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Abstract. The reductions of a square complex matrix A to its canon-
ical forms under transformations of similarity, congruence, or *con-
gruence are unstable operations: these canonical forms and reduction
transformations depend discontinuously on the entries of A. We sur-
vey results about their behavior under perturbations of A and about
normal forms of all matrices A + E in a neighborhood of A with re-
spect to similarity, congruence, or *congruence. These normal forms
are called miniversal deformations of A; they are not uniquely deter-
mined by A +E, but they are simple and depend continuously on the
entries of E.

1. Introduction

The purpose of this survey is to give an informal introduction into the
theory of perturbations of a square complex matrix A determined up to
transformations of similarity S−1AS, or congruence STAS, or *congruence
S∗AS, in which S is nonsingular and S∗ ∶= S̄T .
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2 Lena Klimenko and Vladimir V. Sergeichuk

The reduction of a matrix to its Jordan form is an unstable operation:
both the Jordan form and a reduction transformation depend discontinu-
ously on the entries of the original matrix. For example, the Jordan matrix
J2(λ)⊕J2(λ) (we denote by Jn(λ) the n×n upper-triangular Jordan block
with eigenvalue λ) is reduced by arbitrarily small perturbations to matrices

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ 1
λ ε

λ 1
λ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

or

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ 1
λ ε

λ 1
λ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, ε ≠ 0, (1)

whose Jordan canonical forms are J3(λ) ⊕ J1(λ) or J4(λ), respectively.
Therefore, if the entries of a matrix are known only approximately, then it
is unwise to reduce it to its Jordan form.

Furthermore, when investigating a family of matrices close to a given
matrix, then although each individual matrix can be reduced to its Jordan
form, it is unwise to do so since in such an operation the smoothness relative
to the entries is lost.

Let J be a Jordan matrix.

(a) Arnold [1] (see also [2, 3]) constructed a miniversal deformation of
J ; i.e., a simple normal form to which all matrices J +E close to J
can be reduced by similarity transformations that smoothly depend
on the entries of E.

(b) Boer and Thijsse [6] and, independently, Markus and Parilis [22]
found each Jordan matrix J ′ for which there exists an arbitrary
small matrix E such that J + E is similar to J ′. For example, if
J = J2(λ) ⊕ J2(λ), then J ′ is either J , or J3(λ) ⊕ J1(λ), or J4(λ)
with the same λ (see (1)).

Using (b), it is easy to construct for small n the closure graph Gn for
similarity classes of n × n complex matrices; i.e., the Hasse diagram of the
partially ordered set of similarity classes of n×n matrices that are ordered
as follows: a ≼ b if a is contained in the closure of b. Thus, the graph Gn
shows how the similarity classes relate to each other in the affine space of
n × n matrices.

In Section 2.1 we give a sketch of constructive proof of Arnold’s theorem
about miniversal deformations of Jordan matrices, and in Sections 2.2–2.4
we consider closure graphs for similarity classes and similarity bundles.
In Sections 3 and 4 we survey analogous results about perturbations of
matrices determined up to congruence or *congruence.

We do not survey the well-developed theory of perturbations of matrix
pencils [9, 10, 11, 15, 18, 19]; i.e., of matrix pairs (A,B) up to equivalence
transformations (RAS,RBS) with nonsingular R and S.
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All matrices that we consider are complex matrices.

2. Perturbations of matrices determined up to similarity

2.1. Arnold’s miniversal deformations of matrices under similar-
ity. In this section, we formulate Arnold’s theorem about miniversal defor-
mations of matrices under similarity and give a sketch of its constructive
proof. Since each square matrix is similar to a Jordan matrix, it suffices to
study perturbations of Jordan matrices.

For each Jordan matrix

J =
t

⊕
i=1

(Jmi1(λi) ⊕ ⋅ ⋅ ⋅ ⊕ Jmiri
(λi)), mi1 ⩾mi2 ⩾ . . . ⩾miri (2)

with λi ≠ λj if i ≠ j, we define the matrix of the same size

J +D ∶=
t

⊕
i=1
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⎢
⎢
⎢
⎢
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⎢
⎣

Jmi1(λi) + 0↓ 0↓ . . . 0↓

0← Jmi2(λi) + 0↓ ⋅ ⋅ ⋅ ⋮

⋮ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0↓

0← . . . 0← Jmiri
(λi) + 0↓

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3)

in which

0← ∶=
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⎣
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⋮ ⋮ ⋮
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⎥
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and 0↓ ∶=
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⎢
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⎣

0 ⋯ 0
⋮ ⋮
0 ⋯ 0
∗ ⋯ ∗

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

are blocks whose entries are zeros and stars.

The following theorem of Arnold [1, Theorem 4.4] is also given in [2,
Section 3.3] and [3, § 30].

Theorem 2.1 ([1]). Let J be the Jordan matrix (2). Then all matrices
J +X that are sufficiently close to J can be simultaneously reduced by some
transformation

J +X ↦ S(X)
−1

(J +X)S(X),
S(X) is analytic

at 0 and S(0) = I, (4)

to the form J +D defined in (3) whose stars are replaced by complex num-
bers that depend analytically on the entries of X. The number of stars is
minimal that can be achieved by transformations of the form (4), it is equal
to the codimension of the similarity class of J .

The matrix (3) with independent parameters instead of stars is called a
miniversal deformation of J (see formal definitions in [1], [2], or [3]).
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The codimension of the similarity class of J is defined as follows. For
each A ∈ Cn×n and a small matrix X ∈ Cn×n,

(I −X)
−1A(I −X) = (I +X +X2

+⋯)A(I −X)

= A + (XA −AX) +X(XA −AX) +X2
(XA −AX) +⋯

= A +XA −AX
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

small

+X(I −X)
−1

(XA −AX)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

very small

and so the similarity class of A in a small neighborhood of A can be obtained
by a very small deformation of the affine matrix space {A+XA−AX ∣X ∈

Cn×n}. (By the Lipschitz property [24], if A and B are close to each other
and B = S−1AS with a nonsingular S, then S can be taken near In.)

The vector space

T (A) ∶= {XA −AX ∣X ∈ Cn×n}
is the tangent space to the similarity class of A at the point A. The numbers

dimC T (A), codimC T (A) ∶= n2
− dimC T (A) (5)

are called the dimension and codimension of the similarity class of A.

Remark 2.1. The matrix (3) is the direct sum of t matrices that are not
block triangular. But each Jordan matrix J is permutation similar to some
Weyr matrix J# with the following remarkable property: all commuting
with J# matrices are upper block triangular. Producing with (3) the same
transformations of permutation similarity, Klimenko and Sergeichuk [19]
obtained an upper block triangular matrix J# +D#, which is a miniversal
deformation of J#.

Now we show sketchily how all matrices near J can be reduced to the form
(3) by near-identity elementary similarity transformations; which explains
the structure of the matrix (3).

Lemma 2.1. Two matrices are similar if and only if one can be trans-
formed to the other by a sequence of the following transformations (which
are called elementary similarity transformations; see [25, Section 1.40]):

(i) Multiplying column i by a nonzero a ∈ C; then dividing row i by a.
(ii) Adding column i multiplied by b ∈ C to column j; then subtracting

row j multiplied by b from row i.
(iii) Interchanging columns i and j; then interchanging rows i and j.

Proof. Let A and B be similar; that is, S−1AS = B. Write S as a product
of elementary matrices: S = E1E2⋯Et. Then

A↦ E−1
1 AE1 ↦ E−1

2 E−1
1 AE1E2 ↦ ⋅ ⋅ ⋅ ↦ E−1

t ⋯E−1
2 E−1

1 AE1E2⋯Et = B
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is a desired sequence of elementary similarity transformations. �

Sketch of the proof of Theorem 2.1. Two cases are possible.

Case 1: t = 1. Suppose first that J = J3(0) ⊕ J2(0). Let

J +E = [bij]
5
i,j=1 ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ε11 1 + ε12 ε13 ε14 ε15

ε21 ε22 1 + ε23 ε24 ε25

ε31 ε32 ε33 ε34 ε35

ε41 ε42 ε43 ε44 1 + ε45

ε51 ε52 ε53 ε54 ε55

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6)

be any matrix near J (i.e., all εij are small). We need to reduce it to the
form

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0
0 0 1 0 0
∗ ∗ ∗ ∗ ∗

∗ 0 0 0 1
∗ 0 0 ∗ ∗

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (7)

in which the ∗’s are small complex numbers, by those transformations from
Lemma 2.1 that are close to the identity transformation.

Dividing column 2 of (6) by 1 + ε12 and multiplying row 2 by 1 + ε12

(transformation (i)), we make b12 = 1. Since ε12 is small, this transformation
is near-identity and the obtained matrix is near J . Some bij and εij have
been changed, but we use the same notation for them.

Subtracting column 2 (with ε12 = 0) multiplied by ε11 from column 1, we
make b11 = 0; the inverse transformation of rows (which must be done by the
definition of transformation (ii)) slightly changes row 2. Analogously, we
make b13 = b14 = b15 = 0 subtracting column 2; the inverse transformations
of rows slightly change row 2.

We obtain

[bij]
5
i,j=1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0
ε21 ε22 1 + ε23 ε24 ε25

ε31 ε32 ε33 ε34 ε35

ε41 ε42 ε43 ε44 1 + ε45

ε51 ε52 ε53 ε54 ε55

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

with row 1 as in (7). In the same manner, we make b23 = 1 dividing
column 3 by 1+ ε23, and then b21 = b22 = b24 = b25 = 0 subtracting column 3
(transformations (i) and (ii)); the inverse transformations with rows slightly
change row 3. In the obtained matrix, we make b45 = 1; then b41 = b42 =
b43 = b44 = 0; the inverse transformations with rows slightly change row 5.
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We have obtained a matrix of the form

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0
0 0 1 0 0
∗ ∗ ∗ ∗ ∗

0 0 0 0 1
∗ ∗ ∗ ∗ ∗

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(∗’s are small numbers)

by using near-identity elementary similarity transformations with (6).

To reduce the number of stars, we subtract row 2 multiplied by b53 from
row 5 making b53 = 0. The inverse transformation of columns adds column
5 multiplied by the old b53 to column 2. Then we make b42 = b52 = 0 using
row 1; the inverse transformations of columns slightly change b31, b41, and
b51.

We have simultaneously reduced all matrices (6) near J to the form (7)
by a similarity transformation that analytically depends on all εij and that
is identity if all εij = 0.

In the same manner, all matrices J(0)+E near a nilpotent Jordan matrix

J(0) ∶= Jm1(0) ⊕ ⋅ ⋅ ⋅ ⊕ Jmr(0), m1 ⩾m2 ⩾ . . . ⩾mr

can be reduced first to matrices of the form

⎡
⎢
⎢
⎢
⎢
⎣

Jm1(0) + 0↓ . . . 0↓
⋮ ⋅ ⋅ ⋅ ⋮

0↓ . . . Jmr(0) + 0↓

⎤
⎥
⎥
⎥
⎥
⎦

and then to matrices of the form (3) with t = 1, λ1 = 0, and m1, . . . ,mr

instead of m11, . . . ,m1r1 .

This proves the theorem for each Jordan matrix J(λ) = J(0)+λI with a
single eigenvalue λ since S(E)−1(J(λ)+E)S(E) = S(E)−1(J(0)+E)S(E)+
λI.

Case 2: t ⩾ 2. In this case, (2) has distinct eigenvalues. Write (2) in the
form J = J1 ⊕ ⋅ ⋅ ⋅ ⊕ Jt, where each Ji ∶= Jmi1(λi) ⊕ ⋅ ⋅ ⋅ ⊕ Jmiri

(λi) is of size
ni × ni and has the single eigenvalue λi. Let

J +E =

⎡
⎢
⎢
⎢
⎢
⎣

J1 +E11 . . . E1t

⋮ ⋅ ⋅ ⋅ ⋮
Et1 . . . Jt +Ett

⎤
⎥
⎥
⎥
⎥
⎦

(8)

be any matrix near J (i.e., all Eij are small). We make Eij = 0 for all i ≠ j
by near-identity similarity transformations as follows.
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Represent (8) in the form J +E⇙ +E⇗ in which

J +E⇙ ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

J1 0
E21 J2

⋮ ⋱ ⋱
Et1 . . . Et,t−1 Jt

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, E⇗ ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

E11 E12 . . . E1t

E22 ⋱ ⋮
⋱ Et−1,t

0 Ett

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Let us reduce J + E⇙. Add to its first vertical strip the second strip
multiplied by any n2 × n1 matrix M to the right. Make the inverse trans-
formation of rows: subtract from the second horizontal strip the first strip
multiplied by M to the left. This similarity transformation replaces E21

with E21 + J2M −MJ1. Since J1 and J2 have distinct eigenvalues, there
exists M for which E21 + J2M −MJ1 = 0 (see [14, Chapter VIII, § 3]).
Moreover, M is small since E21 is small.

In the same manner, we successively make zero the other blocks of the
first underdiagonal E21,E32, . . . ,Et,t−1 of J + E⇙, then the blocks of its
second underdiagonal E31, . . . ,Et,t−2, and so on. Thus, there exists a near-

identity matrix S1 such that S−1
1 (J +E⇙)S1 = J1 ⊕ ⋅ ⋅ ⋅ ⊕ Jt.

We make the same similarity transformation with the whole matrix
J + E = J + E⇙ + E⇗ and obtain the matrix J + E′ ∶= S−1

1 (J + E)S1.
Its underdiagonal blocks E′

ij (i > j) coincide with the underdiagonal blocks

of S−1
1 E⇗S1, which are very small since all Eij are small and the transfor-

mation is near-identity.

We apply the same reduction to J + E′ and obtain a matrix J + E′′ =
S−1

2 (J +E′)S2 whose underdiagonal blocks E′′
ij (i > j) are very very small,

and so on.

The infinite product S1S2 . . . converges to a near-identity matrix S such
that all underdiagonal blocks of J + Ẽ ∶= S−1(J +E)S are zero.

By near-identity similarity transformations, we successively make zero
the first overdiagonal Ẽ12, Ẽ23, . . . , Ẽt−1,t of J + Ẽ, then its second overdiag-

onal Ẽ13, . . . , Ẽt−2,t, and so on.

We have reduced (8) to the block diagonal form (J1 +F1)⊕ ⋅ ⋅ ⋅⊕ (Jt +Ft)
in which all Fi are small. Reducing each summand Ji +Fi as in Case 1, we
obtain a matrix of the form (3). �

Remark 2.2. In the above proof we have described sketchily how to con-
struct the transformation (4). Algorithms for constructing this transfor-
mation are discussed in [20, 21].

2.2. Change of the Jordan canonical form by arbitrarily small per-
turbations. Let J be a Jordan matrix and let λ be its eigenvalue. Denote

São Paulo J.Math.Sci. 8, 1 (2014), 1–22
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by wλj the number of Jordan blocks Jm(λ) of size m ⩾ j in J ; the sequence
(wλ1,wλ2, . . . ) is called the Weyr characteristic of J (and of any matrix
that is similar to J) for the eigenvalue λ.

The following theorem was proved by Boer and Thijsse [6] and, indepen-
dently, by Markus and Parilis [22]; another proof was given by Elmroth,
Johansson, and K̊agström [10, Theorem 2.2].

Theorem 2.2 ([6, 22]). Let J and J ′ be Jordan matrices of the same size.
Then J can be transformed to a matrix that is similar to J ′ by an arbitrarily
small perturbation if and only if J and J ′ have the same set of eigenvalues
with the same multiplicities, and their Weyr characteristics satisfy

wλ1 ⩾ w
′
λ1, wλ1 +wλ2 ⩾ w

′
λ1 +w

′
λ2, wλ1 +wλ2 +wλ3 ⩾ w

′
λ1 +w

′
λ2 +w

′
λ3, . . .

for each eigenvalue λ.

Theorem 2.2 was extended to Kronecker’s canonical forms of matrix pen-
cils by Pokrzywa [23].

2.3. Closure graphs for similarity classes.

Definition 2.1. Let T be a topological space with an equivalence relation.
The closure graph (or closure diagram) is the directed graph whose vertices
bijectively correspond to the equivalence classes and for equivalence classes
a and b there is a directed path from a vertex of a to a vertex of b if and
only if a ⊂ b, in which b denotes the closure of b.

Thus, the closure graph is the Hasse diagram of the set of equivalence
classes with the following partial order: a ≼ b if and only if a ⊂ b. The
closure graph shows how the equivalence classes relate to each other in T .

In this section, T = Cn×n and the equivalence relation is the similarity
of matrices. Since each similarity class contains exactly one Jordan matrix
determined up to permutations of Jordan blocks, we identify the vertices
with the Jordan matrices determined up to permutations of Jordan blocks.

Theorem 2.2 admits to construct the closure graphs due to the following
lemma.

Lemma 2.2. The closure graph for similarity classes of n × n matrices
contains a directed path from a Jordan matrix J to a Jordan matrix J ′ if
and only if J can be transformed to a matrix that is similar to J ′ by an
arbitrarily small perturbation.

Proof. Denote by [M] the similarity class of a square matrix M .

“⇐Ô” Let J can be transformed to a matrix that is similar to J ′ by an
arbitrarily small perturbation. Then there exists a sequence of matrices

São Paulo J.Math.Sci. 8, 1 (2014), 1–22
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J + E1, J + E2, J + E3, . . . in [J ′] that converges to J . This means that

J ∈ [J ′]. Let A ∈ [J]; i.e., A = S−1JS for some S. Then the sequence of
matrices S−1(J + Ei)S = A + S−1EiS (i = 1,2, . . . ) in [J ′] converges to A,

and so A ∈ [J ′]. Therefore, [J] ⊂ [J ′] and there is a directed path from J
to J ′. �

Corollary 2.1. By Theorem 2.2, the arrows are only between Jordan ma-
trices with the same sets of eigenvalues. Let J be a Jordan matrix.

● Let J ′ be a Jordan matrix of the same size. Each neighborhood of
J contains a matrix whose Jordan canonical form is J ′ if and only
if there is a directed path from J to J ′ (if J = J ′ then there always
exists the “lazy” path of length 0 from J to J ′).

● The closure of the similarity class of J is equal to the union of
the similarity classes of all Jordan matrices J ′ such that there is a
directed path from J ′ to J (if J = J ′ then there always exists the
“lazy” path).

Example 2.1. Let us construct the closure graph for similarity classes of
4 × 4 matrices. Each Jordan matrix is a direct sum of Jordan blocks Jm(λ).
Replacing them by λm and deleting the symbols ⊕, we get the compact
notation of Jordan matrices which was used by Arnold [1]. For example,

λ2λµ is J2(λ) ⊕ J1(λ) ⊕ J1(µ) (9)

(we write λ,µ instead of λ1, µ1).

For all Jordan matrices of size 4 × 4 with eigenvalue 0, we have

Jordan its Weyr characte- the sequence (w1,w1 +w2,
matrix ristic (w1,w2,w3,w4) w1 +w2 +w3,w1 +w2 +w3 +w4)

0000 (4,0,0,0) (4,4,4,4)
0200 (3,1,0,0) (3,4,4,4)
0202 (2,2,0,0) (2,4,4,4)
030 (2,1,1,0) (2,3,4,4)
04 (1,1,1,1) (1,2,3,4)

Using this table, Theorem 2.2, and Lemma 2.2, it is easy to construct
the following closure graph for similarity classes of nilpotent 4 × 4 matrices:

0000→ 0200→ 0202
→ 030→ 04

In the same way, one can construct the closure graph for similarity classes
of all 4 × 4 matrices, which is presented in Figure 1. The graph is infinite:
λ,µ, ν, ξ are arbitrary distinct complex numbers. The similarity classes of
4 × 4 Jordan matrices J that are located at the same horizontal level in
(10) have the same dimension (defined in (5)), which is indicated to the

São Paulo J.Math.Sci. 8, 1 (2014), 1–22
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λ4 λ3µ λ2µ2 λ2µν λµνξ dimension 12

λ3λ

OO

λ2λµ

OO

λ2µµ

OO

λλµν

OO

dimension 10

λ2λ2

OO

λλµµ

OO

dimension 8

λ2λλ

OO

λλλµ

OO

dimension 6

λλλλ

OO

dimension 0

(10)

Figure 1. The closure graph for similarity classes of 4 × 4 matrices

right and is calculated as follows: it equals 16 − codimC T (J), in which
codimC T (J) is the number of stars in (3) (see (5) and Theorem 2.1). For
example, if J is (9) with λ ≠ µ, then (3) is

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ 1 0 0
∗ λ + ∗ ∗ 0
∗ 0 λ + ∗ 0
0 0 0 µ + ∗

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and so dimC(J) = 16 − codimC T (J) = 16 − 6 = 10.

The following example shows that the structure of the closure graph for
larger matrices is not so simple as in (10).

Example 2.2. The closure graph for similarity classes of 6 × 6 nilpotent
matrices is presented in Figure 2. This graph was taken from [18, Figures 3
and 22], where P. Johansson describes the StratiGraph, which is a software
tool for constructing the closure graphs for similarity classes of matrices,
for strict equivalence classes of matrix pencils, and for bundles of matrices
and pencils (see Section 2.4 about bundles and the web page

http://www.cs.umu.se/english/research/groups/matrix-
computations/stratigraph/

about the StratiGraph).

2.4. Closure graphs for similarity bundles. Arnold [1, § 5.3] defines a
bundle of matrices under similarity as a set of all matrices having the same
Jordan type, which is defined as follows: matrices A and B have the same
Jordan type if there is a bijection from the set of distinct eigenvalues of A
to the set of distinct eigenvalues of B that transforms the Jordan canonical
form of A to the Jordan canonical form of B. For example, the Jordan

São Paulo J.Math.Sci. 8, 1 (2014), 1–22
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06 dim 30

050

OO

dim 28

0402

OO

dim 26

0303

66nnnnn
0400

ggOOOO
dim 24

03020

hhPPPP 77oooo
dim 22

020202

66nnn
03000

ggOOO

dim 18

020200

hhPPP 77ooo
dim 16

020000

OO

dim 10

000000

OO

dim 0

Figure 2. The closure graph for similarity classes of 6×6 nilpo-
tent matrices

matrices

J3(0) ⊕ J2(0) ⊕ J5(1), J3(2) ⊕ J2(2) ⊕ J5(−3)

belong to the same bungle. All matrices of a bundle have similar proper-
ties and not only with respect to perturbations; for example, its Jordan
canonical matrices have the same set of commuting matrices.

Note that the closure graph for bundles of n × n matrices under simi-
larity has a finite number of vertices; moreover, it is in some sense more
informative than the closure graph for similarity classes. For example, one
cannot see from the latter graph that each neighborhood of Jn(λ) contains
a matrix with n distinct eigenvalues (since there is no diagonal matrix
whose similarity class has a nonzero intersection with each neighborhood
of Jn(λ)). But the closure graph for bundles has an arrow from the bundle
containing Jn(λ) to the bundle of all matrices with n distinct eigenvalues.

Furthermore, not every convergent sequence of n × n matrices

B1,B2, . . .→ A, (11)

in which all Bi are not similar to A, gives a directed path in the closure
graph for similarity classes. But every sequence (11), in which all Bi do
not belong to the bundle A that contains A, gives at least one directed
path in the closure graph for similarity bundles. Indeed, the number of
bundles of n × n matrices is finite, and so there is an infinite subsequence
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12 Lena Klimenko and Vladimir V. Sergeichuk

Bn1 ,Bn2 , . . . → A in which all Bni belong to the same bundle B. Hence

A ∈ B. One can prove that A ⊂ B.

Example 2.3. The closure graph for similarity bundles of 4 × 4 matrices is
presented in Figure 3 (it is given in another form in Johansson’s guide [18,
Figure 24]).

λµνξ dim 16

λ2µν

77nnn
dim 15

λ3µ

44hhhhhhhhhh
λ2µ2

88qq
dim 14

λ4

88qqqq
44hhhhhhhhhh λλµν

OO

dim 13

λ2λµ

OO

33hhhhhhhhh
λ2µµ

OO

88pp
dim 12

λ3λ

OO

88qq
33hhhhhhhhh

dim 11

λλµµ

OO

dim 10

λ2λ2

OO

33hhhhhhhhh
dim 9

λλλµ

OO

dim 8

λ2λλ

88pp

OO

dim 7

λλλλ
OO

dim 1

(12)

Figure 3. The closure graph for similarity bundles of 4 × 4 matrices

Let us compare (10) and (12). The graph (10) is infinite; it is the disjoint
union of linear subgraphs that are obtained from

λλλλ→ λ2λλ→ ⋯→ λ4, λλλµ→ λ2λµ→ λ3µ, . . . , λµνξ (13)

by replacing their parameters by unequal complex numbers (the numbers
of parameters in the vertices of the linear subgraphs (13) are equal to 1,
2, 2, 3, 4, respectively). Thus, although the sequences of Greek letters in
the vertices of (10) and (12) are the same, each vertex of (10) represents
an infinite set of similarity classes whose matrices have the same Jordan
type (and so these similarity classes have the same dimension), whereas
the corresponding vertex in (12) represents only one bundle, which is the
union of these similarity classes; its dimension is equal to the dimension
of any of its similarity classes plus the number of parameters. Notice that
each arrow of (10) corresponds to an arrow of (12), but (12) has additional
arrows.
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3. Perturbations of matrices determined up to congruence

Dmytryshyn, Futorny, and Sergeichuk [7] constructed miniversal defor-
mations of the following congruence canonical matrices given by Horn and
Sergeichuk [16, 17]:

Every square complex matrix is congruent to a direct sum,
determined uniquely up to permutation of summands, of ma-
trices of the form

[
0 Im

Jm(λ) 0 ] ,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 ⋰
−1 ⋰

1 1
−1 −1

1 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Jk(0),

in which λ ∈ C ∖ {0, (−1)m+1} and is determined up to re-
placement by λ−1.

The miniversal deformations [7, Theorem 2.2] of congruence canonical
matrices are rather cumbersome, so we give them only for 2 × 2 and 3 × 3
matrices.

Theorem 3.1 ([7, Example 2.1]). Let A be any 2×2 or 3×3 matrix. Then
all matrices A + X that are sufficiently close to A can be simultaneously
reduced by some transformation

S(X)
T
(A +X)S(X), S(X) is holomorphic at 0, (14)

to one of the following forms, in which λ ∈ C ∖ {−1,1} and each nonzero λ
is determined up to replacement by λ−1.

● If A is 2 × 2:

[
0

0] + [
∗ ∗
∗ ∗

] , [
1

0] + [
0 0
∗ ∗

] , [
1

1] + [
0 0
∗ 0] ,

[
0 1
−1 0] + [

∗ 0
∗ ∗

] , [
0 −1
1 1 ] + [

∗ 0
0 0] , [

0 1
λ 0] + [

0 0
∗ 0] .

● If A is 3 × 3:

⎡
⎢
⎢
⎢
⎢
⎣

0
0

0

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

⎤
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎣

1
0

0

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0
∗ ∗ ∗
∗ ∗ ∗

⎤
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎣

1
1

0

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0
∗ 0 0
∗ ∗ ∗

⎤
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎣

1
1

1

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0
∗ 0 0
∗ ∗ 0

⎤
⎥
⎥
⎥
⎥
⎦

,
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⎡
⎢
⎢
⎢
⎢
⎣

0 1
−1 0

0

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

∗ 0 0
∗ ∗ 0
∗ ∗ ∗

⎤
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎣

0 1
λ 0

0

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0
∗ 0 0
∗ ∗ ∗

⎤
⎥
⎥
⎥
⎥
⎦

(λ ≠ 0),

⎡
⎢
⎢
⎢
⎢
⎣

0 1
0 0

0

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0
∗ 0 ∗
∗ 0 ∗

⎤
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎣

0 −1
1 1

0

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

∗ 0 0
0 0 0
∗ ∗ ∗

⎤
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎣

0 1
−1 0

1

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

∗ 0 0
∗ ∗ 0
0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎣

0 1
λ 0

1

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0
∗ 0 0
0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎣

0 −1
1 1

1

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

∗ 0 0
0 0 0
0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎣

0 1 0
0 0 1
0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0
0 0 0
∗ 0 ∗

⎤
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎣

0 0 1
0 −1 −1
1 1 0

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0
∗ 0 0
0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

.

Each of these matrices has the form Acan+D in which Acan is a canonical
matrix for congruence and the stars in D are complex numbers that tend
to zero as X tends to zero. The number of stars is the smallest that can
be attained by using transformations (14); it is equal to the codimension of
the congruence class of A.

The codimension of the congruence class of a congruence canonical ma-
trix A ∈ Cn×n was calculated by Dmytryshyn, Futorny, and Sergeichuk [7]
and independently by De Terán and Dopico [4]; it is defined as follows. For
each small matrix X ∈ Cn×n,

(I +X)
TA(I +X) = A +XTA +AX

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
small

+ XTAX
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
very small

and so the congruence class of A in a small neighborhood of A can be
obtained by a very small deformation of the affine matrix space {A+XTA+
AX ∣X ∈ Cn×n}. (By the local Lipschitz property [24], if A and B are close
to each other and B = STAS with a nonsingular S, then S can be taken
near In.)

The vector space

T (A) ∶= {XTA +AX ∣X ∈ Cn×n}
is the tangent space to the congruence class of A at the point A. The
numbers

dimC T (A), codimC T (A) ∶= n2
− dimC T (A)

are called the dimension and codimension of the congruence class of A.
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Congruence bundles are defined by Futorny, Klimenko, and Sergeichuk
[12] via bundles of matrix pairs under equivalence. Recall, that pairs (A,B)

and (A′,B′) of m×n matrices are equivalent if there are nonsingular R and
S such that RAS = A′ and RBS = B′. By Kronecker’s theorem about
matrix pencils [14, Chapter XII, § 3], each pair (A,B) of matrices of the
same size is equivalent to

L⊕ P1(λ1) ⊕ ⋅ ⋅ ⋅ ⊕ Pt(λt), λi ≠ λj if i ≠ j, λ1, . . . , λt ∈ C ∪∞, (15)

in which L is a direct sum of pairs of the form (Lk,Rk) and (LTk ,R
T
k ),

k = 1,2, . . . , defined by

Lk ∶=

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0
⋱ ⋱

0 1 0

⎤
⎥
⎥
⎥
⎥
⎦

, Rk ∶=

⎡
⎢
⎢
⎢
⎢
⎣

0 1 0
⋱ ⋱

0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

((k − 1)-by-k),

and each Pi(λi) is a direct sum of pairs of the form

(Ik, Jk(λi)) if λi ∈ C or (Jk(0), Ik) if λi = ∞.

The direct sums L and Pi(λi) are determined by (A,B) uniquely, up to
permutation of summands. The equivalence bundle of (15) consists of all
matrix pairs that are equivalent to pairs of the form

L⊕ P1(µ1) ⊕ ⋅ ⋅ ⋅ ⊕ Pt(µt), µi ≠ µj if i ≠ j, µ1, . . . , µt ∈ C ∪∞,

with the same L,P1, . . . , Pt (see [9]).

The definition of bundles of matrices under congruence is not so evident.
They could be defined via the congruence canonical form by analogy with
bundles of matrices under similarity and bundles of matrix pairs, but, unlike
the Jordan and Kronecker canonical forms, the perturbation behavior of a
congruence canonical matrix with parameters depends on the values of its
parameters, which is illustrated by the canonical matrices [ 0 1−1 0 ] and [ 0 1

λ 0 ]

in the left graph in Figure 4.

Definition 3.1 ([12]). Two square matrices A and B are in the same
congruence bundle if and only if the pairs (A,AT ) and (B,BT ) are in the
same equivalence bundle.

Definition 3.1 is based on Roiter’s statement (see [12, Lemma 4.1]): two
n × n matrices A and B are congruent if and only if the pairs (A,AT ) and
(B,BT ) are equivalent.

Example 3.1. The closure graphs for congruence classes and congruence
bundles of 2 × 2 matrices are presented in Figure 4; they were constructed
by Futorny, Klimenko, and Sergeichuk [12].

The left graph: in Figure 4 is the closure graph for congruence
classes of 2 × 2 matrices. The congruence classes are given by their
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[
0 −1
1 1 ] [

0 1
λ 0] [

1
1]

[
1

0]

OOaaCCCC
>>~~~~

[
0 1
−1 0]

OO

[
0

0]

ddII

OO

{[
0 1
λ 0]}

λ
dim 4

[
0 −1
1 1 ]

OO

[
1

1]

bbEEEEE

dim 3

[
1

0]

OObbEEEEE

dim 2

[
0 1
−1 0]

OO

dim 1

[
0

0]

ffMMMM

OO

dim 0

Figure 4. The closure graphs for congruence classes and con-
gruence bundles of 2 × 2 matrices, in which λ ∈ C ∖ {−1,1} and
each nonzero λ is determined up to replacement by λ−1.

2×2 canonical matrices for congruence. The graph is infinite: [ 0 1
λ 0 ]

represents the infinite set of vertices indexed by λ ∈ C ∖ {−1,1}.
The right graph: is the closure graph for congruence bundles of

2 × 2 matrices. The vertex {[ 0 1
λ 0 ]}λ represents the bundle that con-

sists of all matrices whose congruence canonical forms are [ 0 1
λ 0 ] with

λ ≠ ±1. The other vertices are canonical matrices; their bundles co-
incide with their congruence classes. Note that [ 0 1−1 0 ] and [ 0 1

λ 0 ]

(λ ≠ ±1) properly belong to distinct bundles because these matrices
have distinct properties with respect to perturbations, which is il-
lustrated by the left graph. Other arguments in favor of Definition
3.1 of congruence bundles are given in [12, Section 6].

The congruence classes and bundles with vertices on the same horizontal
level have the same dimension, which is indicated to the right.

Example 3.2. The closure graphs for congruence classes and congruence
bundles of 3 × 3 matrices are presented in Figure 5. They were constructed
by Futorny, Klimenko, and Sergeichuk [12].

The left graph: in Figure 5 is the closure graph for congruence
classes of 3 × 3 matrices. The congruence classes are given by their
3 × 3 canonical matrices for congruence. The graph is infinite:
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[
0 −1
1 1

1
] [

0 1
µ 0

1
] [

0 0 1
0 −1 −1
1 1 0

]

[
0 1 0
0 0 1
0 0 0

]

<<yyyyyy

ccFFFFFF
OO

[
0 1−1 0

1
]

OO

[
1

1
1
]

OO

[
0 −1
1 1

0
]

DD													

OO

[
0 1
λ 0

0
]

OO

[
1

1
0
]

ZZ4444444444444
OO

[
0 1−1 0

0
]

OO

[
1

0
0
]

OOccHHHHH
;;wwwww

[
0

0
0
]

ccHHHHH
OO

{[
0 1
µ 0

1
]}
µ

dim 9

[
0 −1
1 1

1
]

;;vvvvv

[
0 0 1
0 −1 −1
1 1 0

]

ddIIIII

dim 8

[
0 1 0
0 0 1
0 0 0

]

99tttttt

ddJJJJJ

dim 7

[
0 1−1 0

1
]

OO

{[
0 1
λ 0

0
]}
λ

OO

[
1

1
1
]

OO

dim 6

[
0 −1
1 1

0
]

::uuuuu

OO

[
1

1
0
]

eeJJJJJJ
OO

dim 5

[
0 1−1 0

0
]

OO

[
1

0
0
]

ddJJJJJ
99tttttt

dim 3

[
0

0
0
]

ddJJJJJ
OO

dim 0

Figure 5. The closure graphs for congruence classes and con-
gruence bundles of 3 × 3 matrices, in which λ,µ ≠ ±1, and nonzero
λ and µ are determined up to replacements by λ−1 and µ−1.

[
0 1
λ 0

0
] and [

0 1
µ 0

1
] represent the infinite sets of vertices indexed

by λ,µ ≠ ±1.
The right graph: is the closure graph for congruence bundles of

3 × 3 matrices. The vertices {[
0 1
λ 0

0
]}
λ

and {[
0 1
µ 0

1
]}
µ

represent

the bundles that consist of all matrices whose congruence canonical

forms are [
0 1
λ 0

0
] (λ ≠ ±1) or [

0 1
µ 0

1
] (µ ≠ ±1), respectively. The

other vertices are canonical matrices; their bundles coincide with
their congruence classes.

Remark 3.1. Let M be a 2 × 2 or 3 × 3 canonical matrix for congruence.

● Let N be another canonical matrix for congruence of the same size.
Each neighborhood of M contains a matrix from the congruence
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class (respectively, bundle) of N if and only if there is a directed
path from M to N in the left (resp. right) graph in Figures 4 or 5.
Note that there always exists the “lazy” path of length 0 from M
to M if M = N .

● The closure of the congruence class (resp. bundle) of M is equal to
the union of the congruence classes (resp. bundles) of all canonical
matrices N such that there is a directed path from N to M .

4. Perturbations of matrices determined up *congruence

Dmytryshyn, Futorny, and Sergeichuk [8] constructed miniversal defor-
mations of the following *congruence canonical matrices given by Horn and
Sergeichuk [16, 17]:

Every square complex matrix is *congruent to a direct sum,
determined uniquely up to permutation of summands, of ma-
trices of the form

[
0 Im

Jm(λ) 0 ] , µ

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1
⋰ i

1 ⋰
1 i 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Jk(0), (16)

in which λ,µ ∈ C, ∣λ∣ > 1, and ∣µ∣ = 1. (The condition ∣λ∣ > 1
can be replaced by 0 < ∣λ∣ < 1.)

The miniversal deformations [8, Theorem 2.2] of *congruence canonical
matrices are rather cumbersome, so we give them only for 2 × 2 and 3 × 3
matrices.

Theorem 4.1. Let A be any 2 × 2 or 3 × 3 matrix. Then all matrices
A + X that are sufficiently close to A can be simultaneously reduced by
some transformation

S(X)
∗
(A +X)S(X),

S(X) is nonsingular and conti-
nuous on a neighborhood of zero,

to one of the following forms.

● If A is 2 × 2:

[
0 0
0 0] + [

∗ ∗
∗ ∗

] , [
µ1 0
0 0] + [

ε1 0
∗ ∗

] , [
µ1 0
0 µ2

] + [
ε1 0
δ21 ε2

] ,

[
0 µ1

µ1 iµ1
] + [

∗ 0
0 0] , [

0 1
λ 0] + [

0 0
∗ 0] .

● If A is 3 × 3:
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⎡
⎢
⎢
⎢
⎢
⎣

0
0

0

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

⎤
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎣

µ1

0
0

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

ε1 0 0
∗ ∗ ∗
∗ ∗ ∗

⎤
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎣

µ1

µ2

0

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

ε1 0 0
δ21 ε2 0
∗ ∗ ∗

⎤
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎣

µ1

µ2

µ3

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

ε1 0 0
δ21 ε2 0
δ31 δ32 ε3

⎤
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎣

0 µ1

µ1 iµ1

µ2

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

∗ 0 0
0 0 0
δ21 0 ε2

⎤
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎣

0 µ1

µ1 iµ1

0

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

∗ 0 0
0 0 0
∗ ∗ ∗

⎤
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎣

0 1
λ 0

µ1

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0
∗ 0 0
0 0 ε1

⎤
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎣

0 1
λ 0

0

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0
∗ 0 0
∗ ∗ ∗

⎤
⎥
⎥
⎥
⎥
⎦

(λ ≠ 0),

⎡
⎢
⎢
⎢
⎢
⎣

0 1
0 0

0

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0
∗ 0 ∗
∗ 0 ∗

⎤
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎣

0 1 0
0 0 1
0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0
0 0 0
∗ 0 ∗

⎤
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎣

0 0 µ1

0 µ1 iµ1

µ1 iµ1 0

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0
0 ε1 0
0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

,

Each of these matrices has the form Acan+D, in which Acan is a canonical
matrix for *congruence, the stars in D are complex numbers, ∣λ∣ < 1, ∣µ1∣ =

∣µ2∣ = ∣µ3∣ = 1, and

εl ∈ R if µl ∉ R δlr = 0 if µl ≠ ±µr

εl ∈ iR if µl ∈ R δlr ∈ C if µl = ±µr

(Clearly, D tends to zero as X tends to zero.) For each Acan +D, twice
the number of its stars plus the number of its entries εl, δlr is equal to the
codimension over R of the *congruence class of Acan.

The codimension of the *congruence class of a *congruence canonical
matrix A ∈ Cn×n was calculated by De Terán and Dopico [5] and indepen-
dently by Dmytryshyn, Futorny, and Sergeichuk [8]; it is defined as follows.
For each A ∈ Cn×n and a small matrix X ∈ Cn×n,

(I +X)
∗A(I +X) = A +X∗A +AX

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
small

+ X∗AX
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

very small

and so the *congruence class of A in a small neighborhood of A can be
obtained by a very small deformation of the real affine matrix space {A +

X∗A +AX ∣X ∈ Cn×n}. (By the local Lipschitz property [24], if A and B
are close to each other and B = S∗AS with a nonsingular S, then S can be
taken near In). The real vector space

T (A) ∶= {X∗A +AX ∣X ∈ Cn×n}
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is the tangent space to the *congruence class of A at the point A. The
numbers

dimR T (A), codimR T (A) ∶= 2n2
− dimR T (A)

are called the dimension and, respectively, codimension over R of the *con-
gruence class of A.

Example 4.1. The closure graph for *congruence classes of 2 × 2 matrices
is presented in Figure 6; it was constructed by Futorny, Klimenko, and
Sergeichuk [13]. Each *congruence class is given by its canonical matrix,

[
µ 0
0 ν] [

0 1
σ 0] [

0 τ
τ τi]

∣µ∣ = ∣ν∣ = ∣τ ∣ = 1,
µ ≠ ±ν, ∣σ∣ < 1,

dimR 6

[
λ 0
0 λ] [

λ 0
0 −λ]

τ=±λ

OO

dimR 4

[
λ 0
0 0]

the same λ44444

ZZ44444
the same λ�����

CC�����

OO

λ∈µR
+
+νR

+)))))))))))))))))))

TT)))))
Im(λτ̄)⩾0

�������������������

II�����

∣λ∣ = 1,
dimR 3

[
0 0
0 0]

OO

FF YY

dimR 0

(17)

Figure 6. The closure graph for *congruence classes of 2 × 2
matrices, in which R+ denotes the set of nonnegative real numbers,
Im(c) denotes the imaginary part of c ∈ C, and λ,µ, ν, σ, τ ∈ C.

which is a direct sum of blocks of the form (16). The graph is infinite:
each vertex except for [ 0 0

0 0 ] represents an infinite set of vertices indexed
by the parameters of the corresponding canonical matrix. The *congruence
classes of canonical matrices that are located at the same horizontal level in
(17) have the same dimension over R, which is indicated to the right. The
arrow [ λ 0

0 0 ] → [ µ 0
0 ν

] exists if and only if λ = µa + νb for some nonnegative

a, b ∈ R. The arrow [ λ 0
0 0 ] → [ 0 τ

τ iτ ] exists if and only if the imaginary part

of λτ̄ is nonnegative. The arrow [ λ 0
0 −λ ] → [ 0 τ

τ iτ ] exists if and only if τ = ±λ.

São Paulo J.Math.Sci. 8, 1 (2014), 1–22



An informal introduction to perturbations of matrices determined up to similarity or
congruence 21

The arrows [ λ 0
0 0 ] → [ λ 0

0 ±λ ] exist if and only if the value of λ is the same in
both matrices. The other arrows exist for all values of parameters of their
matrices.

Remark 4.1. Let M be a 2 × 2 canonical matrix for *congruence.

● Let N be another 2 × 2 canonical matrix for *congruence. Each
neighborhood of M contains a matrix that is *congruent to N if
and only if there is a directed path from M to N in (17) (if M = N ,
then there always exists the “lazy” path of length 0 from M to N).

● The closure of the *congruence class of M is equal to the union of
the *congruence classes of all canonical matrices N such that there
is a directed path from N to M .
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