard real numbers (Robin-
son [24]),

6. Any field PR of Robinson’s asymptotic real numbers (Robin-
son [25]).

(5) A field K (not necessarily ordered by presumption) is real closed
if
(a) For every a € K at least one of the equations 72 = a or 22 = —a
has a solution in K.
(b) Every polynomial P € K[x] of odd degree has a root in K.

3.4. Examples. R, R(t®) R((t®)), *R and R are real closed. The
fields R(t) and R(#%) are not real closed.

(6) Every real closed field K is orderable in a unique way by: = > 0
in K if z = y? for some y € K.
(7) A totally ordered field K is real closed iff K() is algebraically closed.
(8) Let k be an infinite cardinal and let K be a totally ordered field
with card(K) = s, where s is the successor of x (thus K # Q).
Then:
(a) Kis Cantor complete if every family {[a., b]},cr of bounded
closed intervals with the f.i.p. (finite intersection property) and
card(I') < & has a non-empty intersection [, cr [ay, by] # 2.
(b) K is algebraically saturated if every family {(a~, by)},er of
open intervals (bounded or not) with the f.i.p. and card(T")
<  has a non-empty intersection [\ cr (ay, by) # 2.
It is clear that every algebraically saturated field is also Cantor
complete. Here are some examples.

3.5. Examples (Cantor Complete and Saturated). The fields R is
Cantor complete (assuming that card(N))™ = card(R)). The fields
*R, PR are also Cantor complete (assuming that *R is a card(*R)-
saturated non-standard extension of R in the sense of the non-
standard analysis, Lindstrem [18]). The fields R(¢), R(t%), R(t®)
and R((t®)) are not Cantor complete. Also, *R is algebraically sat-
urated. The fields R, R(t), R(t%), R(t®), R((t®)) and R are not
saturated.

The next result requires the generalized continuum hypothesis (GCH)
2% = kT in addition to the more conventional ZFC set-theoretical frame-
work.
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Algebraic Approach to Colombeau Theory 133

3.6. Theorem (First Uniqueness Result). All real closed algebraically satu-
rated fields of the same cardinality are isomorphic. Consequently, for every
infinite cardinal there is unique, up to isomorphism, non-standard extension
*R of R such that card(*R) = k™.

Proof. We refer to Erdés & Gillman & Henriksen [11] (for a presentation
see also: Gillman & Jerison [12], p. 179-185). O

The next uniqueness result essentially involves the previous uniqueness
result (and thus it also cannot survive without the GCH: 2% = k™).

3.7. Theorem (Second Uniqueness Result). Let k be an infinite cardinal
and K be a totally ordered field with the following properties:
(i) card(K) = st.
(ii) K is Cantor complete real closed field.
(iii) K contains R as a subfield.
(iv) K admits an infinitesimal scale, i.e. there exists a positive in-
finitesimal s in K such that the sequence (s™™) is unbounded (from
above).

Then (for the fized k) the field K is unique up to field isomorphism.

Proof. We refer to Todorov & Wolf [26] (where K appears as R). For a
presentation see also (Todorov [28], Section 3). O

Notice that (iii) and (iv) imply that R is a proper subfield of K and (iv)
implies that K is non-saturated.

4. Generalized Scalars in Axioms

We describe a field of generalized numbers R along with its complex com-

panion C = I@(z) by means of several axioms. What follows is a modification
and simplification of some results in Todorov [28].

Axiom 1 (Cardinality Principle): card(@) =t
Axiom 2 (Transfer Principle): R is a real closed Cantor complete
field.

Axiom 3 (Extension Principle): R contains R as a subfield, i.e. R C R.

Axiom 4 (Scale Principle): R admits an infinitesimal scale, i.c. there

exists a positive infinitesimal s in R such that the sequence (s~ ™)
is unbounded (from above).
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134 T. D. Todorov

Notice that the exponents s? are well defined in R for all q € Q since R
is a real closed field. In addition we impose the following:

Axiom 5 (Exponentiation Principle): R admits exponentiation in
the sense that for every infinitesimal scale s € R there exists a
strictly decreasing function exp, : F (I@) — R, which is a group iso-
morphism from (F(R), +) onto (R, ) such that (Vg € Q)(exp,(q) =
s?). We shall often write s* instead of exp,(x).

Notice that the inverse log, : Ry — F(R) of exp, exists and Ins =
1/logge.

5. Uniqueness and Existence of Generalized Scalars

We show both the existence and uniqueness of the fields Rand C = I@(z)

5.1. Theorem (Uniqueness of Scalars). If there exists a field R satisfying
Axiom 1-5, then R is unique up to a field isomorphism. Consequently,
the field C =: R(7) is also uniquely determined by Aziom 1-5 up to a field
isomorphism.

Proof. This is a particular case of Theorem 3.7 for k = ¢. O

Let *R be a field of non-standard real numbers (Robinson[24], Lind-
strgm [18]). Let p be a positive infinitesimal in *R. The Robinson field
of p-asymptotic numbers is defined by "R = M,/N,, where

M, = {56 R:[g] <p" for someneN},
NPZ{SG*R:|§|<p"f0ralln€N},

(Robinson [25], Lightstone & Robinson [17]). We denote by ¢ the equiva-
lence class of £ € M,,.

5.2. Theorem (Existence of Scalars). Let *R be a field of non-standard
real numbers with card(*R) = ¢t (Cavalcante [3]). Then:

(i) PR satisfies Azioms 1-5 (PR is a model for these azioms).

(ii) PR and R are isomorphic and p is a scale for R.

Consequently, both R and C = ]l/é(z) exist.

Proof. (i) We leave it to the reader to verify that ’R satisfies Axioms
1-4. Here is a simple proof that PR satisfies Axiom 5 (treated as a
theorem): The (internal) function f : *R — *R, f(£) = p& = e£1"7 is
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well-defined for all £ € *R by the Transfer Principle (see Robin-
son [24] or/and Lindstrgm [18]) and f'(¢) = pflnp. Let &1 €
F(*R). Next, we show that & —n € N, implies p* — p" € N,. In-
deed, by the mean value theorem (applied again, by transfer) |p¢ —
P = |pTH = n p| |€ — n| for some t € *(0,1). We observe that
P = 1n p € M, since € +t(n — €) is finite and thus p¢ — p7 € N,
The latter makes the definition s¢ = p¢ correct for all £ € F(*R),
where s = p. We also observe that E is finite in PR iff £ is finite in *R

which completes the definition of the exponent s* after letting x = E
We leave it to the reader to verify that s* is a group isomorphism.

(ii) PR and R are isomorphic by Theorem 5.1 since both fields satisfy
Axioms 1-5.

O

6. Some Properties of the Fields R and C

In addition to the properties of any non-Archimedean field (Section 3),
we have the following:

6.1. Lemma. (i) RNZ(R) = {0}. Consequently, CNZ(C) = {0}.
(ii) R is a totally ordered field under the order relation: x > 0 in R if
x = y? for some y € R. We endow R with the order topology
(iii) SR = R. Consequently, the standard part mapping st : F ( ) — —R
is an order preservmg ring homomorphism with range st[}'(R ]=R
(we use the notation st instead of stg ). Similarly, st : F(C) — C is
a ring homomorphism with &[]—"((@)] =C.

Proof. (i) The intersection in R N Z(R) makes sense since R C R by
Axiom 3. On the other hand, the only infinitesimal in R is the zero
since R is an Archimedean field.

(i) follows directly from the fact that R is a real closed field (Axiom 2).

(iii) 'R C R holds trivially (it holds for any field). Also, R C R (Axiom
3) implies R C F(R). Next, if st(r) = 0 for some r € R, then r = 0.
The latter means R C 5'R as required.

U

6.2. Definition (s-Valuation). Let s be a scale of R (Axiom 4). We shall
keep s fixed in what follows.

S&o Paulo J.Math.Sci. 7, 2 (2013), 127-142



136 T. D. Todorov

1. We define a valuation vy : C — R U {00} by vs(0) = oo and vs(z) =
sup{q € Q: |a:|/sqN0} if z # 0.
2. We define dg Cx(C—>Rbyd (z, y)—e—vs(l‘ y)

6.3. Theorem (Properties of Valuatlon) The mapping vs 1S a convex
non-Archimedean valuation on C in the sense that for every x,y € C :
(1) vs(z) =00 iff = 0.
(ii) Us(xy) = Vs ($) + 'Us(y)y
(iii) vs(z +y) > min{vs(x), vs(y)}-
(iv) (lz| <yl = vs(z) > vs(y))-

Proof. We leave the verification to the reader. O

6.4. Theorem (Algebraic and Topological Properties). (i) C is an al-
gebraically closed field. We endow C with the product topology
inherited from the order topology on R.

(ii) Both (R ds) and (C ds) is spherically complete ultra-metric
spaces in the sense that every nested sequence of closed balls m ]R

or in C has a non- empty intersection. Consequently, both R and C
are also sequentially complete.
(iii) The product-order topology and the metric topology (sharp topology)

coincide on both R and on C.
(iv) Let (ayn) be a sequence in C. Thenlim,_ o a, = 0 iff lim,, o0 vs(ay) =
oo iff Y0 ay is convergent in C.

Proof. (i) follows directly from the fact that R is a real closed field (Axiom
2). The properties (ii)-(iv) hold in any ultra-metric space (Lightstone &
Robinson [17], Ch.1, §4). O

6.5. Example. Let s be a scale for R and z be a (finite) number in R of the

form « = r + h, where r € R and vg(h) > 0. Then s* = 5" (lniﬂ
(the series is convergent by part (iv) of the above theorem).

7. Generalized Functions in Axioms

We define a differential algebra aST) over the field C axiomatically. We
complete this section with an open problem. In what follows we denote by
T4 the usual topology on R

7.1. Definition (C*°-Functions on a Monad). Let © be an open subset of
R<.

S&o Paulo J.Math.Sci. 7, 2 (2013), 127-142



Algebraic Approach to Colombeau Theory 137

1. The monad of Q in R? is 7i(Q) = {r+h:req, h e RY, |n| ~0}.

2. We denote by C>®(1i(€2),C) the ring of the C*°-functions from ()

to C (i.e. C®(f(Q),C) consists of all functions from 7i(Q) to C with
continuous partial derivatives of all orders). Let O be an open subset of

o~

2. We define a restriction f[O € C>*(u(0O),C) by (f[O)(z) = f(x) for
x € 1(0). We denote by supp(f) C Q the support of f € C®(u(2),C).

7.2. Theorem (Algebra of C*°-Functions). (i) C*°(1i(Q2),C) is a differ-
ential algebra over the field C.
(ii) The family {C>(1i(<Y), @)}Qer is a sheaf of differential algebras
over the field C.

7.3. Remark (Warning). The above result follows immediately and we
leave it to the reader. We should note that neither the fundamental theorem

~

of calculus, nor the mean value theorem hold in C*°(1(Q2), C). For example,
let € is an open connected subset of R? and € Q. Then the monad fi(f2) is

also an open connected subset of R%. However, the function f : () — C,
defined by f(z) =1 for z ~ r, and f(x) = 0 otherwise, is (obviously) not
a constant function, but still Vf =0 on ().

Let 5/(@ be a differential subalgebra of C>(p(£2), ((AZ) over the field C
satisfying the following axioms:
Axiom 6 (Constant Functions): The set of the constant functions on

1(€2) coincides exactly with C.
Axiom 7 (MVTh): The Mean Value Theorem (from multivariable cal-

culus) holds in 5/(5)
Axiom 8 (Colombeau Embedding): There exists a Colombeau type of

embedding Eq : D'(Q) — £(Q), i.e. Eq is an injective homomor-
phism of differential vector spaces over C such that:

(a): Eq[D'(2)] is a differential vector subspace of 5/(5) over C.
(b): (EqoSq)lE()] is a differential subalgebra of £(2) over C (see
the end of the Introduction).
7.4. Remark (Notational Simplification). We often simplify the notation
by letting (Eq o Sq)[E(Q)] = £(Q) and Eq[D'(Q)] = D/() and summarize
the above axiom with the inclusions: £(Q2) C D'(Q2) C £(Q).

Let R.(€2) denote the set of all measurable relatively compact subsets of
Q.
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Axiom 9 (Integral): There exists a mapping I : 8/(§7) x Re(2) — C such
that:
(a): I is C-linear in the first variable.

(b): T is additive in the second variable in the sense that if {4 }er
is a family of pairwise disjoint sets in R.(€2) such that (J 2y €

~

Re($2) and of 30 cp 1(€y, f) is convergent in C, then
I(J 9 1) =2 1@y 1),

vyel vyel
(c): Let T € D'(Q) and 7 € D(Q). Then I(Eq(T),0) = (T|7)
for all open O € R () such that either supp(T) C O or
supp(7) C O.

7.5. Example. We shall often write simply f(’) f(x) dx instead of the more
precise I(f, O). For example, for every 7 € D(Q2) we have [, 0(x)7(x) dx =
7(0), a notation used often by non-mathematicians.

—

Axiom 10 (Maximality Principle): The algebra £(f2) is a maximal in
C>®(1(£2), C) in the sense that there is no a differential subalgebra

of C®(7i(€2), C) over C which is a proper extension of ﬁﬁ) and
which also satisfies Axioms 6-9.

7.6. Theorem (Fundamental Theorem of Calculus). Let 2 be an open

connected subset of RY and let Vf(x) = 0 for some f € £(Q) and all
x € (). Then f(x) = c for some c € C and all x € ().

Proof. An immediate consequence of the Axiom 7. O

—

7.7. Theorem (Uniqueness). Azioms 5-10 determines () uniquely up

to isomorphism (of differential algebras over the field C satisfying Azxioms
6-9).

Proof. This is an open problem in our algebraic (axiomatic) approach. O

8. Consistency of All Axioms

We already show that Axioms 1-5 are consistent (Theorem 5.2). Here
we show that Axioms 1-9 are also consistent by way of a model.

8.1. Theorem (Consistency). Aziom 1-9 are consistent (under ZFC and
the generalized continuum hypothesis 2° = ¢, where ¢ = card(R)).
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Proof 1 (Within Non-Standard Analysis). For a model of Axioms 1-9 in the
framework of Robinson’s non-standard analysis we refer to (Oberguggen-
berger & Todorov [21]).

Proof 2 (Within Standard Analysis). For a model of Axioms 1-9 in the frame-
work of standard analysis we refer to (Todorov & Vernaeve [27]). For a
discussion of the same model we also refer to (Todorov [28], §4). O

9. Partial Independence of Axioms

Like most of the systems of axioms in mathematics, our axioms are not
independent. For exz}\mple, the formula s9th = 57 > w holds for
allg € Qand all h € R with vs(h) > 0, without the help of Axiom 5. Indeed,

57 is well defined simply because R is a real closed field by Axiom 2 and
the series is convergent in R because vg( (In 572!"/1") = vs(h) n — oo which is a
consequence of Axiom 4. It is not worth the effort to isolate an independent
system of axioms which would result in a considerable complication of the
language (it is not accidental that the axioms in the axiomatic definition
of “group”, for example, are not independent, nor are the axioms for R).
Instead of trying to isolate independent axioms, in this section we shall
restrict ourselves to the less ambitious task of showing that some particular
subsets of our axioms - with one of the axioms replaced by its negation - are
consistent. We refer to this process as a partial independence. The purpose
is to create a feeling for the role of each axiom relative to the rest of the
axioms.

If P is a proposition, then —P stands for its negation.

9.1. Theorem (Partial Independence). The following subsets of Aziom
1-10 are consistent:

(i) {~Aziom 1, Aziom 2, Axiom 3, Axiom 4, Aziom 5} are consistent.
(i) {Aziom 1, Aziom 2, Aziom 3, —Aziom 4, Axiom 5} are consistent.
(iii) {Aziom 6, = Aziom 7, Aziom 8, Aziom 9} are consistent.

Proof. (i) Let ’R be the Robinson field of asymptotic numbers generated
from *R = RN /U, where U is a free ultrafilter on N. Then *R satisfies
Axioms 2-5, but not Axiom 1, because card(’R) = ¢ (not ¢™).

(ii) Let *R = R®+/Y for some c¢t-good ultrafilter & on Ry (Caval-
cante [3]). Then *R satisfies Axioms 1-3 and Axiom 5, but not Axiom
4, because *R is algebraically saturated (and thus it does not have a
scale s).

(iii) The algebra C*(7i(R2),C) (Definition 7.1) satisfies Axioms 6, Axiom
8-9, but not Axiom 7 (see Remark 7.3).
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O

9.2. Remark (A Memory of Hebe Biagioni). Notice that the axioms which
define the field of scalars R and C (Axioms 1-5) do not involve the dimen-

sion of the domain 2 of the generalized functions in S/(ST) (Axioms 6-10).
This was not the case however, in the original Colombeau [4] construction,

where the ring R(£2) of generalized scalars was defined as a particular sub-
ring of the ring G(Q) of generalized functions, and thus depends on the
dimension of the domain Q C R?. This reminds me of our dear colleague
and friend Hebe Biagioni [1], who more than 20 years ago, modified the
original Colombeau definition of G(2) to achieve independence of the ring
of generalized scalars from the dimension d (as it should be with any set of
scalars).
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