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Abstract. On quadrics in large positive characteristic we construct an
exceptional collection of sheaves from the G1P-Verma module associ-
ated to the Frobenius direct image of the structure sheaf of the quadric.
They are all locally free of finite rank and defined over Z, producing
Kapranov’s collection over C by base change.

We also determine on a general homogeneous projective variety in
large positive characteristic a direct summand of the Frobenius direct
image of the structure sheaf, which is “dual” to the celebrated Frobe-
nius splitting of Mehta and Ramanathan.

Introduction

Since the seminal work of Beilinson [Be] much has been done on excep-
tional collections of sheaves on complex smooth projective varieties. They
bridge between the geometric categories of the coherent sheaves on the va-
rieties and the algebraic categories of the modules of finite type over the
endomorphism algebras of the sum of the sheaves of the collections.

Each complex smooth projective variety admits a Z-form Gy /Py with
Gz a Chevalley Z-group scheme and Py a parabolic subgroup scheme. In
particular, for a quadric Q¢ one can take Gz to be the simply connected
cover of a special orthogonal group. In this paper we construct Kapranov’s
exceptional collection on Q¢ using representation theory of G1P-Verma
module Vp(k), where G (resp. P) is the algebraic group over an alge-
braically closed field k of positive characteristic p # 2 obtained from Gy,
(resp. Pz) by base change and G is the Frobenius kernel of G. The mod-

ule Vp(k) is of finite dimension pd™2c. Let W (resp. Wp) be the Weyl
group of G (resp. P) and WT be the set of coset representatives of W/Wp
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118 Kaneda Masaharu

having minimal length. Let p denote a half sum of the positive roots of G,
we0 = wp—p, and (we0)! be the p-part of we0), i.e., we0 = (we0)°+p(we0)!
with {(w e 0)%,aV) € [0, p[ for each simple coroot " of G. Assume for the
moment that p > h the Coxeter number of G. We show

Theorem: . For each w € WF let VP (w™' o (w e 0)!) be the P-module
induced from I-dimensional B-module afforded by w=' e (w e 0)! and let
Ew = L(VE(wLe(we0)!)) be the locally free sheaf on the quadric Q = G/ P
associated to VE(w™' o (w e 0)!).

(i) AUV (w=e(we0)), w € WP, are 1-dimensional except for 1 (resp.
2) if diim Q is odd (resp. even), in which case V' (w™! e (w e 0)!) are the
spinor modules.

(ii) The Eu, w € W, form an exceptional collection on Q such that

(1) Vw € WP, Modg(Ew, Eu) =k,

(2) Va,y € WP, Bxth (&, &) = 0 if i > 0 while Modg(&,, &) # 0 iff
x >y in the Chevalley-Bruhat order.

(3) The smallest triangulated subcategory of the bounded derived cate-
gory DP(coh(Q)) of coherent sheaves on Q containing all £,, w €
WP, is the whole of D?(coh(Q)).

Thus, by Belinson’s lemma [HB, Th. 7.6], RModo([[,,cyyr Ew, ?) gives a
triangulated equivalence from D?(coh(Q)) to the bounded derived category
of the modules of finite type over the opposite algebra of the endomorphism
algebra of [ [ ,cyyp Ew. All our £,’s are defined over Z, and yield Kapranov’s
collection over Q¢ by base change. We actually obtain a stronger statement,
see (3.7).

The organization of the paper is as follows: in §1 we describe basic struc-
tures of Vp (k) regarded as a G;T-module, T a maximal torus of P, for gen-
eral semisimple group G, and explain how our modules V¥ (w ™! e (w ¢ 0)!)
arise in Vp(k). As Haastert [Haa] observed, the sheaf L yen p(Vp(k)) on

G/G1 P associated to the G; P-module V p (k) is isomorphic to the direct im-
age Fi.Og/p of the structure sheaf Og,/p of G /P under the Frobenius endo-
morphism F' of G/P through the isomorphism of schemes G/G1P — G/P.
Langer [La] has completely determined the decomposition of F.Og into
indecomposables in any positive characteristic p > 2, and showed that
F.Og/p is tilting for p > h. Our &,, w € WP, exhaust the pairwise non-
isomorphic indecomposable direct summands of F.Og for p > h. Also, on
general G/ P the fact that Og/p is a direct summand of F.Og/p, discov-
ered by Mehta and Ramanathan [MR], is very important and has brought
a breakthrough in the study of the geometry of G/P, cf. [BK]. In our point
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Exceptional collections of sheaves on quadrics in positive characteristic 119

of view the splitting is induced by the socle of Vp(k). For p > 4h — 5 we
will determine another direct summand of F.Og/p in (1.7) arising from the

head of V p(k), which may be of independent interest.

After stating the definition of quadrics in §2 and some basics of special
orthogonal groups in §3, we compute in §4 the extensions between the &,’s,
using representation theory, especially the fact that the highest weight of
the spinor representation is minuscule. We also make use of crystal bases
from the theory of quantum groups.

In the final section of the paper we will include a brief account of the
generation of D?(coh(Q)) by the £,’s, which was missing in [La], to convince
the reader that Kapranov’s resolution of the diagonal direct image of the
structure sheaf on a quadric holds independent of characteristic # 2.

A part of the work was presented in the author’s talk at Fudan Univer-
sity in November of 2008 on the occasion of his visit to Ye Jia-Chen at
Tongji University. The author is grateful to Professor Chen Meng of Fudan
University and Professor Ye for the invitation. Thanks are also due to Bill
Kantor for helpful comments on the presentation of the manuscript.

1° Structure of G; P-Verma modules

We fix an algebraically closed field k of positive characteristic p. In this
section G will denote a general semisimple algebraic group over k and P a
parabolic subgroup of GG, B a Borel subgroup of P, and T" a maximal torus
of B. We assume that G is simply connected.

(1.1) Let Gy be the scheme theoretic kernel of the Frobenius endomorphism
of GG. Let A denote the character group of T', R C A the set of roots of G
relative to T'. We choose a positive system R' of R so that that the roots
of B are negative. Let AT = {A € A | (\,a") > 0 Va € R*} be the set
of dominant weights. Denoting by R® the set of simple roots, let w, be
the fundamental weight associated to o € R®. For each A € A we write
A= A0+ pAt with A° € A such that (\°,a") < p Va € R®. The simple G-
modules are parametrized by AT; we denote the simple G-module of highest
weight A € AT by L()\). Each L(A\°) remains simple for Gy, and all simple
G1-modules are obtained thus. We equip A with the standard partial order:
AL piff p—Xe ) cp+ Na. Let W (resp. Wp) be the Weyl group of G
(resp. P) and let ¢ be the length function on W with respect to the the
simple reflections s,, @ € R®. Let wg (resp. wp) be the longest element of
W (resp. Wp). Let also WP = {z € W | l(zy) = {(x) + {(y) Vy € Wp},
so W = U,cwrzWp. Put p = %ZQGRJF a. For w € W and X € A we write
weX=w(A+p)—p.

Sao Paulo J.Math.Sci. 8, 1 (2014), 117-156



120 Kaneda Masaharu

Let Vp = indglp = Schy(G1P,?)" be the induction functor from the

category of P-modules to the category of GiP-modules. We will often
write V p(k) for Vp(0) induced from the trivial 1-dimensional P-module of
weight 0. For each A € A let L(\) be the simple G1T-module of highest
weight A: L(\) = L(A\°) @ pAl. Let us denote by [M : L] the multiplicity
of G1T-simple L in a composition series of G1T-module M.
(1.2) Let Lp denote the standard Levi subgroup of P and let R, C R
be the set of roots for Lp with the positive system Rf = R; N Rt. Put
pL = %ZaERZ o. In [AbK] we showed that the GiT-head of Vp(k) is
L(w? ¢ 0) @ p{—2pp + wo(—2pp)* — (—2pp)*} with wF = wowp and pp =
p — pr. Write 2pp = ZQERS NaWa, Mo € Z. One has n, = 0 Vo € Ry, and
ne € [2,h] if o & Ry, [ADK, 1.1].

Lemma: . Let ro € N such that rop — ny € [0,p[ Voo € R®. Then

hdg, 7V e(k) = L(w"” 0 0) @ p{~2pp + wo(—2pp)" — (=2pp)'}
L

(w”e0))@p( > rawa—2pp)
a€RS\Ry,

= L((w" «0)°) @ p{(w”) ™" o (w” 0 0)'}

Proof: One has

w” 00 =w"p—p=w"(pr+ pp) — p=wowp(pL + pp) — p (1)
= wo(—pr + pp) — p= —wopL + wopp + wo(pL + pp) = 2wopp

= wp Z Na o = Z (—Na)T—woa-

aERS\Ry, a€RS\RL
Thus
(wP ° 0)0 = Z (rap — Na) W—woa
a€ERS\R[,
and (w’ e 0)! = — ZaeRS\RL TaT—wya- We are to show

(w! 0 0)t — 2pp + wo(—2pp)t — (—2pp)' = Z Ta@Wao — 2Pp
aERS\RL

= (wh) e (w0 0)L.
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Exceptional collections of sheaves on quadrics in positive characteristic 121

pZaeRS\RL Ta@a — 2pp and (_QPP)1 = — ZaGRS\RL Ta™eq. Then

(w"0)" = 2pp + wo(—2pp)" — (=2pp)"

= — Z TaW—woa — 2pP + Wo Z (*Tawa) + Z TaWa

a€R3\Ry, a€RS\Ry, a€ERS\Ry,

= Z raTWao — 20P

aERS\RL
while

(W) o (P 0 0)' = wpuoe (Y ram ua)
OzGRS\RL

= wpwo(p — Z Ta@—wpa) — P

a€RS\Ry,
=wp(—p+ Z Ta®a) = P
aERS\RL
= —wpp —p+ Z TaTo
aERS\RL
= —2pp + Z TaWa-
a€ERS\Ry,

(1.3) Recall from [J, 11.9.16.4] that for any A € W and w € W
[Ve(wed): L(1’) @ pwe p'] = [Va(w e A) : L1 + pw e u')] (1)
= [V : L(w)] = V() : L(n") ® pu'].
Proposition: . For each w € W one has [Vp(k) : L((we0)°)) @ p(w ' e
(we0))] =1.
Proof: For each w € W one has
[V(K) : L((we0)")) @p(w™" o (we0)!)]
= [Vaw™ e (we0)): L((we0)’ +p(w™" e (we0)"))]
= [Va(we0): L((w )0+P(w00) )] by (1)
= [Vp(we0): L(we0)] =

On the other hand, if w € WP, L((we0)?)) ®p(w_1 e (we0)!) does appear
as a composition factor of Vp(k), cf. [AbK, 5.3].
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(1.4) Lemma: Vv € ZaGRZ Na\ 0, L((we0)°) @ p(w™ e (we0)t +7) is
not a G1T-composition factor of @p(k).

Proof: Just suppose it is. One would then have

N

with wy > 0, contradicting the fact that w e 0 is the highest weight of
V3 (we0).

(1.5) Let V(?) = ind% = Schy (G, ?)? denote the induction functor from the
category of B-modules to that of G-modules, and define Vp(?) = ind% =
Schy (G, )P, VP(?) = ind}; = Schy(P,?)? likewise. Let Af = {\ € A |
(A aY) >0Va € Rf}. Let also Ap = {A € A| (\aY) =0Va € R}
Thus VP (A\) = X for A € Ap.

Lemma: . (i) Vw € W Va € R, (we0,a") € [—h,h —2].

(ii) Assume p > h and let w € WF. Then w™! e (w e 0)' € AT with
(wle(we0) +pp,BY) <pVB€ERL. The P-module V' (w=! o (we0)!)
s simple.

Proof: (i) One has (w e 0,aY) = (we 0+ p,a”) — 1 = (wp,a’) — 1
(p,w™taV) — 1. Let oy denote the highest coroot of R. If w™la >
(we0,a") < (p,a) —1 = h — 2 whereas if w™la < 0, (we0,a")
(pafy—T=—h

(ii) Write w @ 0 = Y ps Ca@a, Ca € Z. As cq € [—p,p|[ Va by (i)
under the hypothesis, (w e 0)° = > a0 Ca@a + Do co(p + ca)wa and
(we ) ==, (@a VB ER],

ARSI

(™o (we0)' +pr, ) = (W™ Y wa—ptpr. )

ca>0
= (w! Z @a, ') by [AbK, 1.1]
ca>0
= () @a,wp¥) €[0,h].
ca>0
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The last assertion follows from Andersen’s strong linkage principle [J,
11.6.16].
(1.6) Assume in this subsection that p > h. Then the principal block for
(51 is in bijective correspondence to W, so the simple G'j-modules in this
block may be written L(w), abbreviating L((w e0)°). If soc;V p(k) denotes

the i-th G1T-semisimple subquotient of the socle series of Vp(k), one can
write

soc;Vp(k) = H L(w) ® GiMod(L(w),soc;Vp(k)).
weW

AsV p(k) is a G1P-module, the direct sum decomposition above holds as
G1P-modules [J, 1.6.16]. As G; acts trivially on the multiplicity space
G1Mod(L(w),soc;Vp(k)) of L(w) in soc;Vp(k), there is a P-module M
such that M1 = Gy Mod(L(w),soc;Vp(k)); MM is M as a k-linear space
with P acting through the Frobenius on P. We will denote M by socz{w.

For p large enough Lusztig’s conjecture on the irreducible characters for
G1T is now a theorem [J, C]/[F]. Assuming the Lusztig conjecture, we
showed in [AbK] that ﬁp(lk) as a G1T-module can be equipped with a
Z-gradation, and hence is rigid as follows from the general principle [BGS],
of Loewy length ¢(w”) + 1, and that each L(w) ® p(w™' e (w ¢ 0)!), w €
WP, appears in the (£(w) + 1)-st subquotient of the G;T-socle series of
@p(k). As each root subgroup U,, o € R}, of Lp fixes a vector of weight
w™! e (we0)! in the P-module soc%(w)ﬂ’w, w € WP, by (1.4), the P-
submodule generated by that vector has simple head of highest weight
w™! e (w e 0)!, which coincides with VZ(w™! e (w e 0)!) by (1.5), and
hence VP (w=' e (we0)!) is a P-subquotient of Socé(wHLw. In particular, if
wle(we0) € Ap, VP (w™ e (we0)!)=w"'e(we0)! is a I-dimensional
submodule of soc}(w)H,w.
Consider a commutative diagram of schemes

G/P a G/P

|~

G/G P

with G/P — G/G1 P the natural morphism. Thus

F.Oq/p ~ LG/, p(Vp(k))
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admits a filtration with subquotients

L(soc;Vp(k)) = H L(w)®Lqa, p(( soc1 H L(w)®La,p( soc w)
weWw weW

and hence EG/p(VP(w_l o (we0)h)) is a subquotient of F,Og/p.

(1.7) We showed in [K94] that the Frobenius comorphism F* : O /P =

F.Og/p induced by the inclusion k = socVp(k) — Vp(k) admits a left
inverse, a famous fact found originally by Mehta and Ramanathan [MR]
Let now 7 : Vp(k) = hdg, pVp(k) = L((w” 0)°) @ p{(w?) ' e (w’ e 0)1}
be the quotient and put P = G/G1P. We ask if L5(7) admits a right
inverse, equivalently, if

Modﬁ(ﬁp(L((wP e0)") ®p(wP)_1 . (wP . 0)1),£75(7r)) :
Modp(Lp(L((w” 00)°) @ p(w”) " e (w” ¢ 0)'), L5(Vp(k))) —
Modp (Lp(L((w" 00)?)@p(w”) " e(w”e0)!), L (L((w" e0)")@p(w”) " e(w" e0)))

is surjective. The latter reads

indg, p(L((w"” 0 0)°)* @ (—p(w”) "' o (w" 0 0)) @ 7) :
indg, p(L((w"” ¢0)°)* @ (—p(w”) ™! o (w” 0 0)") ® Vp(k)) —
indg, p(L((w"e0)°)* @(—p(w”) "' e(w"e0)Y@L((w"e0)")@p(w”) " e(w"e0)*),

and hence is equivalent to

~

indg, p(—p(w”) "' o (w” ¢ 0)! ® Vp(k)) == Vp(—p(w”) " o (w” e 0)")

indg, p(—p(w?) " e(w”e0)' @) 5 V(—p(w?)~! o (w” e 0)!)
v
indglp(L((wP 00)0)) — L((wP 00)0).

In the case P = B one has (w”e0)? = (p—2)p and —p(w?) L e(w’ e0)! =
pp, and hence indng(pp@)ﬂ) is certainly surjective for p > h [GK, 7.13]. In
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general, the assertion is equivalent to that indglp(—p(wp)_l o (wP o) ®

7) #0. Put n = —(w?)~! o (w” 0 0)! and M = Vg(pn)/ker(pn ® 7). One
has a commutative diagram of exact sequences

indg, p(pn@m)

0 — indZ, p(ker(pn ® 7)) —= Vp(pn) L(w")

l - |

|

RYindg, p (ker(pn @ 7))

If indglp(pn ®m) = 0, L(w?) < Rlindng(ker(pn ® 7)). But the only
G'1 B-composition factors of ker(pn ® m) contributing to L(w?) as a factor
of Rlind§ p(ker(pn ® m)) are L(w”) ® pu, p € A, by Steinberg’s ten-
sor product theorem; Rlindng(L(wP) ® pp) ~ L(w®) @ Rlind% ()M =
HY(G/B, £(1)). One has

WB(Z?U) : L(wp)] = WB

while

[V(pn) : Lw”) @ pu] = [Va(=pw") " o (w” e 0)): L(w”)@pu] (1)
= [Va(k) : L((w"” 0 0)° +p(w”) ™" o (w” 0 0)! + pp)]
= [Va(w’ ¢ 0): L((w” 00)° + p((w” & 0)! + w!p))]
= [Va(w’ 0): L(w" 0+ pw’ ).

Suppose that [Vz(pn) : L(w’)

® pu] # 0. By (1) we must have w’”p < 0.
Also, one has [(wfu 4+ p,aV)| < 2(h — 1) Ya € R by [A, 1.7). Thus for
p > 4h — 5 we will have |(u + p,a’)| < p Va € R and Bott’s theorem
holds for H*(G/B, L(p)) [J, 11.5.5]. If HY(G/B, L(1)) # 0 to contribute
to forming L(w’), we must have y = s, ® 0 = —a for some a € R®,
As 0 > wP(—a) = wowp(—a), wpa < 0, and hence o € Rf. Then
w?(—a) = = for some B € R*. Thus

0# [Va(pn) : Lw”) @ p(=a)] = [Vp(w” 0 0) : L(w"” ¢ 0 —pp)].
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But w’” e 0 — pf is not a weight of @B(wp ¢ (), absurd. Thus we have
obtained

Proposition: . Assume p > 4h — 5.

(i) La/p((wP) e (w” e0)t) @ L((w” 0)%) appears as a direct summand
Of F, OG/p.

(i1) L((w” 80)°) is of multiplicity 1 in a composition series of V(—p(w
(w? e 0)1), appearing in its head.

P)fl.

(1.8) Remark: In the case of projective space P" = SL,,;+1/P, regardless
of characteristic Lgr,, ., /s1,,,,,p(7) always splits by [K09]. But

Lsp, 1 /p(wh) " o (w” 0 0)!) = Opn(r —n —1)
with r € N such that rp — (n + 1) € [0, p[, and hence Opn(—n) is a direct
summand of F,Opn iff p > h =n+ 1 [HKR].
We will see in (4.7) that on the quadrics also L5 () splits for p > 2.
2° Quadrics

From now on throughout the rest of the papaer we fix an algebraically
closed field k of characteristic p € N\ 2. Let E be an (n+2)-dimensional
k-linear space, n > 3, and P = P(E) = Proj(Sx(E™)).

(2.1) If n=2m+11is odd, let e1,...,em+1,€0,€—m—1,...,6—-1 be a k-linear
basis of E and take a quadratic form
m+1
q( Z TRep) = 1T 1+ -+ Tpp1Tomo1 + IE%, xp € k.
k=—m—1
If (2)Bx = B> wrer, Y. zrer) = 2¢(>° wper), the associated Gram matrix
is given by

1
1
(Blesse) = ales +e5) — ale) — afes)) = 2
1
1
(2.2) If n = 2m is even, let e1,...,€m+1,€—m—1,-..,e—1 be a k-linear basis
of F and take a quadratic form
m—+1
Q(Z (zrer +T_pe_p)) =181+ + Tpp1T—m—1, T €k
k=1
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The associated Gram matrix is

(Blei, e5) = qlei +¢) — alei) —a(e;))] = 1

1

(2.3) In either case, the projective subvariety Q™ = Proj(Sk(E*)/(q)) of P
defined by ¢ is called a quadric over k of dimension n. We will abbreviate
O™ as Q.
3° Special orthogonal groups

(3.1) Assume n =2m + 1. Let G = SO(E;B). Then

T = {diag(A1, ..., Ams1, LA AT | N € KX Vi)
forms a maximal torus of G with simple coroots
O‘Y = 5\1/ - {5%/, s 7a>/n = gyn - 57\;—1-170‘;7/7,—1-1 = 25;/14-17

where &) : ¢~ diag(1,...,1,¢,1,...,1,¢711,...,1) with ¢ appearing at
the k-th place, k € [1,m+1]. If e : diag(A1, ..., A1, Aos A1y -+ -5 A1)
— A, the simple roots are given by

€1 —¢&2 €2 — €3 Em — Em+41 Em41
o) (e} O— >0
1 2 m m—+1

The root subgroups of G are for i,7 € [1,m + 1] with i < j
Usi—e; = {1 +aleij —e—j i) [ a €k},
U—gite; = {1+aleji —e—i—j) |a €k},
Ueite; = {1 +alei—j —ej—i) | a € k},
Ugime; = {1 +ale—ji —e—i5) | a €k},
and for k € [1,m + 1]
U., = {1+a(2er0 — eo_x) — a’ey1, | a €k},

U_c, = {1+ aleor —2e_po) — a®e_p | a € k}.
The fundamental weights of T', defined in A ®7 Q, are given by

1
w1 =€1, W2 =€11€2 ..., Wm = €11+ " +Em, Wmtl = 5(51+' FEmg1)-

Here and elsewhere we will abbreviate w,, as w;. The Coxeter number is
h=n+1.
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Let W be the Weyl group of G. Then W ~ &,,, 11 x(Z/2Z)™+! permuting
the g;, i € [1,m + 1], with signs [Bou, VI.4.5]. The simple reflections are
s1=(12),80=(23),....8m-1=(m—=1m), sy, = (mm+1),8m41 =
(7?:);11)). If wq is the longest element of W, then wg = —1.
(3.2) Assume n = 2m. Let G = SO(E;B). Then

T = {diag(A1, ., Amt1, Aplgs - AT | A € KX Vi)

forms a maximal torus of G with simple coroots

V_ Vv vV vV oV VvV VoV oV
Q) =&1 =825+ 1 = Enm1 " Em O = &m T Em+1r ¥mt1 = Em +5m+1
with the €} defined as in (3.1). The simple roots are given by

m
O &m — E&m+1

o) o)

€1 — &2 g2 — €3 Em—1 —&/
(@]
1 2 m —\

o EmteEmt1
m—+1

with the &; defined as in (3.1) removing Ag. The root subgroups of G are
fori,7 € [1,m+ 1] withi < j
Uei—e; = {1+ aleij —e—j—i) | a €k},
Uecie; = {1 +aleji —e—i—j) | a €k},
Usite; = {1 +alei—j —ej—i) |a €k},
Ueie; ={1+ale—ji—e_ij) | a €k}
The fundamental weights of T" are

w, =€&1, W9 =€1+€2, ..., TWm-1=€E1+ " "+Em-1,

1 1
wm:§(€1+...+gm—€m+1)7 wm+1:§(51+"'+€m+1)‘

The Coxeter number is h = n.

The Weyl group W is given by &, 41 X (Z/2Z)™ permuting the e;,
i € [1,m + 1], with even number of sign changes [Bou, VI.4.8]. The simple

reflections are s1 = (1 2),50 =(23),...,8m—1 = (m—1m),s, = (mm+
1), 8my1 = —tm+1) -m Mfmiseven,wo = -y 0 m+1

on the g;, i € [1,m + 1], and hence
WoWm+1 = —Wm, WoWm = —Wm+1-
On the other hand, if m is odd, wy = —1.
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(3.3) Regardless of the parity of n, if P = Ng(ke_1) is the stabilizer in G
of the line ke_1, it is the standard parabolic subgroup of G whose simple
roots are «;, i # 1. One has an isomorphism of varieties G/P — Q via
gP — [ge_1]. Under the imbedding i : Q@ — P, define

Oo(1) = i"(Op(1)) = L(e1) = L(w1). (1)

If we identify P with GL(E)/P, P = Ngy(g)(ke_1), the imbedding i : Q —
[P is compatible with the inclusion G < GL(FE), and hence G-equivariant.
One has a G-equivariant short exact sequence

0— Op(—2) % Op = i,0g — 0. (2)

Put S =[],c5T(Q,0q(r)). As g is irreducible in S(E*), S ~ Si(E*)/(q),
i.e., the imbedding is projectively normal. We thus obtain for each r € N
a G-linear short exact sequence

0— S,_2(E*) = S, (E*) = S, — 0. (3)

with S, ~ V(rw;), where we let V = I'(G/B,£(?)) = ind% denote the
induction functor from the category of B-modules to the category of G-
modules. By the existence of nondegenerate G-equivariant bilinear form B
on E, E* ~ E as G-modules, and hence (3) also reads

0—S,—2(F) = Sy (F)— V(rwy) — 0. (4)
(3.4) The Weyl group Wp of P is given by
W — S X (Z)27)™ if n=2m+1,
P= 6, x (2/22)™ ! ifn=2m

under the identification of W with &,,41 x (Z/2Z)™"! for n = 2m + 1 in
(3.1) and with &,,11 X (Z/2Z)™ for n = 2m in (3.2). The longest element
wp of Wp is given by

w (1 _22 _?;1_‘__’_11)) if n=2m+1, or n=2m with m even,
P pr—
Lo2oomo m Yy 9m with m odd
1 -2 ... —m m+1

on the g;, i € [1,m + 1], and hence

W] — Wmt1 ifn=2m+1, or n =2m with m even,

w = . .
P@m+1 {w1 — Tm, if n = 2m with m odd

while
w1 — W, if n = 2m with m even,

w = ) .
Pem {wl — W41 if n = 2m with m odd.
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Explicitly,
({6, 51,5281y -3 Sm+1Sm -+ - 5251, SmSm+1Sm - - - S251,
Sm—15mSm+1Sm +--52515---,52...Sm—-15mSm+1Sm - - - $251,
51892 .. Sm—1SmSm+15m - - - S281}
WP _ if n=2m+1,
) e, 81,5981, -y SmSm1 -+ S1, Sma1Sm_1 - - - 51,
Sm+15mSm—1---51 = SmSm+15m—1---51,Sm—-1Sm+1Sm - - - S1,
Sm—28m—1Sm-+1Sm «+- Sy« S1 -+ Sm—1Sm+1Sm - - - S1}
if n =2m,

all of which are in reduced expression. Thus, if n = 2m + 1, letting
wo = 0, one has for each w € WP

—(l(w) + D@y + (W) @p(uw)+1 if £(w) € [0,m —1],
—(m + 1)@, + 2mwm, 41 if {(w) = m,

we0 =< mwy —2(m+ 1)wnt if {(w) =m+
(U(w) — D) @om1—t(w) — U W0)Domia—gw) if L(w) € [m + 2 , 2m],
—nwj if f(w) =n=2m+1,

where £(w) = m (resp. m+1) iff w = s, Sm—1...51 (resp. Sm+1SmSm—1---51),
and £(w) = n iff w = w” = 51... $mSmi15mSm_1-..51.

If n = 2m, letting wo = 0, One has for each w € W7

—(l(w) + D@y + L(w)@e(u) 41 if {(w) € [0,m — 2],
—MWy—1 + (M — 1)(Wm + Wm1) if f(w) =m —1,
—(m+ Dy + (m — Dwma if w=smSm—_1...51,
wel = (m—1)wy — (Mm+1)wmt if w=Smt18m—1---51,
MWpy—1 — (M ~+ 1)(@wm + @m1) if {(w) =m+ 1,
(ﬁ(w) - 1)w2m—é(w) - g(w)w2m+1—€(w) if E(w) € [m +2,2m — 1]7
| —nw1 if {(w) =n =2m,

where
l(w) = m—1(resp. m+1) iff w = sp_18m—2...51(resp. Sm+15mSm—1---S1),

and f(w) =n iff w =w" =51... 80 15m+15mSm_1- .. 51.

(3.5) Regardless of the parity of n, (Y71! Zew; : A) = 2. In order to have
wWm+1 € A in the case n is odd or w,,4+1 and w,, € A in the case n is even,
we have to go up to the simply connected covering group G’ = Spin(FE)

[FH, p.308], which is the reduced Clifford group I'y in [Ch, p.116]. By [J,
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I1.1.17] there is a commutative diagram
GI

G’/(ﬁ,\eA ker )\)

G.

7

Thus, if B’ is the Borel subgroup of G’ covering B, there is for each p € A
an isomorphism of G’-modules [J, 1.6.11]

G//(ﬂ,\e/\ker/\) Nlndg,u

. Gl ~ 3
ind = lndB//(mAGAker)\)M -

Whenever is necessary in the following, we will work with G’ instead of G
without mention.

(3.6) Assume finally that p > h. If n = 2m + 1, for each w € WF

—l(w)wy if £(w) € [0, m],
wle(we) = —(m+ 1w +wmer if b(w) =m+1,
(1 —4(w))wm if {(w) € [m + 2,n].

If n = 2m, for each w € WF

—K(w)wl
—Mmwi + Wm+1
—mwi + Wy

(1 = l(w))w

wle (we0) =

if {(w) € [0,m — 1],
if w=smSm_1...51,
if w=smy15m—1---51,
if {(w) € [m +1,n].

(3.7) Now, regardless of the characteristic, set &, = L(V (w™' e (we0)!))

Vw € WF with w™' e (we0)! as given in (3.6). We can now state the main
theorem.

Theorem: . Assume k is a field of characteristic # 2. The locally free
sheaves E,, w € WL, read, if n =2m + 1,

Og(—(w)) if L(w) € [0,m],
Ew =< Lo(VE(=(m+ Vw1 + @my1))  if b(w) =m + 1,
Oo(1 — £(w)) if £(w) € [m + 2,n],

and if n = 2m,

Oo(~t(w)) if f(w) € 0,m — 1],
e Lo(VP(—mwy + @wma1)) if W= SmSm_1---51,
Y Lo(VEP(—mmy + @) if W= Sm+1Sm—1---81,
Oo(1 — t(w)) if L(w) € [m+1,n].
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They are all defined over 7Z, and generate the bounded derived category
D’(coh(Q)) of coherent sheaves over the quadric @ = G /P such that

(i) Yw € WP, Modg(Ey, Ew) ~ k,

(ii) Vi > 0, Vz,y € W, Extly(&;,&y) =0,

(iii) Va,y € WP, Modg(&,, &) # 0 iff v > y.

(3.8) Remarks: (i) In characteristic 0, the &,, w € WP, coincide with
Kapranov’s sheaves [Kap].

(ii) The &y, w € WP, exhaust the pairwise nonisomorphic indecompos-
able direct summands of F.Og iff p > h, cf. [La].

(iii) Tt is important to define the &,, w € W with w™! e (w e 0)! for
p > h. For smaller p some of w™' e (w e 0)!, w e WF, coincide.

Ifp=mn=2m+1, (Smi15mSm_1-..51 ® 0)}' = —2w,,,1 instead of
~@mt1, and hence (Syi15mSm_1-.-51) "' ® (Smi15mSm_1...51 @ 0)} =
—mw1, not producing the spinor bundle.

If p < h, typically, regardless of the parity of n, (w” 0)! = —rw; with
r = min{i € N|pi > n} which is > 2, and hence (w”)~! o (w” 0 0)! =
(r —n)wi.

(iv) In general, taking Eg/p(VP(w_1 o (we0))) for &, w e WF, does
not work to form a Karoubian complete exceptional collection if p > h.
Rather, taking various pieces from soc%(w) 1. SEEms necessary [KY]; recall

from (1.6) that L(w) ® (soc%(w)Jer
the £(w) + 1-st subquotient of the socle series of Vp(k). Assume G is in
type Go and let a; and ao be the simple roots with a4 short. Let P be a
parabolic subgroup of G with RJLr = {ai1}. Then s;s900 = —5w; +2ws and
51525152 0 = —6701 + 2009, and hence (s152) ! @ (5152 0 0)! = 2001 — 2009,
(s1525152) ' ® (51525152 @ 0)! = 2001 — 3c2. We have 2 nonsplit short exact
sequences of P-modules

) is the L(w)-isotypic component of

0 — V(w) — 2w) — soc;l))’s152 — VP (2w — 2m2) — 0
and
0 — V(21 — 3wa) = s0¢ 4,515, — V7 (@1 — 2002) — 0.

Our exceptional collection in [KY] has &,s, = La/p(s0¢3 . ,,) and Es, sysr5y =
ﬁg/P(SOCé’SISQSISQ), rather than &, 5, = EG/p(VP(2w1—2wQ)) and Es, sys150 =
.C(;/p(VP(2w1 —3wy)). Indeed, neither &, s, = ﬁg/p(VP(2w1 —2t3)) nor
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Esrsasiss = Layp(VE (21 — 3wy)) is exceptional: Vi € N,

Extéy p(Layp(VE (201 — 2m9)), Layp(VE (2001 — 2a2)))
~ Extpy p(La/p(VE (201 — 3w)), Lg/p(VF (201 — 3wa)))
~ Extly p(Layp(VE(201)), Layp(VT (201)))
~ H(G/P,Lg/p(VF (2m1)* @ VF (221)))
~ H(G/P, Lep(VF (2w1 — 2m2) ® VF (201)))

k ifi=0
~ V() ifi=1
0 else.

Note that soc};ms2 is a P-module generated by a vector of weight (sys2) " 'e

(5152 0 0)! = 2w — 209 while SOC%781825182 is a P-module generated by a
vector of weight wy — 2ws.

As we skipped details in [KY], let us exhibit here an argument to show
that &, = Lg/p(socy,,,,) is exceptional. Put P = G/P and B = G/B.
We first note that socil))’ s1s, May by the unicity of the extension be written

also as (—ws) ® ker(A(wy) — AP (wy)) with A(wy) (resp. AP (wy)) de-
noting the Weyl module of highest weight w; for G (resp. P, i.e., for the
Levi of P). This expression yields a long exact sequence

0 = Modp(Lp((—m2) ® AP (w1)), Egysy) —
MOdP(‘CP((_WZ) ® A(wl))7gs182) - MOdP(gS152758152) — ..

with Extp(Lp((—w2) @ A(w1)), Esys,) = V(w1) @Extp(Lp(—w2), Esps,)
V(w1) @ H(P, Lp(w2) @p Esys,) = 0 as both H*(P, Lp(we @ V(w1 —
2w9)) ~ H*(B,Lp(w1 — w2)) and H*(P, Lp(wr @ VI (2w — 2w3)) =~
H*(B, L5(201 — @2)) vanish. It follows Vi € N that Exth (s, sy, Esysy) =

ExtS ! (Lp((—w2) ® AP(w1)), Esy5,). On the other hand, we have another
long exact sequence

0 — Modp(Lp((—w2) ® AP(wl))a Esis2) =
Modp(Lp((—w2) @ AP (w1)), Lp((—wa) ® A(wr))) —
Modp(Lp((—2) © AP (1), Lp((~m2) © A (1)) = ...
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with
Exth(Lp((—w2) ® AP (1)), Lp((—w=2) ® A(w1)))
~ A(wl) ® H'(’P, Ep(vp(wl - YEQ))) =0.

Thus
EXt%D(gsww Es1s0) ™ EXt%jl(ﬁp((_WQ) ® AP(wl)), Es1s0)

~ Exth(Lp((—2) © A1), Lp((—w2) ® AP (1))

~ HY(P, Lp(VFP (@) — ws) @ VE (w1)))

~ H'(P, Lp(k))

as VI (w) — wy) ® VP () is an extension of k by VZ' (2w, — wy)

~ (Szo]k

4° Extensions

In this section we let k denote a field of characteristic # 2 and compute
the extensions among the &, w € W, using representation theory. As the
computations are similar for n odd/even, we will only write down the proofs
for n odd. As will be clear from the arguments, the fact that t,,+1 (resp.
Wy, and w41 in case n is even) is minuscule plays a key role. For each
A e At let A(N) = V(—wo))* denote the Weyl module for G of highest
weight A.

(4.1) Proposition: (i) Assume n =2m+1. One has V(wp+1) irreducible
with V(@mi1)* ~ V(@me1) and dim V (@, 41) = 277 = 2dim VP (w,,41).
There is an isomorphism of P-modules

VP (@mi1)" ~ VF (@mi1) ® ().
One has
PMod(V(@m+1), VF (@mt1)) > k ~ PMod(VF (@n41)@(—@1), V(w@mi)),

whose nonzero morphisms constitute a nonsplit short exact sequence of P-
modules

0— Vp(me) X (—wl) — V(wm+1) — Vp(me) — 0,

inducing a long exact sequence of P-modules

= V(wmt1) @ (—2w1) = V(omt1) ® (—w1) —

V(wm+1) — Vp(merl) — 0.
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(ii) Assume n = 2m. Both V(wm+1) and V(wy,) are irreducible with

V(wm) if m is even
V(@Wmt1) if m is odd

12

V(@mt1)

and
V(wm+1) if m is even

V(@m)” = {V(wm) if m is odd,
dim V(w@y41) = dim V(w,,) = 2™ = 2dim VP (w,41) = 2dim VP (@,,).
There are isomorphisms of P-modules
VP () ® (—w1) if m is even
P * m
Vi (@m)” = {Vp(me) ® (—w1) if m is odd,
VP (@mi1) @ (—w1)  if m is even
P * m+1 1
Vi (@m)” = {Vp(wm) ® (—w1) if m is odd.
One has
PMod(V(w@mi1), VE (@ms1)) ~ k ~ PMod(V ()@ (—w1), V(wmil)),

whose monzero morphisms constitute a nonsplit short exact sequence of P-
modules

0— VP(wm) ® (—w1) = V(wom+1) — VP(wm+1) — 0.
Likewise
PMod(V (@), VF (@) ~ k ~ PMod(VF (wmi1) @ (—w1), V(wm)),

whose monzero morphisms constitute a nonsplit short exact sequence of P-
modules

0— VP(wmni1) @ (—w1) = V(wn) = V(@) = 0.
Combining the 2 SES’s yields 2 long exact sequences of P-modules
oo = V(wmt1) @ (—4wy) = V(o) ®@(—3w1) = V(wm+1) ®@(—2w) —
V(wm) & (_wl) — V(wm—H) — Vp(wm—i-l) — 0.
and
= V(o) @ (—4w1) = V(oms1) @ (—3w1) = V(on) ® (—2w1) —
V(wmt+1) ® (—w1) = V(o) — Vp(wm) — 0.
Proof: (i) As w1 is minuscule, V(w41) (resp. VT (wpmy1)) is irre-

ducible for G (resp. P). Then V(wp+1)* = L(wm+1)* = L(—wowm+1) =
L(wm+1) = V(w@my1). Likewise

Vi (@mi1)* = VP (—wpwmi1) =V (—@i+wmi1) =V (@p41)@(—w1).

(1)
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One has
PMod(V(@mi1), VE (@mi1)) ~ BMod(V(@mi1), @mi1) ~ k
while
PMod(V" (@mt1) ® (1), V(@ms1))
~ PMod(V(w@mi1)* @1 @ VI (wm11)%)
~ PMod(A(—wowmi1), @1 @ VE (—wpwmy1))
= PMod(A(wmy1), @1 @ VP (=@ + @wmy1)) by (1)
~ PMod(A(wm 1), VE (@mi1)) =~ GMod(A(wm 1), V(wme1))
~k by [J, 11.4.16].
As w41 is minuscule again,

dim V7 (@mi1) = (Wepwmi1| = [Wp/Ciwp (@)

(S 5 (Z/22)™)/Cow (561 + -+ Emi)|
(S X (Z/22)™) /S
((Z/22)™] = 2",
and likewise dim V (v, +1) = 2!, Then by the irreducibility of V¥ (7, +1)
and by dimension one obtains a short exact sequence of P-modules

0= VP(@wmi1) ® (—w1) = V(wms1) = V(@my1) = 0, (2)
tensoring which with rwy, r € Z, yields another short exact sequence

0— Vp(wm+1) ® (r—1wi; — V(omt+1) @ ro; — Vp(wm+1) R rw; — 0.

Combining these exact sequences one obtains the asserted long exact se-
quence.

As PMod(V(@mi1), VE (@mi1)®@(—w1)) ~ PMod(V(wmi1), VI (i1 —
w1)) ~ BMod(V(wm+1), @mt+1 — w1) ~ GMod(V(wm+1), V(wmt1 —
w1)) = 0, the sequence (2) is nonsplit.

(ii) Note that wy,+1 and w,, are both minuscule.
(4.2) Sheafifying the short exact sequences of P-modules in (4.1) yields

Proposition: . (i) If n = 2m + 1, there is a short exact sequence of
G-equivariant Og-modules

0= LV (@ms1))(=1) = Og @ V(wms1) — LIV (@mi1)) — 0.

(ii) If n = 2m, there are short exact sequences of G-equivariant Og-
modules

0= L(VE () (1) = Og @ V(wms1) = LIV (@mi1)) = 0
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and
0 — L(VE (@ni1))(—1) = Og & V(@) — LIV (@) — 0.
(4.3) Proposition: Let r,j € N.

2 —1
(i) dim V(r) = 2 T(”” >
n T

(ii) There is an isomorphism of G-modules H7(Q, Og(r)) ~ §;0V (rw1).

(iii) If r > 0, there are isomorphism of G-modules
H/(Q,0g(—r)) ~ IinV((r—n)w1)* ~ IinA((r —n)wr).

Proof: (i) From the exact sequence (3.3.4)

n+2+r71) _ (n+2+7“7271) ifr>9
3 — T r—2 -
dim V(re) = {(n””—l) ifr=0or1

T
B n+r—1\n+2r
N r n

(ii) follows from Kempf’s vanishing [J, II.4.5].

(iii) From (3.3.2) one obtains for each k € Z an exact sequence
0— Op(k—2) = Op(k) — (ix09)(k) — 0.
with (i.Og)(k) =~ i.(Og(k)) by the projection formula. As P = P!,
H/(P,Op(k)) = 0Vj €]0,n+1[. Then, as i is a closed immersion, Vj €]0, n],
H/(Q, Og(k)) ~ H/(P,i.(Og(k))) = 0. (1)

Also Vj € N,

H(Q, 0g(—7)) =~ 6;,H7(Q, Og(~7)) by (1) and the Grothendieck vanishing
= 6;uH°(Q, L(rw1 — 2pp))* by the Serre duality [J, 11.4.2]
~ 0, V(rwr — 2pp)* ~ §inA(—wo(rwi — 2pp)).

As 2pp = nwy, the assertion follows.

(4.4) Proposition: Let j,r € N with r > 0.

(i) Assumen = 2m+1. Then H*(Q, L(VF (w11))(—=1)) = 0 while there
are isomorphisms of G-modules

H(Q, L(V! (@m41))(r = 1)) = 8oV ((r — D)1 + @im1)
with
V((r=Dw1+w@m1) 2 {V((r—1)w1) ® V(wm41)}/V((r — 2)w1 + @nt1)
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—1
of dimension 21 (n tr ) , and
n

Hj(Q7 £(vp(wm+1)>(_r - 1)) = 5jnv((7n - n)wl + wm—l—l)*-
(ii) Assume n = 2m with m even. Then
H(Q, L(VF (wm41))(—1)) = 0 = H*(Q, L(V" (w1n))(~1))
while there are isomorphisms of G-modules
H(Q, L(V" (@m+1))(r = 1)) = 8oV ((r = Dew1 + @mp1),
H(Q, L(VF (@) (r — 1)) = 6,0V ((r — V)1 + win)
with
V((r =@ + @mi1) 2 {V((r = D)w@1) @ V(@m1)}/V((r = 2)@1 + @),
V((r =@ + @wm) 2 {V((r = D@1) @ V(@) }/V((r - 2)@1 + @m41)
both of dimension 2™ <n e 1), and

n

H(Q, LV (@mi1))(—r = 1)) = 6V ((r — n)w1 + @mi1),
Hj(Q,E(VP(wm))(—r —1)) 26,V ((r —n)wr + wm)”.

(iii) Assume n = 2m with m odd. Then
H*(Q, L(VF (@i +1))(—1)) = 0 = H*(Q, L(V" (wn))(~1))
while there are isomorphisms of G-modules
H(Q, L(V (@m+1))(r = 1)) = 8oV ((r = Dew1 + @mp1),
W (Q, L(V (@) (r — 1)) = 6,0V ((r — L)1 + @)
with
V((r = Dwi + @m) 2 {V((r — Dw1) ® V(wm)}/V((r = 2)@1 + @m41),
V((r =D + @wmi1) 2 {V((r — Dw1) @ V(@wm+1)}/V((r — 2)w1 + @)

—1
both of dimension 2™ (n +7: >, and

H(Q, LV (@m41)) (—1 — 1)) = 8,V ((r — n)m1 + @),
H(Q, L(VF (@) (~7 — 1)) = 8V ((r — )1 + Dm1)"
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Proof: (i) One has
H*(Q, LV (wn11))(—1)) =~ H*(B, L(wms1 — w1))by the degeneracy

of the spectral sequence
R'ind%(R/ind5?) = R™*Jind%?
=0 from [J, IL.5.4].
Recall from (4.2.i) a short exact sequence of G-equivariant Og-modules
0= LV (@m+1))(=1) = Og @ V(wm+1) = LIV (@im+1)) = 0.

One has Vk € Z a short exact sequence of G-equivariant Og-modules

0 — LV (wmi1))(k—1) = Og(k) @ V(wmi1) = LIV (@mi1)) (k) —>( o).
1
As H/(Q, L(VF (wmi1))(r—1)) ~ oV ((r —1)wi + wm1) by Kempf, one
obtains a short exact sequence of G-modules
0— V((T’ — 2)@1 + wm—H) — V((T — 1)@1) &® V(wm+1) —
V((T — 1)w1 + wm+1) — 0. (2)

We know from (4.1) that dim V(wy,+1) = 2™, Assume by induction
that dim V((r — 1)@1 + @m41) = 2771 ("777). Then by (2)

dimV (rw1 + wm+1)
= dim(V(rw;) ® V(wm+1)) — dim V((r — 1)1 + @wm+1)

:n+2r<n+r—1>2m+l_2m+1<n+r—1> by (4.3)
n

n r

:2m+1 n+r
n .

Vj < n, the short exact sequence (1) yields by (4.3)

H(Q, L(VF (@int1)) (=7 — 1)) = W HQ, LV (@int1)) (—7)) = ...
= Hl(Qa ‘C(vp(wm+1))(] —-Tr—= 2))

and an exact sequence

V(@m1) @ V([ —r —Dw1) = V([ —r = D@1 + @my1)) =
Hl(Qv'C(vP(merl))(j —-r—= 2)) — 0.
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But the first morphism is the cup product and is surjective by Donkin [J,
11.4.21], and hence HY(Q, L(VF (wmy1))(j —r —2)) = 0. If j = n,

H(QL(V (@) (—r = 1)) = HY(G/P, L((—1 = Vw1 @ VT (@m+1)))
~ HY(G/P,L((r + Vw1 @ V' (@m11) ® (—@1) ® (—nw1)))”
by the Serre duality and (4.1)
~V((r—n)wi +wmt+1)"

(4.5) Lemma: (i) If n =2m+1, A(wmi1) @ A(wmy1) admits a filtration
of G-modules whose subquotients are A(k), A(wi), A(wz), ..., A(wm),
A(2wp,+1), each occuring once.

(ii) Assume n = 2m with m even. A(wm4+1) @ A(wm+1) admits a filtra-
tion of G-modules whose subquotients are A(w1), Aws), ..., Alwm-3),
A(wm-1), A(2wm+1), each occuring once. A(wpt1)RA(wy,) admits a fil-
tration of G-modules whose subquotients are A(k), A(w2), ..., A(wm-4),
A(wm—2), A(@Wmt+1 + @wm), each occuring once. A(wy,) @ Alwy,) ad-
mits a filtration of G-modules whose subquotients are A(wy), A(ws), ...,
A(wm—3), Awm-1), A(2wy,), each occuring once.

(iii) Assume n = 2m with m odd. A(wm+t1) @ A(wmt1) admits a fil-
tration of G-modules whose subquotients are A(k), A(w2), ..., Alwm-3),
A(wm—1), A(2Wm+1), each occuring once. A(wpm4+1) QA(wy,) admits a fil-
tration of G-modules whose subquotients are A(wy), A(ws), ..., A(wm—4),
A(wm—2), A(wWmt+1 + @wm), each occuring once. A(wy,) @ Awy,) ad-
mits a filtration of G-modules whose subquotients are A(k), A(ws), ...,
A(wm-3), Awm-1), A(2wy,), each occuring once.

Proof: By Lusztig’s theory of based modules [L, 27| we may transfer to the
corresponding quantum group, cf. [X], [K98]. There the assertions follow
from [Kas, 4.2], [KN, 5.4, 6.4].
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(4.6) Theorem: Let k € N and i,j € Z.
(i) Assume n =2m + 1. Then

Extd(L(V (@m11)), L(VF (@m41))) = Orok,

ko V((j — 1)) ifj—i>0
Ext}(Oo(i), 0a(j)) = { Vi~ -
~ S A((i —j—n)wy) ifj—i< —n,

SkoV((J — D)1 + @imt1)

Extly(0(0), (V" (@ms1)) (7)) = § 01V (i = j — 1 = )1 + P’
Zf] -1 S —-n— ]-7

L 0 else,

( (5k0V((] — 17— 1)w1 + wm_H)

Extf (L(VF (@m41)) (1), 00(5)) = { 0V ((i — j — n)w1 + @Wing1)*
L 0 else.

(ii) Assume n = 2m with m even. Then

Ext$(L(VF (@m11)), LV (@m41))) ~ Srok
~ Ext$y(L(VF (wm)), LIV (wm))),

Extg(L(VF (@m1)), LV (wm))) = 0
= Ext(L(VF (@m)), LV (@m+1))),

ooV ((J — 1)) ifj—i2>0
. L )0k V((E = —n)w)*
Ext}(0g(i), Og()) = 4 "7 NG _3. ) ifj i< n
0 else,
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okoV((j — 1)@1 + @imt1)

Ext(0g (1), L(VF (@m11))(5)) = § 06V (i — § — 1 — n)w1 + @pngr)*
ifj—i<-—-n-—1,

(0 else,

(610 ((j — 1)1 + )

Ext}(00(1), LIV (wm)) (7)) = { 0 V(i — 5 — 1 — n)wy + wpm)*
ifj—i<-n-—1,

0 else,

SroV((j —i—1)w1 + wmy1)

Ext g (L(VF (@in1))(1), 0(4)) = § 8knV (i = j — n)w1 + wm)"
ifj—i<-n,

0 else,

5k0V((] — 17— 1)w1 + wm)
ifj—i>1

Ext$(L(VF (@m)) (i), 00(5)) = { 5 V(i — j — n)w1 + Tmy1)*
ifj—i<-n

0 else.
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(iii) Assume n = 2m with m odd. Then

Exth (L(VF (@m11)), L(VF (@m11))) = Srok
~ Ext§y(L(VF (@), L(VF (@m))),
Exts (L(VF (@mt1)), L(VF (wm))) = 0
= ExtS(L(V (@), LV (@mt1))),

Ext}(0g(i), 0g(j)) ~

Ext®(0g(i), L(VF (wm+1))(5)) ~

Extf(0g(d), L(VF (wm))(5))

12

Ext® (L(VF (@mt1)) (), Og(y)) ~

610V ((j — i)oo1)

5an((Z —j — n)wl)*
~ Sk A((1 — j —n)w)

okoV((J — )@1 + @imt1)

0nV((i—7—1—n)wi + wm)*
ifj—i<-n—1

(0 else,
(610V ((j — D)1 + @)
ifj—i>0

OenV((i —j —1—n)w1 + @my1)”
ifj—i<-n—1

L0 else,

(Sk(]V((j — 17— 1)@1 + wm)
ifj—i>1

SenV((i — j —n)w1 + @imy1)”
ifj—i<—n

0 else,
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S0V ((j — i — 1)@ + @ms1)
ifji—i>1

Extg(L(VE (@m))(i), 0a()) ~ § 6k V(i — j — n)w1 + wm)*
ifj—i<-—n

0 else.

Proof: (i) One has

Ext$(L(VY (@m11)), LV (@m11)))
~ H*(Q, L(VF (@n41))Y @0 L(VE (@im+1)))
~H*(Q, L((—m1) @ VI (wm1) ® VI (@my1))) by (4.1)

1 1
with (=) @V (@ 41) OV (@m11) = VI (5 (e2t - +em)) OV (5 (e2+
-+ + &mt1)) admitting by (4.5) a filtration of P-modules of subquotients
VEP(ea+-+emp1) = VI (—w1+20my1), VE(ea 4+ +em) ~ VP (—m +
)y oy VP(eg +€3) = VP (—w1 + w3), VP (e2) ~ VI (—w; + w3), and

Wm
VP (k) ~ k, each appearing once. As

H*(Q, L(VF (=1 + 2wpm41))) ~ H* (B, L(—w1 4 20mi1))
=0
=H*(B, L(—@1 + @)
~ H*(Q, L(VF (—w1 + @m)))

= H*(B, L(—w1 + w2))
~ H*(Q, LV (w1 + @2))),

Ext(L(VF (@mt1)), L(VE (wm1))) = H¥(Q, 0g) =~ diok.
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Next, from (4.4)

Extd(00(0),L(V! (@wimn+1)) (1)) = BHQ, L(VF (wim+1))(j — 1))

- 6k0V((j—i)w1+wm+1) ifj—’i > —1

o 5]mV((Z —75—1- n)wl + wm+1)* ifj -1 < =2
5k0V((] — i)wl + wm_H) ifj—i>0

~ 0 V((i—j—1—n)wi +wme1)” fj—i<-n-—1
0 else.

Likewise,

Ext$(L(VY (@m11))(i),00(5)) = HH(Q, LIV (@m11))(j — i — 1)) by (4.1)
5k0V((] —i— 1)@1 + wm_H) ifj—i>1
>~ 6y V(i —j—n)wi + wme1)* ifj—i<—n
0 else.

(4.7) Remark: Recall from (1.7) the quotient 7 : Vp(k) — hdg, pVp(k) =
L((w” ¢0)%) @ p{(w”)~" e (w” e 0)'}. Regardless of characteristic p > 2,
one has w’ €0 = —nw; by (3.4), and hence (w”) o (w’ e0)! = (r —n)wy,
where r € N with rp —n € [0,p[. It follows from [La] that Lo(7) always
splits.

5° Kapranov’s resolution

The present proof of the generation of the derived category D?(coh(Q))
by the &, w € WF depends on Kapranov’s resolution of A,Og, A : Q —
Q X Q the diagonal imbedding. We attempt to write down an outline of
the construction, following Swan [Sw] and Bohning [B6] as well as [Kap], to
convince the reader that it can be done independent of characteristic # 2.
Thus we continue to work with an arbitrary field k of characteristic # 2.
(5.1) If n = 2m + 1, put S = LV (wm+1))” = LV (@nt1))(=1). In
case n = 2m, put

8i = L(VF (@m11))" = {EWP(me))(—l) if m is even

L(VE (wm)) (1) if m is odd

and
L(VE(wp))(~1) if m is even

S_ = L(V (@)Y ~ {E(VP(me))(_l) if m is odd.

We will show
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Theorem: . (i) If n is odd, there is a resolution of A,Og
0—-SKS(—n+1) > ¥, 1 KOg(—n+1) = ¥, s KOg(—n+2) — ...
— U XOg(—1) = Ogx,0 = AOg — 0
with some coherent V;, i € [1,n — 1].
(ii) Assume n =2m. If m is even, A,Og admits a resolution
0= (SRS (—n+1)d(S_KS_(—n+1))
=V, 1 KOg(—n+1) 5 ¥, s KOg(—n+2) — ...
— U XOg(—1) = Ogx,0 = AOg — 0
with some coherent ¥;, i € [1,n—1]. If m is odd, A,Og admits a resolution
0= (S-KS(—n+1)d (S KS_(—n+1))
=V, 1 KOg(—n+1) 5> ¥, s KOg(—n+2) — ...
— U X Og(—1) = Ogx,0 = AOg — 0
with some coherent ¥;, i € [1,n — 1].
(5.2) Corollary: (i) If n =2m + 1, then Og, Og(—1), ..., Og(—n+1),
S(—m) generate D*(cohQ).

(i1) If n = 2m, then Og, Og(-1), ..., Og(—n+1), St(—m+1) generate
D?(cohQ).
Proof: (i) By a general principle the resolution assures that Og, Og(—1),
ooy Og(—n+1), S(—n +1) = L(VF (wmi1))(—n) generate D?(cohQ).

We have, however, from (4.2) a short exact sequence

0= L(VE (W) (=1) = Og @ V(wms1) = L(VE (Wint1)) = 0,

from which one obtains a short exact sequence Vk € Z
0 £V (@ns1))(k — 1) = Oa(k) @ V(wmi1) = LT (@mi1))(k) > 0,
and hence £(V? (wm11))(—n) belongs to the subcategory generated by Og,
Og(—1),...0g(—n+1) and L(VF (wp11))(—=m—1) = S(—m) by induction.

Likewise (ii).
(5.3) The construction of the resolution (5.1) requires Clifford algebras.
We may assume by flat base change that k is algebraically closed. Let
C=C(E;q) =Tk(E)/(v®v —q(v) | v € E) be the Clifford algebra of E
over k, which is naturally equipped with a structure of G-algebra. One has
a G-linear decomposition C' = Cj @ C; [Ch, I1.1.0] such that

Co=AN""E= [[ 'E and C;~nME= ][] NE.

reven rodd
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If g = Lie(G) = so(E) = {z € gl(E) | 'B + Bz = 0}, there is a G-linear
isomorphism 7 : A’E — g via
v1 A\ vy — B(’Ug, ?)’Ul — B(’Ul, ?)’1)2,

and an injective G-linear map ¢ : A2E — Cj via

1
v1 AUy — VU — 5183(111,111).

It turns out that the composition & o n~!

homomorphism of Lie algebras [FH, 20.1].

(5.4) Assume first n = 2m + 1. Recall from [Ch, I1.2.6] that C has a
central involution z, which is up to a scalar the product of the elements
of an orthogonal basis of E. One has z fixed by G, and C7; = 2Cj. Let
z0 = +/—1leg, ET = H;itl ke;, E- = Hﬁtl ke_;, E' = ET ® E—, and put
C’ = C(F') with respect to ¢|g. There is an isomorphism of k-algebras
¥ : C" — Cf such that Yvy,..., v, € E,

Tov1...v, if ris odd
V1 Uy >

: g — (f is an injective G-linear

(1)

Consider C'e’_ with ¢’ =e_je_9...€_m—1. As qle—;) =0Vi e [1,m + 1],
e_;¢/_ = 0, and hence there is a k-linear isomorphism C’¢/ ~ AET via
v1...ve 4 v A--- Avp Recall also from [Ch, I1.2.1 and 2.2] that C'e”
is a minimal left ideal of C’ and that C’ is the matrix algebra on C’e’
under the left multiplication: C’" ~ Mody(C’e’_,C’e" ). Thus, transferring
through 1, let

V... Up if r is even.

v—1lege_m—1...6—-1 if mis even
e_ = . .
em_1...-€_1 if m is odd,

and put p; = Cge—. Then py affords a simple module for Cj, and hence
there are k-linear isomorphisms

Ci ~ Cy ~ Modg(py, p+) =~ pt ® ply (2)

such that, if (y1,...,yom+1) is a k-linear basis of py with (y7,...,y5m1) its
dual basis,
2m+1
2x <4 x> lpid,, Z Loyr @y,
r=1
where [, is the multiplication by x from the left.

Assume next that n = 2m. As above, Ce_ with e_ = H?:{l e_; forms a
simple left ideal of C such that

C ~ Modg(Ce_,Ce_) (3)
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under the left multiplication. Put Bt =[]t ke;, B~ = [/ ke_;, and
let C* = C(E*) with respect to ¢|g=. As e_se_ =0 Vi € [1,m + 1], there
are k-linear isomorphisms

Ce.~CTe_ =(CfaCfle.=Cle_@Cfe_ ~C @ CF

with Cf stabilizing under the left multiplication both Cgr e_ and C{r e_
while C7 exchanging those. If we put py = Cgr e_and p_ = C{r e_, one has
under the identification (3)

Cp = Mody(p+, p+) © Modk(p—, p-) = (p} @ p4+) @ (b~ ® p-),

C1 = Modk(p+, p—) ® Modk(p—, p4) =~ (p} ® p-)  (pZ ® p4).

One checks

Lemma: . (i) Assume n = 2m + 1. Vk € [-m — 1,m + 1], let 1., be
the right multiplication by ex on C, and let I7, f = f(ex?),v% f = f(Tex),
f € C*. There is a commutative diagram

~ N ~
Co P+ @ Py Co
lek rek
Ci lzek®Pi p+®£;ek Ci
zZ|~ ~lz
~ « ~
Co P+ @ Py Co
Z|~ ~lz
Ci lzek ®Pi p+®l;ek Ci
lek rek
*
Co ~ p+ @ pl ~ Co-

If we write i = {} if i is odd

0 ifi is even
commutative diagram

Vi € N, dualizing the above yields a

* ~ * ~ *
O Py @ p+ &)
lﬁki l;ek®p+i ipfp@l—zek J{r’ék

* *
& ~ Pi Q@ py ~ i
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(ii) Assume n =2m. Yk € [-m — 1,m + 1]\ 0, there is a commutative
diagram

Co = (P} @ py) @ (P2 @ p-)

ley, (P% @l )B(p* Bley,)
C1 = (PL ®p-) ® (P~ @ p+)

ley, (P ®ley, )B(p* ®ley)
Co = (P} ® p+) @ (p~ @ p-)

e (1%, ®pr)®(lE, ®p-)
Ci = (P ®ps) ® (P} ® p-)

Tek (&, ®@p+)d 1z, @p-)
Co = (Pt @ p1) & (pr @ p-).

(5.5) Proposition: (i) If n = 2m + 1, the structure of g-module on p4
extends to a structure of G-module such that p4 ~ V(wm41).

(ii) If n = 2m, the structure of g-module on py extends to a structure of
G-module such that

_ V(®@m+1) if mis odd
P = V(wm) if m is even,
V (wm) if m is odd

(Wm+1) if m is even.

Proof: (i) Put ey =e;1...€ep4+1. One finds the weight of e;e_ € p; with
respect to Lie(T) is w41, and that epe_ is annihilated by Lie(U™), U
the unipotent radical of the Borel subgroup opposite to B. There is then
a nonzero homomorphism of Dist(G1)-modules

A(wpm+1) = Dist(Gh) Dpisy(Bf) Wm+1 = Pt

On the other hand, as wy,+1 is minuscule, V(wy,+1) is irreducible over G.

Then V(wp+1) = hdg, (A(wm+1)), and hence V(wp41) =~ p+ by dimension
(4.1).
Likewise (ii).

(5.6) Let (ef) be a basis for E* dual to (eg).
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Corollary: . (i) If n = 2m + 1, the morphism

m+1

Z ey ® €, 1 pr ® Og(—1) = pp ® Og
k=—m—1

is G-equivariant, inducing an exact sequence of G-equivariant sheaves

Zk lze,C ®ez Zk lzek,®e;;
i AN R AL

= pp © Og(—2) p+® Og(-1) P+ ® Og

— L(VP (Wmi1)) = 0.
In particular,

m+1

coker( 3 Loy @it py @ Oo(—1) = py @ Og) = L(V (wms1).
k=—m—1

Dualizing, one has also an exact sequence
= ph @ 0g(=2) = pl @ Og(—1) = p} ® Og = LV (wint1)) = 0.
(ii) If n = 2m, the morphisms

Z er Qe p- @0g(—1) = pr ® Og
ke[—2m,2m]\0

and

Z er®er:pr @0g(—1) = p— @ Og
ke[—2m,2m]\0

are both G-equivariant, and hence

LV (@)
if m is even
coker( Z exr®er:p- @0g(—1) = pr ® Og) ~
ke[—2m,2m]\0 £(Vp(wm+1))
Lif m is odd,
(L(V (@mt1))
if m is even
coker ( Z ex®@er:p- @0g(—1) = py ® Og)
ke[—2m,2m]\0 L(VF (@)
Lif m s odd.
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Dualizing, one has also

coker(Z(le ®ep): ph @ Og(—n —1) —=p- @ Og(—n))
k

~ L(VF (@) @ (—nw1)),

coker(Z(le ®ep): pl ® Og(—n —1) =pl ® Og(—n))
k

~ L(VE (@mi1) ® (—nwy)).

Proof: (i) Upon checking the G-equivariance of

m+1

> L @€ pr ®O0g(—1) = pyr ® Og
k=—m-—1

one sees that it is by (5.5.1) induced from a P-linear morphism

(Z lzek ® 62)(6) : v(Wm+1) ® (_wl) — V(wm—i-l)a
k

e being the point eP on Q@ = G/P. By the unicity of such it must coincide
up to a nonzero scalar with the one obtained in (4.1), and hence yields an
exact sequence

lze, ®er)(e)R(—w
D Vo) © () Bkl DS

V(wm+1) @ (—wi)

lre, QeX)(e
b3 G ) 5 VP (W) = 0,

sheafification of which reads the exact sequence

>k lzey, e, Sp ¥ (zer)@ej,
S e

= pp © Og(—2) P+ ® Og

— LV (Win11)) — 0.

p+ ® Og(-1)

Dualizing, » ;. I%,, ®@ej : p3 ®Og — pf ® Og(1) is induced by a P-linear
map V(wmi1) = V(wmy1) @wr as p =~ V(wme1)® = V(wme1), and hence
yields the desired exact sequence.

Likewise (ii).

(5.7) Let next A=Tx(E@kh)/(v®@v—qv)hv@h—h®v|v € E) with
h an indeterminate. For the Clifford algebra C' = C(E) there is an k-linear
isomorphism

A~ C K[h)]. (1)
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We make A into a graded k-algebra by giving each element of E (resp. h)
degree 1 (resp. 2): Vi € N, there is a k-linear isomorphism

A4~ ] (WE)@ki*. (2)
j+2k=i

Vj €N, consider dj =) ;1e, ®ef : Aj ® Og(j) = Ajr1 ® Og(j + 1) with
re, being the multiplication to the right on A; by eg. Then d;i 1 od; = 0.

Its dual complex A*:

2k Te, ®ek 2k T, ®e
o A ® 0g(—j — 1) T A7 ® Og(—j) T -
2k Te, ®ep, 2gTe
N ’{®(’)Q(—1)k—’“>AO®OQ—>O

is exact [Sw, Lem. 7.3], called the Tate resolution of A ® Og ~ Oqg.
(5.8) Now let W; = ker(D_, 15, @ej : A7 @ Og — A7 | ® Og(1)) Vi € N.
Using the double complex

= 0g(2) B Og(—2)
(S 1, @6} KO0 (~2)

= AT R 0g(1) B Og(

—_—

Sl ®O (1)Xer
5 06(1) R Og(—1) ——>0

(S4 12, @6} EO0 (~2) (Su 12, ®e])EOo( 1>T
= A5 O K Og (-2 ) 32 ®OQgAA ® Og X Og( Zk) @09%)6QXQ =0,

one shows that the complex e
-~—>\Ili®(9g(—i) —>\Ifi_1@OQ(—i+1) —> e —>\IJQ&OQ
gives a resolution of A,Og.
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(5.9) By definition the A} stabilize after n: Vj > n + 1, one has k-linear
isomorphisms

I (V(E)@kr™}  with (h*)) the graded dual basis of (h*)
r4+2s=j
(1)
[T A" (E*) ifjiseven
Y11 AT (B if jis odd
r odd
~ 5 with j =j mod 2
P4+ @ ph ifn=2m+1
~ (P @pr)®(p®@p-) if n=2m and j even
(P} ®@p-) & (p2 ®p4) if n=2m and j odd.

Put £ = ker(V,,_1 XOg(—n+1) = ¥,,_oXOg(—n+2)). By the exactness
of U*

K ~im(V, X Og(—n) = ¥, 1 KOg(—n+1)) (2)
~ coker(¥,,11 X Og(—n—1) = ¥,, K Og(—n))
while the exactness of the Tate-Swan resolution implies

U; =ker(A; @ Og — A7 @ Og(1)) ~ lm(AlJrl ® Og(—1) = A7 ® Og)
(3)
~ coker(Aj , ® Og(—2) = A7, ® Og(-1)) VieN.

Consider the double complex K*®

l (Zf L ©00(—2))Key l
> (A5, 30 0go(—2)) XOg(—n — 1) (A5 1o ® 0g(—2)) X Og(—n)
)) X Og

Z(r%@ek NOg(—n—1) zk:(rzk@)eZ)@OQ(—n)l

(A:”E“ ® Og(—1)) K Oo(—n).

( ZE ®OQ(*1))&€

( n+2®OQ( 1

By (3) the total complex Tot(K*®) is quasi-isomorphic to K. On the other
hand, if n = 2m + 1, K*® reads by (5.4.1)

Sao Paulo J.Math.Sci. 8, 1 (2014), 117-156



154 Kaneda Masaharu

N

(p+ ® Og(— ,0+®(9Q —n—1))

' (p+@00 (-1 (V" (e1)" Gef)
S (Bsgy, ®ef)R(p 0 (—n—1))

(r+ ® Og(—1)) W (p} ® Og(—n)),
(p+ ® Oo(—2)) W (p ® Og(—n —1))

Lze, ®e)K(p @0 (—n))
(p1 800 (- ))®Z( L (zep) @) (SRR RO

(p+ ® Oo(—2)) W (pf ® Og(—

and hence Tot(K*®) is by (5.6.i) quasi-isomorphic to £(V’ (1)) X
LV (@mi1))(—n+1) = SKS(—n + 1), establishing (5.1.i). Likewise if n
is even.

(5.10) Back to the general set-up, Samokhin [Sa, Lem.13] shows for p >
h that if the distinct indecomposable direct summands of F,Og /P form
a semi-orthogonal sequence, F.Og,/p Karoubian generates D’(coh(G/P)).

For quadrics our &,’s, w € W, indeed constitute for p > h the distinct
indecomposable direct summands of F,Og by [La].
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