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Abstract. We study versions of the categories of Yetter-Drinfel’d mod-
ules over a Hopf algebra H in a braided monoidal category C. Contrary-
wise to Bespalov’s approach, all our structures live in C. This forces
H to be transparent or equivalently to lie in Müger’s center Z2(C) of
C. We prove that versions of the categories of Yetter-Drinfel’d modules
in C are braided monoidally isomorphic to the categories of (left/right)
modules over the Drinfel’d double D(H) ∈ C for H finite. We obtain
that these categories polarize into two disjoint groups of mutually iso-
morphic braided monoidal categories. We conclude that if H ∈ Z2(C),
then D(H)C embeds as a subcategory into the braided center category
Z1(HC) of the category HC of left H-modules in C. For C braided,
rigid and cocomplete and a quasitriangular Hopf algebra H such that
H ∈ Z2(C) we prove that the whole center category of HC is monoidally
isomorphic to the category of left modules over Aut(HC) ⋊ H - the
bosonization of the braided Hopf algebra Aut(HC) which is the coend
in HC. A family of examples of a transparent Hopf algebras is discussed.

1. Introduction

Yetter introduced in [27] “crossed bimodules” generalizing to Hopf alge-
bras the notion of crossed modules over finite groups, which appeared in
topology. These new objects are modules and comodules over a Hopf alge-
bra H over a commutative ring with a certain compatibility condition. In
[11] they were used to generate solutions to the Yang-Baxter equation and
accordingly were called “Yang-Baxter modules”. Yetter’s construction and
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its variations were studied in [23] where they were termed Yetter-Drinfel’d
structures. The initial Yetter’s category is denoted by H

HYD.

For a finite-dimensional Hopf algebra H Majid proved that the cate-
gory D′(H)M of modules over the Drinfel’d double D′(H) = H &H∗op is

isomorphic to H
HYD. In [22, Proposition 2.4] the analogous result to the

former is proved for the left-right version of the Yetter-Drinfel’d category:

D(H)M ≅ HYD
H , where D(H) = (Hop)∗ &H.

Another, categorical interpretation of the Yetter-Drinfel’d categories is
that they can be seen as the center (or the inner double) of the category
of modules over the Hopf algebra. The center construction (which to any
monoidal category assigns a braided monoidal category) is a special case
of Pontryagin dual monoidal category, [13]. As observed by Drinfel’d [8]
and proved in [15, Example 1.3] and [10, Theorem XIII.5.1] the left (resp.
right) center of the category of left modules over H is isomorphic to H

HYD

(resp. HYD
H). For the details on the center construction we refer to [10].

In Radford biproduct Hopf algebra B ×H [20], Majid observed that B
is a Hopf algebra in the category H

HYD. If H is quasitriangular, a left
H-module B′ can be equipped with a left H-comodule structure in such a
way that one gets a Yetter-Drinfel’d module. In this particular case, the
Hopf algebra B′ ×H is named bosonization in [17]. The reversed process -
recovering a braided Hopf algebra out of an ordinary one - was studied in
[17, Section 2] and is called mutation.

Yetter-Drinfel’d modules through their equivalence with Hopf bimodules,
[24], emerge in Woronowicz’s approach to bicovariant differential calculi on
quantum groups, [26]. The first order differential calculi over a Hopf algebra
H over a field consist of a derivation d ∶ H −−→ Ω1(H), where Ω1(H) is the
bicovariant bimodule and has a structure of a Hopf bimodule. Another
and exotic appearance of left-right Yetter-Drinfel’d modules we find in 3D-
topological quantum field theories, [6, Theorem 3.4].

Some of the above-mentioned constructions have been generalized to any
braided monoidal category. For a Hopf algebra H in a braided monoidal
category C which admits split idempotents the equivalence of the categories
of Hopf bimodules and of Yetter-Drinfel’d modules YD(C)HH was proved in
[2]. In the same paper the authors prove that the category of bialgebras
in YD(C)HH is isomorphic to the category of admissible pairs in C. The
proof relies on the previously generalized Radford-Majid theorems to the
braided case, [1, Theorems 4.1.2 and 4.1.3]. The former result provides a
natural and easy description for the Radford-Majid criterion for when a
Hopf algebra is a cross product.
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In this paper we study categories of Yetter-Drinfel’d modules over a
Hopf algebra H in a braided monoidal category C with a different approach
than in [1]. Moreover, we address the question of their isomorphism with
the categories of left and right modules over the Drinfel’d double in C.
When studying the monoidal structures of the respective categories, one is
tempted to impose the symmetricitity of the base category C as a necessary
condition. To avoid this obstacle, Bespalov works in [1] both with C and
with its opposite and co-opposite categories, Cop and Ccop respectively, and
with a category C. The opposite category of C has the same objects as C,
but the arrows go in the reversed order. The braiding in Cop is given by

X ⊗ Y
ΦY,X
← Y ⊗X, where Φ is the braiding of C. The category Ccop has

reversed tensor product and the braiding X ⊗cop Y = Y ⊗X
ΦY,X
−−→ X ⊗ Y =

Y ⊗cop X. The category C has the same tensor product and its braiding
is Φ−1. Contrarywise, in the present paper we work only with the base
category C and investigate which conditions we have to impose in order
that the construction works. We find that it is sufficient to require that
the braiding Φ of C fulfills ΦH,X = Φ−1

X,H for every X ∈ C. This condition we

have encountered also in [7]. It had already appeared in the literature in
[4] and [18, Definition 2.9]. In the terminology of the former reference we
have that H is transparent, while due to the latter H belongs to Müger’s
center Z2(C) = {X ∈ C∣ΦY,XΦX,Y = idX⊗Y for all Y ∈ C} of the braided
monoidal category C. The notation Z1(C) Müger reserved for the center
of the monoidal category C that we mentioned above. If ΦX,Y = Φ−1

Y,X for
some X,Y ∈ C, we say that ΦX,Y is symmetric.

As a particular case of the bicrossproduct construction (with trivial coac-
tions) in braided monoidal categories, [29], we study the Drinfel’d double
D(H) of H in C. We obtain that D(H) = (Hop)∗&H in C is a bicrossprod-
uct Hopf algebra for finite H, if ΦH,H is symmetric. Equivalent conditions
for when D(H) is (co)commutative are given. We prove that the category
of modules over D(H) in C is isomorphic to that of Yetter-Drinfel’d mod-
ules over H in C if H is transparent. In particular, we get that the two
diagrams

HYD(C)H
op HYD(C)Hcop-

?

D(H)C
H
HYD(C)-

?

HHHHj

YD(C)H
op

Hcop

��
�
��*

1
and

HcopYD(C)H Hop
YD(C)H-
?

CD(H) YD(C)HH
-

?

HHHHj
Hop

HcopYD(C)
��

�
��*

2
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commute as arrows of mutually isomorphic braided monoidal categories.
Our goal in this paper is not to prove that all the above Yetter-Drinfel’d
categories are braided monoidally isomorphic, as it was proved in [1, Corol-
lary 3.5.5] under the previously mentioned suppositions. Rather, we set up
a different approach and investigate how far we can get in the study of the
above categories.

Bespalov proved in [1, Proposition 3.6.1] that the category of left-left
(resp. right-right) Yetter-Drinfel’d modules in C is braided monoidally iso-
morphic to a subcategory of the center of the category of left H-modules
(resp. right H-comodules). We differentiate the left and the right cen-
ter category and observe that the mentioned category isomorphism can be
extended to the categories in the rectangular diagrams ⟨1⟩ and ⟨2⟩ above
yielding two polarized groups of mutually isomorphic braided monoidal
categories:

ZCr (HC) ZCl (
HC)-
?

ZCl (HC) ZCr (
HC)-

? and

ZCr (C
H) ZCl (CH).-

?

ZCr (CH) ZCl (C
H)-

?

As for the relation between the centers Z1 and Z2 in the notation of Müger,
we obtain in particular that if H ∈ Z2(C), then D(H)C ↪ Z1,l(HC) (and
similarly CD(H) ↪ Z1,r(CH)).

For the whole center category of a braided, rigid and cocomplete cate-
gory C Majid proved Z1,l(C) ≅ CAut(C) in [14], where Aut(C) is the coend
Hopf algebra in C. For a quasitriangular Hopf algebra H ∈ C [16, Definition
1.3] such that H ∈ Z2(C) we obtain Z1,l(CH) ≅ CH⋉Aut(CH) as monoidal cat-
egories, where H ⋉Aut(CH) is the bosonization of the braided Hopf algebra
Aut(CH) in CH . When C = V ec and H is a finite-dimensional quasitriangu-
lar Hopf algebra, this recovers the known isomorphism Zl(MH) ≅MD′(H).
We point out that a similar result to ours was proved in [5] where the au-
thors work with Hopf monads and construct a Drinfel’d double in a fully
non-braided setting.

At the end we present a family of transparent Hopf algebras in braided
monoidal categories which support our constructions.

The paper is organized as follows. In Section 2 we present preliminaries
on some structures in any braided monoidal category C. In the next sec-
tion we study the braided monoidal category of left-right Yetter-Drinfel’d
modules HYD(C)H

op
(assuming that H is transparent). We point out that

the categories H
HYD(C) and YD(C)HH are braided monoidal without any

São Paulo J.Math.Sci. 8, 1 (2014), 33–82



Transparency condition in the categories of Yetter-Drinfel’d modules over Hopf algebras in
braided categories 37

symmetricity conditions on the braiding. Section 4 recalls the bicrossprod-
uct construction (with trivial coactions) in C. We use it to study the
Drinfel’d double D(H) = (Hop)∗ & H in C for a finite H, when ΦH,H is
symmetric. Section 5 is devoted to the braided monoidal isomorphism

D(H)C ≅ HYD(C)H
op

. In Section 6 we compare different versions of the
braided Yetter-Drinfel’d categories in C, connecting them with the cate-
gories of left and right modules over the Drinfel’d double in C. In the
penultimate section we deal with the center construction and relate it to
the Yetter-Drinfel’d categories. The last section presents some examples.

Acknowledgements. This work has partially been developed in the
Mathematical Institute of the Serbian Academy of Sciences and Arts in
Belgrade (Serbia). The author wishes to thank to Facultad de Ciencias de
la Universidad de la República in Montevideo for their worm hospitality
and provision of the necessary facilities. My gratitude to Yuri Bespalov for
clarifying me his proof of [1, Proposition 3.6.1], and to Alain Bruguière for
the discussions on the construction of the Drinfel’d double via monads.

2. Preliminaries

We assume the reader is familiar with the theory of braided monoidal
categories as well as with the notation of braided diagrams. For the ref-
erences we recommend [10] and [1]. We recall that a Hopf algebra in a
braided monoidal category C was introduced by Majid in [15]. In the same
paper it was proved that the categories of modules and comodules over a
bialgebra in C are monoidal. We only outline some basic conventions. In
view of Mac Lane’s Coherence Theorem we will assume that our braided
monoidal category C is strict. Our braided diagrams are read from top to
bottom, the braiding Φ ∶ X ⊗ Y −−→ Y ⊗X and its inverse in C we denote
by:

ΦX,Y =
X Y

Y X

and Φ−1
Y,X =

Y X

X Y.

For an algebraA ∈ C and a coalgebra C ∈ C the multiplication in the opposite
algebra Aop of A and the comultiplication in the co-opposite coalgebra Ccop

of C we denote by:

∇Aop =

A A


	
A

and ∆Ccop =

C��
C C

respectively. The antipode S of a Hopf algebra H in C is a bialgebra map
S ∶H −−→Hop,cop. Its compatibility with multiplication and comultiplication
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is written as:
H H
	
Sh
H

=

H H

ShSh

	
H

and

H��
ShSh
H H

=

H

Sh��
H H

respectively. Moreover, S is the antipode for Hop,cop. Note that for a
bialgebra B ∈ C, neither Bop nor Bcop is a bialgebra, unless the braiding Φ
fulfills ΦB,B = Φ−1

B,B.

We recall some basic facts.

2.1. A monoidal category C is called right closed if the functor −⊗M ∶ C → C
has a right adjoint, denoted by [M,−], for all M ∈ C. For N ∈ C, the object
[M,N] is called inner hom-object. The counit of the adjunction evaluated
at N is denoted by evM ,N ∶ [M ,N ] ⊗ M → N . It satisfies the following
universal property: for any morphism f ∶ T ⊗M → N there is a unique
morphism g ∶ T → [M,N] such that f = evM ,N (g ⊗ M ). If f ∶ N −−→ N ′ is
a morphism in C, then [M,f] ∶ [M,N] −−→ [M,N ′] is the unique morphism
such that evM ,N ′([M , f ]⊗M ) = f evM ,N . The unit of the adjunction α ∶ N
−−→ [M,N ⊗M] is induced by evM ,N⊗M (α ⊗ M ) = idN⊗M . A monoidal
category C is called left closed if the functor M ⊗ − ∶ C → C has a right
adjoint {M,−} for all M ∈ C. The counit of this adjunction evaluated at
N ∈ C is denoted by evM,N ∶ M ⊗ {M,N} → N and the unit by α̃ ∶ N
−−→ {M,M ⊗N}. It obeys evM,M⊗N(M ⊗ α̃) = idM⊗N . When C is braided,
there is a natural equivalence of functors [M,−] ≅ {M,−} and C is right
closed if and only if it is left closed. Throughout we will write [−,−] for both
types of inner hom-bifunctors, the difference will be clear from the context.
The object [M,M] is an algebra for all M ∈ C.

2.2. Let P be an object in C. An object P ∗ ∈ C together with a morphism
eP ∶ P ∗⊗P −−→ I is called a left dual object for P if there exists a morphism
dP ∶ I −−→ P ⊗P ∗ in C such that (P ⊗eP )(dP ⊗P ) = idP and (eP ⊗P

∗)(P ∗⊗
dP ) = idP ∗. The morphisms eP and dP are called evaluation and dual basis,
respectively. In braided diagrams the evaluation eP and dual basis dP are
denoted by:

eP = P ∗ P
	 and dP =
��
P P ∗

and the two identities they satisfy by:

P��
	
P

= idP (2.1)

P ∗ ��
	
P ∗

= idP ∗ . (2.2)
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Symmetrically, one defines a right dual object ∗P for P with morphisms
e′P ∶ P ⊗ ∗P −−→ I and d′P ∶ I −−→ ∗P ⊗ P . Left and right dual objects are
unique up to isomorphism. In a braided monoidal category the left and
the right dual for P coincide. The corresponding evaluation and dual basis
morphisms are related via:

e′P = ePΦP ∗,P (2.3) d′P = Φ−1
P,P ∗dP (2.4)

see e.g. [25, Prop. 2.13, b)] (we take here the opposite sign of the first
power of the braiding).

2.3. An object P ∈ C is called right finite, if [P, I] and [P,P ] exist and
the morphism db ∶ P ⊗ [P , I ] −−→ [P ,P], called the dual basis morphism
as well, defined via the universal property of [P,P ] by evP ,P(db ⊗ P) =
P ⊗ evP ,I is an isomorphism. One may easily prove that if P is right
finite, then ([P, I], eP = ev) is its left dual. The dual basis morphism is
dP = db−1η[P,P ], where η[P,P ] is the unit for the algebra [P,P ]. A similar
claim holds for a left finite object, which is defined similarly as a right finite
object. In a braided monoidal category an object is left finite if and only if
it is right finite. If P is a finite object, then so is P ∗ and there is a natural
isomorphism P ≅ P ∗∗.

2.4. In the following we collect some facts about duality of Hopf algebras
from [25, 2.5, 2.14 and 2.16]. Let C be a closed braided monoidal category.

(i) If H is a coalgebra in C, then H∗ ∶= [H,I] is an algebra.

(ii) If H is a finite algebra in C, then H∗ is a coalgebra.

(iii) If H is a finite Hopf algebra in C, then so is H∗.

We give here the structure morphisms. The finiteness condition in ii)
and iii) is needed in order to be able to consider H∗⊗H∗ ≅ (H⊗H)∗, which
allows to define a comultiplication on H∗ using the universal property of
[H ⊗ H,I]. The multiplication, comultiplication, antipode S∗, unit and
counit of H∗ are given by:

H∗ H∗ H� 

	

=
H∗H∗ H��

	
	

(2.5)
H∗ H H��

	
	

=
H∗ H H� 

	

(2.6)

H∗ H

S∗h
	=
H∗ H

Sh
	 (2.7)
Hr
	 =

H

r (2.8)
H∗

r =
H∗ r
	 (2.9)

respectively (one uses the universal property of [H,I]). It is easy to see that
a finite algebra A in C is commutative if and only if A∗ is a cocommutative
coalgebra.

For an algebra A ∈ C and a coalgebra C ∈ C we denote by AC and CC

the categories of left A-modules and right C-comodules, respectively. The
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proof of the following proposition is not difficult. The first statement is
proved in [25, Proposition 2.7].

Proposition 2.5. Let H ∈ C be a finite coalgebra. If M ∈ CH , then M ∈ H∗C
with the structure morphism given in (2.10). If N ∈ H∗C, then N ∈ CH

with the structure morphism given in (2.11). These assignments make the
categories CH and H∗C isomorphic.

H∗ M

PP

M

=

H∗M

PP


	
M

(2.10)
N

PP

N H

=

N��
PP

N H

(2.11)

Throughout the paper C will be a braided monoidal category with braid-
ing Φ and H ∈ C a Hopf algebra having a bijective antipode.

3. Some braided monoidal categories of Yetter-Drinfel’d mod-
ules

A left H-module and left H-comodule N ∈ C and a right H-module
and right H-comodule L ∈ C are called respectively left-left and right-right
Yetter-Drinfel’d modules over H in C if they obey the compatibility condi-
tions:

H N��
PP
��


	
H N

=

H N����

	PP
H N

(3.1) and

L H��
��
PP


	
L H

=

L H

PP ��
�� 
	
L H

(3.2)

respectively. A left-right Yetter-Drinfel’d module over H is a left H-module
and right H-comodule M ∈ C whose H-structures are related via the rela-
tion:

H M� �
PP

PP� 
M H

=

H M��PP
PP 
	
M H.

(3.3)
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In all the cases we will shorten the term “Yetter-Drinfel’d module” to YD-
module. The categories of left-left YD-modules and left H-linear and left
H-colinear morphisms in C (which we denote by H

HYD(C)) and that of right-
right YD-modules and right H-linear and right H-colinear morphisms in
C (denoted by YD(C)HH) respectively, are known to be braided monoidal
categories with braidings:

ΦL
X,Y =

X Y

��

PP

Y X

and ΦR
W,Z =

W Z

PP

��

Z W

(3.4)

for objects X,Y ∈ HHYD(C) and W,Z ∈ YD(C)HH respectively, (see e.g. [1]).
However, in order that the category of left-right YD-modules be braided
monoidal, some symmetricity conditions on the braiding in C should be
assumed, as we will see further below. Like in [1, Thm. 3.4.3] Bespalov has
that the category HYD(C)H

op
is braided monoidal, but there he considers

the tensor product of two left-right YD-modules a right Hop-comodule via
the codiagonal structure in the category C, whereas the H-module structure
he considers in C (as in [1, Lemma 3.3.2]). Thus for two objects M,N of
this category, the object M ⊗N has the H-comodule structure:

ρM⊗N = (M ⊗N ⊗∇Hop)(M ⊗Φ−1
N,H ⊗H)(ρM ⊗ ρN).

Bespalov considers ∇Hop = ∇Φ−1
H,H (instead, we regard here the positive sign

of the braiding) in order that Hop be a bialgebra in C. In the present paper
we prefer to consider all the structures in C. Accordingly, we will have that
the categories HYD(C)H

op
and HcopYD(C)H are braided monoidal if the

braiding Φ in C fulfills ΦH,X = Φ−1
X,H for every corresponding YD-module

X ∈ C. We will say that ΦH,X is symmetric. As a matter of fact, if ΦH,H

and ΦH,X are symmetric (indeed H itself is a YD-module over itself), then
the upper structure coincides with the usual codiagonal comodule structure
on M ⊗ N in C. Nevertheless, we will prove explicitly the claims by our
approach as this is the general setting of our work and we will prove also
other results in this manner.
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Before proving that the category HYD(C)H
op

is braided monoidal, we
will note some important facts. Observe that:

H��h−

	
H

=

H

rr
H

(3.5)

since:

H��h−

	h+
H

=

H��h−
h+ h+

	
H

=

H��h+
	
H

=

H

rr
H

=

H

rrh+
H.

From this point on we will assume that the antipode of H is bijective (which
is fulfilled for example if H is finite and C has equalizers, [25, Theorem 4.1]).
The sign “+” stands for the antipode whereas “−” stands for the inverse of
the antipode. Furthermore, we have that the condition (3.3) is equivalent
to:

H M

PP

PP

M H

=

H M��
h− ��PP
PP 
	

	

M H

(3.6)
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To prove this assume that (3.3) holds. Then:

H M��
h− ��PP
PP 
	

	

M H

(3.3)
=

H M� �h− � �
PP

PP� 

	

M H

coass.
ass.
nat.
=

H M� �� �PPh−
PP


	
	
M H

nat.
(3.5)
unit
counit
=

H M

PP

PP

M H.

Conversely, (3.6) implies:

H M� �
PP

PP� 
M H

nat.
=

H M��
PP
PP


	
M H

(3.6)
=

H M��
��
h− ��PP
PP 
	

	
	

M H

coass.
ass.
=

H M� �����PPh−
PP 
	


	
	
M H

nat.
(3.5)
unit
counit
=

H M��PP
PP 
	
M H.

Remark 3.1. If ΦH,H is symmetric, (3.5) can be considered with ΦH,H

instead of Φ−1
H,H ; then one proves that

H M� �
PP

PP� 
M H

=

H M��PP
PP 
	
M H

(3.7) is equivalent to

H M

PP

PP

M H

=

H M��
h− ��PP
PP 
	

	

M H

(3.8)

(versions of the relations (3.3) and (3.6)).
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It is important to note that H itself is a YD-module over itself with
suitable structures. For example, it is a left-right YD-module with the
regular action and the adjoint coaction:

H

PP

H H

=

H� �h− � �

	

H H.

For the other versions of a YD-module (see Section 6) H can be equipped
with similar structures - regular (co)actions and adjoint (co)actions.

The last convention before the promissed proof is that throughout, by
abuse of notation, we will write ΦH,M is symmetric for all M ∈ HYD(C)H

op
,

and similarly for other versions of the YD-categories, when strictly speak-
ing we should say for all M ∈ C. Indeed, via the forgetful functor U ∶

HYD(C)H
op

−−→ C every M ∈ HYD(C)H
op

is an object in C, and every
N ∈ C can be equipped with trivial H-(co)module structures to form a
YD-module.

Proposition 3.2. Assume that ΦH,M is symmetric for every left-right YD-

module M over H in C. The category HYD(C)H
op

is braided monoidal with
braiding and its inverse given by:

Φ∗

M,N =

M N

PP
PP

N M

and (Φ∗

M,N)−1 =

N M

PPh+
PP

M N

for M,N ∈ HYD(C)H
op

.

Proof. Because of the symmetricity assumption on Φ we will consider the
YD-compatibility condition from the above Remark. Let M and N be
two left-right YD-modules over H. We consider their tensor product as a
left H-module and right Hop-comodule with the (co)diagonal structures.
We now prove that the YD-compatibility of these H-structures holds for
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M ⊗N :

H M⊗N� �
PP

PP� 
M⊗N H

=

H M N� ���
PP PP

PP PP


	
	
M N H

coass.
ass.
=

H M N� ���
PP PP

PP PP


	
	
M N H

nat.
=

H M N� ���
PP PP

PP

PP
	

	

M N H

M(3.7)
nat.
=

H M N� �
� � PP

PP

PP 
	
PP
	

M N H

coass.
ass.
nat.
=

H M N��
PP ��

PP PP

PP
	
	
M N H

ΦH,H

nat.
=

H M N��
PP ��

PP PP

PP
	

	

M N H
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N(3.7)
nat.
=

H M N��
PP ��PP

PP
PP 
	

	

M N H

ΦH,H

nat.
=

H M N��
PP ��PP

PP 
	
PP


	
M N H

ΦH,H

nat.
=

H M N��
PP ��PP

PP

PP 
	
	
M N H

nat.
=

H M N� � PP PP��
PP PP 
	
	
M N H

coass.
ass.
nat.
=

H M N� �PP PP��

	

PP PP 
	
M N H

=

H M⊗N��PP
PP 
	
M⊗N H.

The check that Φ∗ satisfies the braiding axioms we leave to the reader. We
prove here the H-linearity of Φ∗:

H M N��
PP PP

PP
PP

N M

ΦH,M

nat.
=

H M N��
PP PP

PP

PP

N M

N(3.6)
=

H M N��
PP ��
h− ��PP
PP 
	

	
PP

N M

nat.
coass.
=

H M N� ���h− ��PP
PP 
	

	 PP

PP

N M
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mod.
ass.
=

H M N� ���h− ��PP
PP 
	

	
	

PP

N M

ΦH,N

ΦH,H

(3.5)
=

H M N��PP
PP 
	

PP

N M

mod.
=

H M N

PP�� PP

PP PP

N M.

The Hop-colinearity of Φ∗ follows from:

M N

PP
PP
PP PP


	
N M H

comod.
M(3.8)
=

M N

PP��
��
h− ��PP
PP 
	

	

	

N M H

coass.
ass.
=

M N

PP� �����PPh−
PP 
	

	

	

N M H
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ΦH,H

(3.5)
=

M N

PP��PP
PP 
	

N M H

comod.
nat.
=

M N

PP

PP PP

PP 
	
N M H

ΦH,M

nat.
=

M N

PP

PP

PP
PP 
	

N M H

ΦH,H

nat.
=

M N

PP PP


	
PP
PP

N MH.

The proof that the inverse of Φ∗ is given as in the announcement of the
claim is straightforward. �

Remark 3.3. Note that because of the assumption that ΦH,M is symmetric,
instead of Φ1+ ∶= Φ∗ in Proposition 3.2 we can also consider the braiding:

Φ1−
M,N =

M N

PP
PP

N M.

Remark 3.4. With the same conditions as in Proposition 3.2 one has that
the category HcopYD(C)H is braided monoidal with braiding and its inverse
given by:

Φ2+
M,N =

M N

PP
PP

N M

and (Φ2+
M,N)−1 =

N M

PPh+
PP

M N

for M,N ∈ HcopYD(C)H . Analogously as in Remark 3.3, the braiding Φ2+

can be taken in the form Φ2−. Note that HcopYD(C)H is not braided by
Φ1±, since Φ1± is not left Hcop-linear even if C=V ec, the category of vector
spaces. Thus the identity functor Id∶ HYD(C)H

op
−−→ HcopYD(C)H is not

an isomorphism of braided monoidal categories although it is monoidal.

4. Bicrossproducts in braided monoidal categories

Bicrossproducts in braided monoidal categories (also called cross product
bialgebras) were treated in [29, 3]. We recall here bicrossproducts with
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trivial coactions. Let B and H be bialgebras in C, where B is a left H-
module coalgebra and H is a right B-module coalgebra. Assume further
that the following conditions are fulfilled:

H B B����
PP ��

PP� 
B

=

H B B� 
PP

B

;

H H B����
PP ��

��� 
H

=

H H B� 
��

B

H B����
PP ��

H B

=

H B����
�� PP

H B

and

H r
PP

B

=

Hrr
B

;

Br
��

H

=

Brr
H

Bialgebras B and H described above are called a matched pair of bialgebras
in C. We define B & H as the tensor product B ⊗ H endowed with the
codiagonal comultiplication, usual unit η and counit ε (that is, ηB ⊗ ηH
and εB ⊗ εH respectively), and associative multiplication given by:

∇B&H =

B H B H����
PP ��� � 
B H.

In [29, Theorem 1.4] it is proved that B &H is a bialgebra. Moreover, if
both B and H are Hopf algebras, by [29, Theorem 1.5] we know that so is
B &H with the antipode given by:

SB&H =

B H

����hS hS h+ h+
�� PP

B H

=

B H

hS h+����
PP ��

B H.
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From here it follows:

SB&H(ηB ⊗H) = ηB ⊗ SH . (4.1)

For a module M over B &H in C we will consider:
B&H M

PP

M

=

B H M

PP

PP

M.

(4.2)

Lemma 4.1. Let B and H be a matched pair of bialgebras. An object M
is a module over B & H in C if and only if it is an H- and a B-module
satisfying the compatibility condition:

H B M

PP

PP

M

=

H B M����
PP ��

PP

PP

M.

(4.3)

Proof. An object M is a module over B &H if and only if:

B H B H M

PP

PP

PP

PP

M

=

B&H B&H M

PP

PP

M

=

B&H B&H M� 
PP

M

=

B H B H M����
PP ��� � 

PP

PP

M.

Applying this to ηB ⊗ H ⊗ B ⊗ ηH , we obtain (4.3). For the converse
observe that the above equality follows from (4.3) and the H- and B-module
properties of M . �

We now want to consider a particular case of a bicrossproduct - the
Drinfel’d double of H. A tedious direct check, which we omit here for
practical reasons, shows:
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Proposition 4.1. Let H ∈ C be a finite Hopf algebra with a bijective an-
tipode and the braiding such that ΦH,H and ΦH,H∗ are symmetric. Then
B &H is a bicrossproduct with B = (Hop)∗ and the actions:

Hop H B

PP

hev =

Hop H B��
	h−

	
hev

and

H B

��

H

=

H B� ��� h−

	
hev

H

The bialgebra B &H is called the Drinfel’d double of H and is denoted
by D(H). Throughout, apart from assuming that our Hopf algebras have
a bijective antipode, when we deal with D(H) we will also assume that H
is finite. As we mentioned before, the antipode of a finite Hopf algebra is
bijective if e.g. C has equalizers.

Note that B is a bialgebra since ΦH,H is symmetric (we commented this
before 2.1). We only point out that in the proof of the above claim one
uses the identity that we next present. Bearing in mind that B = (Hop)∗,
we have:

B H H��

	
	

(2.6)
=

B H H


	�  (4.4)

Composing this from above (in the braided diagram orientation) with ΦH⊗H,B

and applying ev = evΦ due to (2.3), by naturality we obtain:

H H B


	
hev =

H H B

��

	
	

ΦH,H∗

nat.
=

H H B��

	
	 =

H H B��
ev ev

(4.5)

As a matter of fact the two symmetricity conditions for ΦH,H and ΦH,H∗

in Proposition 4.1 are equivalent (in the next Lemma we add the last con-
dition):

Lemma 4.2. [28, Lemma 1.1] The following conditions are equivalent:

(1) ΦH,H ,ΦH,H∗ and ΦH∗,H∗ are symmetric;
(2) ΦH,H is symmetric;
(3) ΦH∗,H∗ is symmetric;
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(4) (H ⊗ ev)(ΦH ∗,H ⊗H ) = (ev ⊗H )(H ∗ ⊗ΦH ,H );
(5) (H∗ ⊗ ev)(ΦH ∗,H ∗ ⊗H ) = (ev ⊗H ∗)(H ∗ ⊗ΦH ∗,H );
(6) the conditions 4) and 5) hold true;
(7) ΦH,H∗ is symmetric.

One proves similarly:

Lemma 4.3. Let M ∈ C be any object. Then ΦH,M is symmetric if and
only if ΦH∗,M is symmetric.

Remark 4.2. We remark that (Hop)∗ ≅ (H∗)cop as coalgebras:

(Hop
)
∗

Hop Hop��

	
	 =

(Hop
)
∗

Hop Hop� 

	 =

H∗ H H


	�  =

H∗ H H��

	
	

nat.
=

H∗ H H��

	
	

nat.
=

H∗ H H��

	
	

ΦH∗,H∗

=

H∗ H H��

	
	

=

(H∗
)
cop

H H��

	
	

The claim follows by the universal property of H∗ ⊗ H∗ ≅ (H ⊗ H)∗. If
ΦH,H is symmetric, then (Hop)∗ and (H∗)cop are bialgebras and they are
isomorphic as Hopf algebras.

Remark 4.3. There are several ways to construct a Drinfel’d double. In [3,
Prop. 3.6] one can find a construction of a matched pair of bialgebras, and
hence a bicrossproduct H & A. With H= (Aop)∗ and the pairing ⟨., .⟩= ev
it is given a different construction than the one in our Proposition 4.1.
Taking A= (Hcop)∗ and ⟨., .⟩= ev, one obtains a Drinfel’d double of the form
H & (Hcop)∗ ≅ H & (H∗)op. The authors proved that if A and H are Hopf
algebras where the antipode of A is invertible, than A and H are a matched
pair of bialgebras if and only if ΦA,H is symmetric. In [28, Theorem 3.2] a
result similar to our Proposition 4.1 is proved, but the H- and Hop-actions
are given differently. The quasitriangularity of D(H) we will discus in the
next section.
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Developing the right hand-side of the expression (4.3) applied to the
Drinfel’d double and using the actions given in Proposition 4.1, yields:

H B M����
PP ��

PP

PP

M

=

H B M���� h−��
	

	

ev

B&H

PP

M.

(4.6)

Taking M =B &H and applying the above equality to H ⊗B⊗ ηB&H , one
gets:

H B����
PP ��

B H

=

H B���� h−��
	

	

ev

B H

(4.7)

The following result generalizes [21, Proposition 4.6] to the braided case.

Lemma 4.4. Assume that ΦH,H∗ is symmetric. Then the following are
equivalent:

(i) D(H) is commutative,

(ii) H and H∗ are commutative;

(iii) H and H∗ are cocommutative;

(iv) D(H) is cocommutative.

Proof. In view of 2.4 it suffices to prove the equivalence of (i) and (ii). We
omit to type the whole proof, we only give a sketch of it. First observe that
we have identities:
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Hop B B��
ev ev

=

Hop B B��

	
	

ΦH,H∗

=

Hop B B��


	
	

(2.5)
=

HopB B� 

	

=

HopB B
	
hev (4.8)

and
Hop ��

	

Hop

nat.
=

Hop��
	
Hop

= idHop (4.9)

Suppose that D(H) is commutative. Using ev = evΦ and evaluating the
product in D(H) at Hop, we obtain:

HopB H B H��h−����
	
	

	
	

	

H

∇D(H)

(4.9)
=

HopB&H B&H� 
B&H


	
B

=

HopB&H B&H

� 
B&H


	
B

∇D(H)

(4.9)
=

Hop B H B H

��h−����
	
	

	
	

	

H
(4.10)

Apply this to Hop ⊗B ⊗ ηH ⊗B ⊗ ηH and compose the obtained identity
with εH to obtain:

HopB B

��
	
	
=

HopB B

��
	
	
By (4.8) one gets that B, and hence H∗, is commutative. Applying (4.10)
to ηH ⊗ ηB ⊗H ⊗ ηB ⊗H, one obtains that H is commutative.
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Conversely, assuming (ii), using (4.8) and that ΦH,H∗ is symmetric, one
may prove that (4.10) - which expresses commutativity of D(H) - holds
true. �

5. Yetter-Drinfel’d modules as modules over the Drinfel’d
double

Since D(H) is a bialgebra in C, the category of its left (and right) mod-
ules is monoidal. In this and the next section we study the isomorphism
between these categories and the appropriate categories of YD-modules.
The functors we will consider will act as identity functors on objects and
morphisms, we will only have to define the new (co)module structures. Let
us regard the pair of functors

F ∶ (Hop)∗&HC HYD(C)H
op
∶ G.-�

For M ∈ (Hop)∗&HC and K ∈ HYD(C)H
op

we define:

F(M)

PP

F(M) H

=

M��
PP

M H

and

H∗ G(K)

PP

G(K)

=

H∗ K

PP


	
K.

Regard F(M) as a left H-module by the action of ηB ⊗ H on M , and
consider G(K) = K as a left H-module. By Proposition 2.5 we know that
F(M) is a right H-comodule and G(K) a left H∗-module.

Assume that ΦH,H and ΦH,M are symmetric, where M ∈ (Hop)∗&HC. Let
B = (Hop)∗. We have:

B H F(M)

��PP
PP 
	

	

F(M)

F

=

B H M���� PP

PP 
	

	

M

(4.4)
=

B H M����
PP��


	
	
PP

M

ΦH,H

nat.
(2.2)
=

B H M����

	
PP

PP

M
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(4.6)
=

B H M����

	���� h−��
	


	
ev

B&H

PP

M

nat.
=

B H M

����
�� ���� 
	
	 h−

	

ev

B&H

PP

M

ΦH,B

(2.3)
=

B H M

����
�� ��

ev��
	 h−

	

ev

B&H

PP

M

nat.
(4.5)
=

B H M

���� ����
	 h−

	

B&H 
	
ev

PP

M

coass.
ass.
nat.
=

B H M

�� � �����
	 h−
B&H 
	

	

ev

PP

M

ΦH,H

(3.5)

(4.2)
=

B H M����
	
ev

PP

PP

M

=∶ Σ.
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On the other hand, it is:

B H F(M)� �
PP

PP� � 
F(M)

F

=

B H M��
PP��

PP


	

	

M

nat.
(2.4)
ΦH,B
=

B H M

��
PP��

PP


	
ev

M

nat.
=

B H M

����
PP
	

PP

ev

M

nat.
=

B H M

����

	 PP

ev

PP

M

ΦH,B

ΦH,H

nat.
= Σ

From the universal property of H∗ = [H,I] the obtained identity implies
that F(M) obeys (3.7), thus F is well defined. For the converse assume
that moreover ΦH,K is symmetric for K ∈ HYD(C)H

op
. We will need:

H��

	

H

=

H��
	
H

(2.1)
= idH (5.1)
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Now we compute:

H B G(K)���� h−��
	

	

ev

B&H

PP

G(K)

(4.2)
G

=

H B K���� h−��
	
PP
	

ev

PP


	
K

(5.1)
nat.
=

H B K��h−��
PP
PP


	

	

ev

K

ΦH,H

ΦH,B
=

H B K��h−��
PP
PP


	

	

ev

K

nat.
=

H B K��
�� h−
PP
PP


	

	

ev

K

nat.
ΦH,H
=

H B K

��h−��
PP

PP
	

	

ev

K
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ΦH,K

Y D
nat.
=

H B K� �
h−��PP

PP 
	

	

ev

K

coass.
ass.
=

H B K� ���h−
PP

PP 
	
	
ev

K

ΦH,H

(3.5)
=

H B K

PP
PP ev

K

(2.3)
ΦH,B

nat.
=

H B K

PP

PP 
	
K

(4.2)
G

=

H B G(K)

PP

PP

G(K)

By (4.3) and (4.6) this proves that G(K) is a module over B &H. From
Proposition 2.5 we then know that F and G make an isomorphism of cate-
gories. Let us show that F is a monoidal functor. Take M,N ∈ (Hop)∗&HC,
then:

F(M⊗N)

PP

F(M⊗N)H

=

M N� ���
PP PP

M N H

=

M N����

	PP PP

M N H

nat.
=

M N�� ��
PP PP


	

M N H

nat.
=

M N�� ��
PP PP


	
M N H

=

F(M)F(N)

PP PP


	
F(M)F(N)Hop
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Finally, for M,N ∈ (Hop)∗&HC consider:

ΨM,N ∶=

M Nr r��
D(H)D(H)

PP PP

N M

=

M N��
PP PP

N M

nat.
=

M N��
PP

PP

N M

nat.
=

M N��
PP

PP

N M

F

=

M N

PP

PP

N M

ΦH,M

nat.
=

M N

PP
PP

N M.

Note that the right hand-side is Φ1+
M,N . Then we have that Ψ becomes the

braiding in (Hop)∗&HC. Its inverse is given by:

Ψ−1
M,N

N M��h−
PP PP

M N.

Proposition 5.1. Assume H ∈ C is a finite Hopf algebra with a bijec-
tive antipode. Suppose that ΦH,M is symmetric for all M ∈ HYD(C)H

op
.

The categories HYD(C)H
op

and D(H)C are isomorphic as braided monoidal
categories.

In [16, Definition 1.2] Majid defined an “opposite comultiplication” ∆op

for a bialgebra H. Let O(H,∆op) denote the subcategory of those H-
modules with respect to which ∆op is an opposite comultiplication. If R ∶ I
−−→H ⊗H is a quasitriangular structure for H, [16, Definition 1.3], then by
[16, Proposition 3.2] the subcategory O(H,∆op) is braided by

M ⊗N H ⊗H ⊗M ⊗N-R⊗M ⊗N
H ⊗M ⊗H ⊗N-

H ⊗ΦH,M ⊗N

M ⊗N-µM ⊗ µN N ⊗M.-
ΦM,N
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We denote this composition by Φ(R). It is straightforward to check that if
ΦH,M is symmetric for all H-modules M in C, then ∆op ∶= ΦH,H∆H is an
opposite comultiplication for H with respect to the whole category HC, i.e.
O(H,∆op) = HC. The same is true for CH . In particular, the above holds
for D(H). The morphism:

R ∶=
r r��

H∗ H H∗H

is a quasitriangular structure for D(H) and it induces a braiding Φ(R) on

D(H)C. Note that it equals to our Ψ from above. As it is the case in the
category of modules over a commutative ring and a usual quasitriangular
Hopf algebra, the axioms of quasitriangularity of D(H) are equivalent to
the two braiding axioms for Ψ, its left D(H)-linearity and invertibility, if
ΦH,M is symmetric for all M ∈ D(H)C.

5.1. Bosonization and an isomorphism of categories. Bespalov proved
in [1, Lemma 5.3.1 and Section 5.4] that a left (right) module over a qua-
sitriangular bialgebra (H,R) can be equipped with a left (right) comodule
structure over H so that the subcategory O(H,∆op) becomes a full braided
subcategory of HHYD(C) (YD(C)HH). This is a braided version of the clas-
sical result from [12].

Assume that H is a quasitriangular Hopf algebra with respect to the
whole category CH (e.g. if ΦH,M is symmetric for all M ∈ CH). Then
CH is braided. Let B be a Hopf algebra in CH . Equipped with a right
H-comodule structure:

ρB =

B

R

��

B H

B becomes a right-right YD-module. The structure morphisms of B are
right H-linear. Since H is quasitriangular, they turn out to be also right
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H-colinear. We show this for the multiplication:

B B
	
PP

B H

=

B B� 
R

��

B H

=

B B

R��
�� ��� 
B H

⋆

=

B B

R

R
	
�� ��� 
B H

ΦH,B

nat.
=

B B

R R

�� ��

� � 
B H

=

B B

PP PP


	
	
B H

where at the place ⋆ we applied the quasitriangular axiom (∆op ⊗H)R =
R23R13. Since CH is a braided subcategory of YD(C)HH , we have that
the braiding in CH induced by R (the right hand-side version of Φ(R))
equals ΦR from (3.4) and B is indeed a Hopf algebra in YD(C)HH . By [1,
Theorem 4.1.2] the cross product algebra H ⋉B is then a Hopf algebra in
C, the bosonization of the braided Hopf algebra B. Its multiplication and
comultiplication are given by:

H B H B��
��
	� 

H B

and

H B��� �
PP


	
H B H B

which are the tensor product algebra and coalgebra respectively in the
category YD(C)HH . The antipode of H ⋉B is given by SH⋉B ∶= ΦR

B,H(SB ⊗

SH)ΦR
H,B. Similarly as in Lemma 4.1 one proves that the categories CH⋉B

and (CH)B are isomorphic. An object of the latter category is a right H-
and a right B-module M satisfying the compatibility condition:

M B H

��

��

M

=

M B H��
�� ��

��

M
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Moreover, the isomorphism F ∶ (CH)B −−→ CH⋉B is monoidal, since for
M,N ∈ (CH)B it is:

F(M⊗N)H⋉B

��

F(M⊗N)

=

M N H B��
�� ����

Φ(R)

�� ��

M N

=

M N H B��
�� ����

ΦR

�� ��

M N

=

M N H B��� �
PP

�� ��

�� ��
��

M N

=

M N H B��� �
PP

�� 
	
�� ��

��

M N

=

F(M)⊗F(N)H⋉B

��

F(M)⊗F(N).

Thus we have proved:

Proposition 5.2. Let H be a quasitriangular Hopf algebra such that ΦH,M

is symmetric for all M ∈ CH . Let B be a Hopf algebra in CH . Then H ⋉B
is a Hopf algebra in C and there is a monoidal isomorphism of categories
CH⋉B ≅ (CH)B.

6. Other versions of Yetter-Drinfel’d categories

We start this section by giving equivalent conditions for the left-left and
the right-right YD-compatibility conditions and relating the corresponding
categories with that of modules over the Drinfel’d double. Subsequently,
we will study two versions of left-right, as well as two versions of right-left
YD-categories. At the end we will relate all the categories we have studied.

6.1. Left-left and right-right YD-modules as modules over the
Drinfel’d double. At the beginning of Section 3 we noted that the cat-
egories H

HYD(C) of left-left YD-modules and YD(C)HH , of right-right YD-
modules, are braided monoidal categories without any further conditions.
However, in order to prove that these categories are isomorphic to that of
left (respectively right) D(H)-modules in C for a finite Hopf algebra H with
a bijective antipode, one has to require the same symmetricity conditions
on the braiding as in Proposition 5.1. Before supporting this claim, we note
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that the expressions (3.1) and (3.2) are equivalent to:

H N

PP
��

H N

=

H N������
h+

	PP
	
H N

(6.1) and

L H

��
PP

L H

=

L H��
PP ��
h+

�� 
	
	
L H

(6.2)

respectively, if ΦH,N (ΦH,L) is symmetric forN ∈ HHYD(C) and L ∈ YD(C)HH .

The same symmetricity conditions are necessary to prove that HHYD(C) and

YD(C)HH , characterized by (6.1) and (6.2) respectively, are monoidal cate-
gories.

Consider the functors Fl ∶ D(H)C
H
HYD(C) ∶ Gl-� defined by

Fl(M)

��

H Fl(M)

=

M��h+
PP

H M

and

H∗ Gl(N)

PP

Gl(N)

=

H∗ N

��h−
	
N

for M ∈ (Hop)∗&HC and N ∈ HHYD(C), where Fl(M) is a left H-module by
the action of ηB⊗H on M , and Gl(N) = N as a left H-module. Even though
one uses (3.1) as the defining relation for the category H

HYD(C), one has
that Fl and Gl define an isomorphism of categories if ΦH,N is symmetric.
We show here only that this is a monoidal isomorphism. Observe first:

� ���
H B B

=

� �������

	
	

H H∗ H∗

(4.4)
=

������

	
	

H H∗ H∗

=

����

	
H H∗H∗

(6.3)

Now for M,N ∈ D(H)C we have:

Fl(M⊗N)

��

HFl(M⊗N)

=

M N� �h+��
PP PP

H M N

=

M N� ���
h+ h+
PP PP

H M N

(6.3)
=

M N����

	h+ h+

PP PP

H M N
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ΦH,H∗

=

M N� ���h+ h+
	
PP PP

H M N

nat.
=

M N�� ��h+ h+
PP PP

� 
H M N

ΦH,M
=

M N�� ��h+ h+
PP PP

� 
H M N

=

Fl(M) Fl(N)

�� ��


	
H Fl(M)Fl(N).

It is easily shown that the functor L ∶ HHYD(C) −−→ YD(C)HH given by

L(M) H

��

L(M)

=

M H

h+h+
PP

M

and

L(M)

PP

L(M) H

=

M

��h−h−
M H

for M,N ∈ HHYD(C) is an isomorphism of categories. It is even monoidal if

ΦH,M is symmetric for every M ∈ HHYD(C). We show only the compatibility
of the H-module structures on the tensor products:

L(M⊗N) H

��

L(M⊗N)

=

M N H

h+h+��
PP PP

M N

ΦH,H
=

M N H

��h+ h+h+ h+
PP PP

M N

=

M N H��
h+ h+h+ h+
PP PP

M N

=

L(M) L(N) H��
�� ��

L(M) L(N)

ΦH,N
=

L(M)⊗L(N) H

��

L(M)⊗L(N).

However, L does not respect the braidings.

6.2. Left-right and right-left YD-modules. In Section 3 we studied
the categories of left-right YD-modules HYD(C)H

op
and HcopYD(C)H , Re-

mark 3.4. Symmetrically, we may consider the category HYD(C)H of right-
left YD-modules. These are right H-modules and left H-comodules which
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satisfy the compatibility condition (6.4). If ΦH,H is symmetric, this condi-
tion is equivalent to (6.5).

M H��
��

��
	
H M

=

M H

�� ��

	��
H M

(6.4)

M H

��

��

H M

=

M H��
�� ��h−

	��

	
H M

(6.5)

The category HYD(C)Hcop is monoidal if ΦH,N is symmetric for all N ∈
HYD(C)Hcop . This is a braided monoidal category with braiding:

Φ3+
M,N =

M N

��
��

N M

for M,N ∈ HYD(C)Hcop . Another possibility for the braiding is Φ3− (sim-
ilarly as in Remark 3.3). Using the fact that ΦH,H is symmetric, one may

show that the functor A ∶ HYD(C)Hcop −−→ HYD(C)H
op

given by:

HA(M)

PP

A(M)

=

H M

h+
��

M

and

A(M)

PP

A(M)H

=

M

��h−
M H

for M,N ∈ HYD(C)Hcop is an isomorphism of categories. We show that it
is monoidal. For the right H-comodule structures we have:

A(M⊗N)

PP

A(M⊗N)H

=

M⊗N

��h−
M⊗NH

=

M N

�� ��


	h−
M N H

=

M N

�� ��

h− h−

	
M N H
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=

M N

�� ��h− h−


	
M N H

ΦH,M

ΦH,H
=

M N

�� ��h− h−

	

M N H

=

A(M)A(N)

PP PP


	
A(M)A(N) H.

For the left H-module structures we find:

H A(M⊗N)

PP

A(M⊗N)

=

H M⊗N

h+
��

M⊗N

=

H M N

h+��
�� ��

M N

=

H M N

��h+ h+
�� ��

M N

nat.
=

H M N��
h+ h+

�� ��

M N

ΦH,M
=

HA(M)A(N)��
PP PP

A(M)A(N).

Analogously to the two versions of left-right YD-categories, we have two
versions of righ-left YD-categories, where the second one is: Hop

YD(C)H .
It is monoidal if ΦH,M is symmetric for all M ∈ Hop

YD(C)H . This is a
braided monoidal category with braiding:

Φ4+
M,N =

M N

��
��

N M

for M,N ∈ Hop
YD(C)H . As in Remark 3.4 we have that Φ3± is not a

braiding for Hop
YD(C)H .
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Let us next examine the relation between the categories HYD(C)H
op

and HcopYD(C)H , on the one hand, and Hop
YD(C)H and HYD(C)Hcop , on

the other hand. First of all recall that the corresponding identity functors
are not isomorphisms of braided monoidal categories (Remark 3.4). Take
M ∈ HYD(C)H . The object H(M) =M with structures:

H(M)

PP

H(M)H

=

M

PPh−
M H

and

H H(M)

PP

H(M)

=

H Mh+
PP

M

is a right Hcop-comodule and a left Hop-module. This defines a (bijective)
functor H ∶ HYD(C)H −−→ Hop,copYD(C)H

op,cop
(the objects of the latter

category are left-right YD-modules over the Hopf algebra Hop,cop). Indeed,

H M��
PPh+ h−

PP 
	h+
M H

=

H M��
PPh+ h+ h−h+

PP 
	
M H

=

H Mh+��PP
PP 
	
M H

M∈HYD(C)
H

=

=

H Mh+��
PP

PP
	
M H

=

H M��
h+ h+
PP

PP
	
M H

=

H M��
h+
PP

PPh−h+ h+
	
M H

=

H M��
h+
PP

PPh−

	h+

M H
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is equivalent to

H H(M)��
PP

PP 
	
H(M) H

=

H M��
PPh+ h−

PP 
	
M H

=

H M��
h+
PP

PPh−

	

M H

=

H H(M)��
PP

PP


	
H(M)H.

The functor H restricts to monoidal functors H1 ∶ HC −−→ HcopC and H2 ∶ C
H

−−→ CH
op

. (For M,M ′ ∈ HYD(C)H , the module structures of Hi(M ⊗M ′)
and Hi(M) ⊗ Hi(M

′), for i = 1, are compatible since the antipode is a
coalgebra anti-morphism and since ΦH,H is symmetric, while the corre-
sponding comodule structures for i = 2 are compatible since the antipode
of H is an algebra anti-morphism.) Hence H induces a monoidal functor
H′ from HYD(C)H

op
to the category D with objects in Hop,copYD(C)H

op,cop
,

whose monoidal structure and the braiding are like the ones in HcopYD(C)H .
The category D is shown to be indeed a braided monoidal category, how-
ever the functor H′ does not respect the braidings. It is easily seen that
H(Φ1+) = Φ1+ /= Φ2+. Thus we will not consider that H′ induces a braided
monoidal functor HYD(C)H

op
−−→ HcopYD(C)H .

In [1, Lemma 3.5.4] it is proved that HYD(C)H
op (Id,Ω)

−−→ (HcopYD(C)H)cop

is an isomorphism of braided monoidal categories, where (Id,Ω) is the
extension of the braided monoidal isomorphism functor C −−→ Ccop. As
announced in the introduction of our paper, we do not make this kind of
identifications, we stick to the original category C.

Similarly, there is a functor B ∶ HYD(C)H −−→ Hop,cop
YD(C)Hop,cop defined

via:
B(M)

��

HB(M)

=

M

��h−
H M

and

B(M)H

��

B(M)

=

M Hh+
��

M

for M ∈ HYD(C)Hcop . It induces monoidal functors B1 ∶
HC −−→ Hop

C and
B2 ∶ CH −−→ CHcop , but not a braided monoidal functor HYD(C)Hcop −−→
Hop
YD(C)H .
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6.3. Comparing all the categories. To sum up the results of this section
consider the following diagram:

HYD(C)H
op HYD(C)Hcop-

A−1

�
���

���
���

���

F1

?

F2

D(H)C
H
HYD(C)-Fl

?

F
1

2

(6.6)

We define the functors F1 and F2 so that the triangles ⟨1⟩ and ⟨2⟩ commute.
We write out the functor F1 explicitly:

F1(M)

PP

F1(M)H

=

M

��h−
M H

with inverse

F
−1
1 (N)

��

F
−1
1 (N)H

=

N

PPh+
H N.

We saw that the functors Fl,F and A are monoidal isomorphisms, so we
have four mutually isomorphic monoidal categories. We now compare their
braidings. We have:

ΦL
M,N =

M N

��

PP

N M

F
−1
1=

M N

PPh+
PP

N M

ΦH,M

nat.
=

M N

PPh+
PP

N M

= (Φ1−
N,M)−1

and

Φ3+
M,N =

M N

��
��

N M

A
−1

=

M N

PPh+
h−

PP

N M

=

M N

PP

PP

N M

nat.
=

M N

PP
PP

N M

= Φ1+
M,N .

This proves that F1 ∶ HHYD(C) −−→ HYD(C)H
op

and A ∶ HYD(C)Hcop

−−→ HYD(C)H
op

are isomorphisms of braided monoidal categories. By
Proposition 5.1, F ∶ D(H)C −−→ HYD(C)H

op
is also such a functor. Then
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by commutativity of ⟨1⟩ and ⟨2⟩ in (6.6) we have four mutually isomorphic
braided monoidal categories.

Symmetrically as in (6.6), we may consider:

HcopYD(C)H Hop
YD(C)H-

E

HHH
HHH

HHH
HHHj

F3

?

F4

CD(H) YD(C)HH
-S

?

T
3

4

(6.7)

The functors S ∶ CD(H) −−→ YD(C)HH , T ∶ CD(H) −−→ HcopYD(C)H and

E ∶ HcopYD(C)H −−→ Hop
YD(C)H are given by:

S(M)

PP

S(M) H

=

M ��
�� h+

M H

with

S
−1

(N) H∗

��

S
−1

(N)

=

N H∗

PPh−
	
N

T (M)

PP

T (M) H

=

M ��
�� h+

M H

;

H T (M)

PP

T (M)

=

H M

h−
��

M

and

E(K)

��

HE(K)

=

K

PP

h+
H K

;

E(K) H

��

E(K)

=

K Hh−
PP

K

with

E
−1

(L)

PP

H E
−1

(L)

=

L

��

h−
L H

;

H E
−1

(L)

PP

E
−1

(L)

=

H Lh+
��

L

(in the definitions of S and T the symbols
��

and 
	stand for the
morphisms d′ ∶ I −−→ H∗ ⊗ H and e′ ∶ H ⊗ H∗ −−→ I, recall 2.2). The
functors F3 and F4 are defined so that the triangles ⟨3⟩ and ⟨4⟩ in (6.7)
commute. The proofs that S,F3 and E are monoidal functors are analogous
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to the corresponding proofs for the functors Fl,F andA, respectively. Then
clearly also T and F4 are monoidal. The braiding in CD(H) is given by:

ΨR
M,N ∶=

M N r r��
D(H)D(H)

�� ��

N M

=

M N ��
�� ��

N M

and we have:

ΨR
M,N =

M N ��
�� ��

N M

S
−1

=

M N

PP ��h−
	��
N M

=

M N

PP

h−
��

N M

nat.
=

M N

PPh−
��

N M

= (ΦR
N,M)−1

ΨR
M,N =

M N ��
�� ��

N M

T
−1

=

M N

PP ��h−
	h+
PP

N M

ΦH,N
=

M N

PP
PP

N M

= Φ2−
M,N

and

Φ2+
M,N =

M N

PP
PP

N M

E
−1

=

M N

��

h−h+
��

N M

ΦH,M

ΦH,N
=

M N

��

��

N M

nat.
=

M N

��

��

N M

=

M N

��
��

N M

= Φ4+
M,N .

(The braiding Φ2+
M,N is the one from Remark 3.4.) This proves that the

functors S,T and E respect the braidings.

Note that our result that E ∶ HcopYD(C)H −−→ Hop
YD(C)H is an isomor-

phism of braided monoidal categories generalizes [1, Lemma 3.5.2], where a
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braided monoidal isomorphism functor H
op
YD(C)H −−→ (HcopYD(C)H)op,cop

is given if the objects of C have right duals. It sends an object from the
source category to its dual object.

Finally, let us record that we do not find any braided monoidal functor
which would connect the two groups of categories from (6.6) and (6.7). At
the end of Subsection 6.2 we showed that a natural candidate H′ for a
monoidal functor from HYD(C)H

op
to HcopYD(C)H is not a braided func-

tor. Likewise, at the end of Subsection 6.1 we showed that L ∶ HHYD(C)

−−→ YD(C)HH is a monoidal but not a braided functor. In the relation (3.5.1)
after [1, Corollary 3.5.5] two (mutually isomorphic) isomorphism functors
G1,G2 ∶ YD(C)HH −−→ H

HYD(C) are given. For M ∈ YD(C)HH with right
module and comodule structure morphisms µ and ρ respectively, the func-
tors G1 and G2 are defined by G1(M,ν, ρ) = (M,µ1 = νΦ−1(S−1 ⊗M), λ1 =
(S ⊗M)Φρ) and G2(M,ν, ρ) = (M,µ2 = νΦ(S ⊗M), λ2 = (S−1 ⊗M)Φ−1ρ),
respectively. Here µi and λi denote the left module and comodule structure
morphisms of Gi(M) = M , respectively, for i = 1,2. That these functors
are well-defined one can check directly applying (6.2). However, that they
are not monoidal we can see even when C = V ec, the category of vec-
tor spaces. Let us see this for G1: h▷ (m ⊗ n) = (m ⊗ n)◁ S−1(h) =
m◁ S−1(h(2)) ⊗ n◁ S−1(h(1)) = h(2)▷m ⊗ h(1)▷ n, which shows that G1

restricts to a monoidal functor MH −−→ HcopM. Moreover, a direct check
shows that if ΦH,M is symmetric for any M ∈ YD(C)HH , the functor G1 is a

braided monoidal isomorphism YD(C)HH −−→ Hop

HcopYD(C), where Hop

HcopYD(C)
is a braided monoidal category with braiding:

M N

��

PP

N M.

Thus, we can complete (6.7), and symmetrically (6.6), into commutative
diagrams of isomorphic braided monoidal categories:

HYD(C)H
op HYD(C)Hcop-

?

D(H)C
H
HYD(C)-

?

HHHHj

YD(C)H
op

Hcop

��
�
��*

and

HcopYD(C)H Hop
YD(C)H-
?

CD(H) YD(C)HH
-

?

HHHHj
Hop

HcopYD(C)
��

�
��*
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There are further monoidal isomorphisms for YD-categories. In [1, Lem-
ma 3.5.6] there is given a monoidal isomorphism HYD(C)H

op
−−→ HYD(C)A,

where A is a further bialgebra with a bialgebra pairing ρ ∶H⊗A −−→ I. Here
the latter is a monoidal category without any symmetricity conditions, but
the former requires some. On the other hand, we checked that there is
a monoidal isomorphism H

HYD(C) −−→ H,AcopYD(C), where the latter does
require some symmetricity conditions whereas the former does not. The
objects M of H,AcopYD(C) satisfy the condition:

A H M����
ρ

PP

PP

M

=

A H M����
PP
PP

ρ

M

where ρ ∶ A ⊗ H −−→ I is a bialgebra pairing. This is another example
of the apeearance that a (braided) monoidal isomorphism functor from a
YD-category in C necessarily requires that the braiding in C be symmetric
between H and any object of the category.

7. Center construction

The center construction for monoidal categories has been introduced in-
dependently by Drinfel’d 1 and Joyal and Street [9]. It consists of assigning
a braided monoidal category called center of C to a monoidal category C.
We will differ the left Zl(C) and the right Zr(C) center of C. We recall here
the definition of the (right) center from [10, Definition XIII.4.1].

Proposition and Definition 7.0.1. For a monoidal category C the objects
of Zr(C) are pairs (V, c−,V ) with V ∈ C, where c−,V is a family of natural
isomorphisms cX,V ∶X ⊗V −−→ V ⊗X for X ∈ C such that for all Y ∈ C it is

cX⊗Y,V = (cX,V ⊗ Y )(X ⊗ cY,V ). (7.1)

A morphism between (V, c−,V ) and (W,c−,W ) is a morphism f ∶ V −−→W in
C such that for all X ∈ C it is

(f ⊗X)cX,V = cX,W (X ⊗ f). (7.2)

1Private communication to Majid in response to the preprint of [13], February 1990.
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The identity morphism in C is the identity morphism in Zr(C) and the
composition of two morphisms in C is a morphisms in Zr(C). Thus Zr(C)
is a category, called the right center of C.

From the definition it is clear that c−,− is a transformation natural in
both arguments. In [10, Theorem XIII.4.2] it is proved that Zr(C) is a
braided monoidal category. The unit object is (I, Id), the tensor product
of (V, c−,V ) and (W,c−,W ) is (V ⊗W,c−,V ⊗W ), where cX,V ⊗W ∶X ⊗ V ⊗W
−−→ V ⊗W ⊗X is a morphism in C defined for all X ∈ C by

cX,V ⊗W = (V ⊗ cX,W )(cX,V ⊗W ). (7.3)

The braiding in Zr(C) is given by:

cV,W ∶ (V, c−,V )⊗ (W,c−,W ) −−→ (W,c−,W )⊗ (V, c−,V ).

The left center Zl(C) of C is defined analogously – an object in Zl(C)
has the form (V, cV,−) with V ∈ C.

For a Hopf algebra H over a field the left center of the category of
left modules over H is isomorphic to H

HYD [15, Example 1.3], and the

right center of the category of left modules over H is isomorphic to HYD
H

[10, Theorem XIII.5.1]. Generalizing these results to a braided monoidal
category C, Bespalov indicated in [1, Proposition 3.6.1] that H

HYD(C) is

isomorphic as a braided monoidal category to a subcategory ZCl (HC) of

the (left) center of HC. The condition that the objects (V, cV,−) of ZCl (HC)
fulfill is that for every X ∈ C with trivial H-action (via the counit) the
morphism cV,X coincides with the braiding ΦV,X in C. In other words, with
the forgetful functor U ∶ HC −−→ C one has that cV,U(X) = ΦV,U(X) for every
X ∈ HC. For completeness we present below the proof for an analogous
statement.

Proposition 7.1. The categories ZCr (HC) and HYD(C)H
op

are isomorphic
as braided monoidal categories.

Proof. First of all, note that for (V, c−,V ) ∈ ZCr (HC) we have:

cH,V
nat.
=

H Vr
cH⊗H,V
	
V H

(7.1)
=

H Vr cH,V

cH,V
	
V H

=

H Vr
cH,V
	
V H.

(7.4)
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The morphism ρ ∶= cH,V (ηH ⊗V ) ∶ V −−→ V ⊗H defines a right H-comodule
structure on V :

V

PP

PP

V H H

=

Vr
cH,Vr

cH,V

V H H

(7.1)
=

Vr r
cH⊗H,V

V H H

=

Vr��
cH⊗H,V

V H H

nat.
=

Vr
cH,V��
V H H

=

V

PP��
V H H.

The counit property follows from cI,V = idV (see (7.1)). With this H-
comodule and the existing H-module structure V is a left-right YD-module:

H V� �
PP

PP� 
V H

=

H V� �
PP

r
cH,V� 
V H

(7.4)
=

H V��
PP

cH,V

V H

=

H V��r

	PP
cH,V

V H

cH,V ∈HC

=

H Vr
cH,V��

PP 
	
V H

=

H V��PP
PP 
	
V H.

A morphism f ∶ V −−→W in ZCr (HC) becomes a morphism of left-right YD-
modules – it is right H-colinear because of (7.2). This defines a functor K
from ZCr (HC) to the category of left-right YD-modules. We now prove that
K ∶ ZCr (HC) −−→ HYD(C)H

op
is monoidal. Let (V, c−,V ) and (W,c−,W ) be in

ZCr (HC). Then we have:

K(V ⊗W )

PP

K(V ⊗W ) H

=

V ⊗Wr
cH,V ⊗W

V ⊗W H

(7.3)
=

V Wr
cH,V

cH,W

V W H

(7.4)
=

V Wr
cH,V

r
cH,W
	

V W H

nat.
=

V Wr r
cH,V cH,W


	
V W H

=

K(V )K(W )

PP PP


	
K(V )K(W ) H

If (V, c−,V ) ∈ ZCr (HC), then Φ1+
−,V = c−,V because of (7.4). On the other hand,

for M ∈ HYD(C)H
op

its comodule structure morphism is obviously equal to
Φ1+
H,M(ηH ⊗M). Hence the inverse functor of K is given by sending a YD-

module M into the pair (M,Φ1+
−,M). Consequently, K respects the braiding

and this finishes the proof. �
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Similarly, one may prove that the following categories are braided mon-
oidally isomorphic:

ZCl (HC) ≅
H
HYD(C) ≅ ZCr (

HC), ZCr (CH) ≅ YD(C)HH ≅ ZCl (C
H)

HYD(C)Hcop≅ ZCl (
HC), HcopYD(C)H≅ ZCr (C

H), Hop

YD(C)H≅ Z
C

l (CH).

The above center subcategories are defined analogously to ZCr (HC). Adding
to this list the categories (Hop)∗&HC and C(Hop)∗&H , we may identify

(Hop)∗&HC ≅ Z
C

l (HC) and C(Hop)∗&H ≅ ZCr (CH) (7.5)

having in mind that the corresponding H-module structures remain un-
changed by the isomorphism functors. Then due to (6.6) and (6.7) we
obtain the following diagrams of isomorphic braided monoidal categories:

ZCr (HC) ZCl (
HC)-
?

ZCl (HC) ZCr (
HC)-

? and

ZCr (C
H) ZCl (CH).-

?

ZCr (CH) ZCl (C
H)-

?

7.1. Transparency and Müger’s centers Z1 and Z2. Throughout the
paper we have used the condition that ΦH,M is symmetric for every M ∈ C.
This means that H is transparent in C in terms of [4], or that H belongs
to Müger’s center Z2(C) = {X ∈ C∣ΦY,XΦX,Y = idX⊗Y for all Y ∈ C}, [18,
Definition 2.9]. Note that due to Lemma 4.3, H is transparent if and only
if so is H∗. The center of a monoidal category D that we studied above
is denoted by Z1(D) in [18] (neglecting the difference between the left and
the right center). Then we may state:

Proposition 7.2. Let H be a finite Hopf algebra with a bijective antipode
in a braided monoidal category C. If H ∈ Z2(C), then there are embeddings
of braided monoidal categories:

H
HYD(C) ≅ D(H)C ↪ Z1,l(HC) and YD(C)HH ≅ CD(H) ↪ Z1,r(CH).

7.2. The whole center category and the coend. The center cate-
gory of a monoidal category C is a particular case of the Pontryagin dual
monoidal category introduced by Majid in [13, Section 3]. For C braided,
rigid and cocomplete from [14, Theorem 3.2] one deduces that there is an
isomorphism of monoidal categories:

Zl(C) ≅ CAut(C) (7.6)
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where

Aut(C) ≅ ∫
X
X∗ ⊗X

is the coend in C. It has a structure of a bialgebra in C and if C is rigid, it is
a Hopf algebra. As we observed in Section 5, if H is a quasitriangular Hopf
algebra such that ΦH,M is symmetric for all M ∈ C, i.e. H ∈ Z2(C), then the
whole category CH is braided. Thus for C rigid Aut(CH) becomes a Hopf
algebra in CH and according to Proposition 5.2 the categories (CH)Aut(CH)

and CH⋉Aut(CH) are monoidally isomorphic. By the identity (7.6) we then
have:

Proposition 7.3. Let C be a rigid braided monoidal category and H ∈ C
a quasitriangular Hopf algebra such that H ∈ Z2(C). There is a monoidal
isomorphism of categories:

Zl(CH) ≅ CH⋉Aut(CH).

When C = V ec and H is a finite-dimensional quasitriangular Hopf alge-
bra, Aut(MH) =H∗ as a vector space with a modified multiplication, [14],
and the above yields Zl(MH) ≅ MD′(H), where D′(H) = H & H∗op is a
version of the Drinfel’d double. Symmetrically to (7.6) one has Zr(C) ≅

Aut(C)C. For H ∈ Z2(C) this yields the monoidal isomorphism Zr(HC) ≅

Aut(HC)⋊HC. Here Aut(HC) ⋊ H is the bosonization of the braided Hopf
algebra Aut(HC) in HC.

Another approach to the center construction of monoidal categories and
the Drinfel’d double uses monads [5]. Assume T is a Hopf monad in a

rigid monoidal category C for which the coend CT (X) = ∫
Y ∈C

T (Y )∗ ⊗
X ⊗ Y exists for every X ∈ C. The authors construct a quasitriangular
Hopf monad DT , called the double of T , and prove the braided monoidal
isomorphism DT

C ≅ Z(TC), [5, Theorem 6.5]. Relying on monads, this
construction generalizes the Drinfel’d double to a fully non-braided setting.
In the particular case when a Hopf monad is associated to a Hopf algebra
H in a rigid braided monoidal category C, the underlying object of the
double DH is H ⊗H∗ ⊗Aut(C), assuming that C admits the coend, e.g. C
is cocomplete. (When C = V ec, one recovers the usual Drinfel’d double.) In
this case one has the braided monoidal isomorphisms ([5, Theorem 8.13]):

Zl(CH) ≅ CDH
≅ DH
C ≅ Zr(HC). (7.7)

To prove the isomorphism between the left and the right hand-side cate-
gories one applies identifications with objects in Ccop. Moreover, the iso-
morphism in the middle is possible since DH is quasitriangular. For H = I
the trivial Hopf algebra, it is DI = Aut(C) and one recovers (7.6). On
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the other hand, observe that for H = I the center subcategory becomes
ZCr (IC) ≅ C.

We point out that the notions of a quasitriangular structure in [14] and [5]
differ. In the latter case an R-matrix for a Hopf algebra H ∈ C is a morphism
r ∶ C ⊗C −−→ H ⊗H defined in such a way that H is quasitriangular if and
only if the category of H-modules in C is braided. The R-matrix that Majid
uses [16, Definition 1.3] (and which we apply) is a morphism R ∶ I −−→H⊗H
obtained by straightforward extension of the axioms in the classical case.
Its existence implies that the subcategory O(H,∆op) of the category of H-
modules in C is braided. Though, both constructions recover the classical
notion of a quasitriangular structure for the category of vector spaces (in
this case the coend is just the field).

8. Particular cases and examples

When a Hopf algebra H ∈ C is commutative or/and cocommutative, the
symmetricity condition on ΦH,X for any X ∈ C that emerges throughout
the paper obtains a certain interpretation.

Proposition 8.1. [7, Proposition 3.12] Let H ∈ C be a Hopf algebra.

(i) The braiding Φ of C is left H-linear if and only if ΦH,X = Φ−1
X,H for

any X ∈ C and H is cocommutative.
(ii) The braiding Φ of C is left H-colinear if and only if ΦH,X = Φ−1

X,H

for any X ∈ C and H is commutative.

On the other hand, if the braiding Φ of C is left H-linear, then the
category HC is braided monoidal with the same braiding Φ. Similarly, if
Φ is left H-colinear, then the category HC is braided monoidal with the
braiding Φ.

We illustrate the above cases by an example. The following family of
Hopf algebras was studied in [19, Section 4]. Let n,m be natural numbers,
k a field such that char(k) ∤ 2m and ω a 2m-th primitive root of unity.
For i = 1, ..., n choose 1 ≤ di < 2m odd numbers and set d≤n = (d1, ..., dn).
Then

H(m,n, d≤n) = k⟨g, x1, ..., xn∣g
2m = 1, x2

i = 0, gxi = ω
dixig, xixj = −xjxi⟩

is a Hopf algebra, where g is group-like and xi is a (gm,1)-primitive element,
that is, ∆(xi) = 1 ⊗ xi + xi ⊗ gm and ε(xi) = 0. The antipode is given
by S(g) = g−1 and S(xi) = −xig

m. We proved in [7] that H(m,n, d≤n)
decomposes as the Radford biproduct (indeed a bosonization):

H(m,n, d≤n) ≅ B ⋊H(m,n − 1, d≤n−1) (8.1)
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where the braided Hopf algebra is the exterior algebra B = K[xn]/(x
2
n).

The isomorphism is given by: G ↦ 1 × g,Xi ↦ 1 × xi,Xn ↦ xn × g
m. We

have that B is a module over H =H(m,n − 1, d≤n−1) by the action g ⋅ xn =
ωdnxn and xi ⋅ xn = 0 for i = 1, ..., n − 1. It becomes a commutative and
cocommutative Hopf algebra in HM with xn being a primitive element,
i.e., ∆B(xn) = 1 ⊗ xn + xn ⊗ 1, εB(xn) = 0 and SB(xn) = −xn. The Hopf
algebra H(m,n, d≤n) is quasitriangular with the family of quasitriangular
structures [7, (6.4) on p. 69]:

Rns =
1

2m
(

2m−1

∑
j,t=0

ω−jtgj ⊗ gst) (8.2)

where 0 ≤ s < 2m is such that sdi ≡ m (mod. 2m) for every i = 1, ..., n.
Moreover, Rns is triangular if and only if s =m. As it is well known ([12]),
every left H-module M belongs to H

HYD with the coaction

λ(m) =R(2) ⊗R(1)m, m ∈M (8.3)

- we denote R =Rn−1
s for brevity - and (HM,ΦR) can be seen as a braided

monoidal subcategory of ( H
HYD,Φ

L). Here ΦL is given by (3.4), that is

ΦL(x⊗ y) = x[−1] ⋅ y ⊗ x[0], whereas ΦR and its inverse are given by:

ΦR(x⊗ y) =R
(2)y ⊗R(1)x; Φ−1

R
(x⊗ y) =R(1)y ⊗ S−1(R(2))x. (8.4)

Thus B becomes a Hopf algebra in ( H
HYD,Φ

L).

Set C = H
HYD. Let us now prove that ΦL

B,M is symmetric for any M in

C. Take m ∈ M and let us check if ΦL(b ⊗m) = (ΦL)−1(b ⊗m) (see (8.4)
and (8.2)). For b = 1 the computation is easier, we compute here the case
b = xn. We find:

ΦR(xn ⊗m)= 1
2m(∑2m−1

j,t=0 ω−jtgst ⋅m⊗ gj ⋅ xn)

= 1
2m(∑2m−1

j,t=0 ω−jtgst ⋅m⊗ ωdnjxn)

= 1
2m(∑2m−1

t=0 [∑2m−1
j=0 (ωdn−t)j]gst ⋅m)⊗ xn

= gsdn ⋅m⊗ xn
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(the sum in the bracket in the penultimate expression is different from 0
only for j = −sdn (mod. 2m), when it equals 2m). Similarly, it is:

Φ−1
R

(xn ⊗m)= 1
2m(∑2m−1

j,t=0 ω−jtgj ⋅m⊗ S−1(gst) ⋅ xn)

= 1
2m(∑2m−1

j,t=0 ω−jtgj ⋅m⊗ g−st ⋅ xn)

= 1
2m(∑2m−1

j,t=0 ω−jtgj ⋅m⊗ ω−dnstxn)

= 1
2m(∑2m−1

j=0 [∑2m−1
t=0 (ω−(j+sdn))t]gj ⋅m)⊗ xn

= g−sdn ⋅m⊗ xn.

Recall that sdi ≡ m (mod. 2m) for every i = 1, ..., n. Hence gsdn = −1
and the two expressions we computed above are equal. Thus the wanted
symmetricity condition is fulfilled for the described family of Hopf algebras.

This together with the fact that B is both commutative and cocommuta-
tive in C means due to Proposition 8.1 that ΦL is B-linear and B-colinear.
Hence BC and BC are braided by ΦL. Actually, we have more. In (8.1) the
quasitriangular structure R extends from H to B ⋊H. The extension is
given by R = (ι⊗ι)R, where ι ∶H −−→ B⋊H is the Hopf algebra embedding.
Consequently, the braiding ΦR in HM - which determines simultaneously
the braiding in C - extends to the braiding Φ

R
in B⋊HM - which deter-

mines the braiding in B⋊H
B⋊HYD. In other words, the braiding in C extends

to the braiding in B⋊H
B⋊HYD ≅ B

BYD(C) (extension by trivial B-(co)actions).
The latter braided monoidal isomorphism is due to the left version of [1,
Proposition 4.2.3].
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