Construtivismo cognitivo e estatística bayesiana

Autores

  • Julio Michael Stern Universidade de São Paulo. Instituto de Matemática e Estatística

DOI:

https://doi.org/10.1590/S1678-31662006000400003

Palavras-chave:

Autopoiese, Auto-soluções, Construtivismo cognitivo, Epistemologia, Hipóteses precisas, Significância estatística, Teoria dos sistemas

Resumo

Neste artigo, algumas questões epistemológicas, ontológicas e sociológicas concernentes à significância estatística de hipóteses precisas na pesquisa científica são investigadas dentro do arcabouço fornecido pelo construtivismo cognitivo e do FBST - o teste completo de significância bayesiana. O arcabouço construtivista é contrastado com o da teoria da decisão e o do falsificacionismo, os cenários epistemológicos tradicionais para a estatística bayesiana ortodoxa e para a estatística freqüentista.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Bakken, T. & Hernes, T. Autopoietic organization theory: drawing on Niklas Luhmann’s social systems perspective. Copenhagen: Copenhagen Business School, 2002.

Bertalanffy, L. von. General system theory. New York: George Braziller, 1969.

Birnbaum, Z. W.; Esary, J. D. & Saunders, S. C. Multicomponent systems and structures, and their reliability. Technometrics, 3, p. 55-77, 1961.

Borges, W. & Stern, J. M. On the truth value of complex hypotheses. CIMCA-2005: International conference on computational intelligence for modelling control and automation. Los Alamitos: IEEE, 2005.

Boyd, R.; Gasper, P. & Trout, J. D. The philosophy of science. Cambridge: MIT Press, 1991.

Caygill, H. A Kant dictionary. Oxford: Blackwell, 1995.

Christis, J. Luhmann’s theory of knowledge: beyond realism and constructivism? Soziale Systeme, 7, p. 328-49, 2001.

Darwiche, A. Y. A symbolic generalization of probability theory. Stanford: Stanford University Press, 1993.

Darwiche, A. Y. & Ginsberg, M. L. A symbolic generalization of probability theory. Proceedings of the 10th national conference on artificial intelligence, 1992. p. 622-7. (AAAI-92. )

Diaconis, P. Group representation in probability and statistics, 1988. (Institute of Mathematical Statistics Lecture Notes 11. )

Diaconis, P. & Freeman, D. A dozen de Finetti style results in search of a theory. Annales de l’Institute Henri Poincaré, Probabilité et Statistique, 23, p. 397-423, 1987.

DiMaggio, P. & Powell, W. W. New institutionalism in organizational analysis. Chicago: Chicago University Press, 1991.

Doncel, M. G.; Hermann, A.; Michel, L. & Pais, A. Symmetries in physics (1600-1980). Barcelona: Seminari d’Història des les Ciènces, Universitat Autònoma de Barcelona, 1987.

Dubins, L. E. & Savage, L. J. How to gamble if you must: inequalities for stochastic processes. New York: McGraw-Hill, 1965.

Dugdale, J. S. Entropy and its physical meaning. London: Taylor & Francis, 1996.

Eaton, M. L. Group invariance applications in statistics. Hayward: Institute of Mathematical Statistics and American Statistical Association, 1989.

Feller, W. An introduction to probability theory and its applications. New York: Wiley, 1971.

Finetti, B. de. Theory of probability. London: Wiley, 1974. 2 v.

Finetti, B. de. Scritti. Padova: Cedam, 1981. v. 1.

Finetti, B. de. Scritti. Padova: Cedam, 1991. v. 2.

Finetti, B. de. Probabilitá e induzione. Bologna: Clueb, 1993.

Foerster, H. von. Understanding understanding: essays on cybernetics and cognition. New York: Springer, 2003.

French, A. P. Special relativity. New York: Chapman & Hall, 1968.

Fuchs, S. The new wars of truth: conflicts over science studies as differential modes of observation. Social Science Information, 35, p. 307-26, 1996.

Good, I. J. Good thinking. Minneapolis: University of Minnesota Press, 1983.

Gruber, B. et al. (Ed. ). Symmetries in science. New York: Plenum, 1980-98. 9 v.

Harlow, L. L.; Mulaik, S. A. & Steiger, J. H. What if there were no significance tests? London: Lawrence Erlbaum, 1997.

Hayakawa, Y.; Irony, T. Z. & Xie, M. (Org. ). Systems and Bayesian reliability. Singapore: World Scientific, 2002.

Irony, T. Z. & Pereira, C. A. B. Bayesian hypothesis test: using surface integrals to distribute prior information among the hypotheses. Resenhas do Instituto de Matemática e Estatística da Universidade de São Paulo, 2, 27-46, 1995.

Irony, T. Z.; Pereira, C. A. B. & Tiwari, R. C. Analysis of opinion swing: comparison of two correlated proportions. The American Statistician, 54, 57-62, 2000.

Irony, T. Z.; Lauretto, M.; Pereira, C. A. B. & Stern, J. M. A Weibull wearout test: full Bayesian approach. In: Hayakawa, Y.; Irony, T. Z. & Xie, M. (Org. ). Systems and Bayesian reliability. Singapore: World Scientific, 2002. p. 287-300.

Jaffe, B. Michelson and the speed of light. New York: Anchor, 1960.

Kant, I. Crítica da faculdade do juízo. Tradução V. Rohden & A. Marques. Rio de Janeiro: Forense Universitária, 1995 [1790].

Kapur, J. N. Maximum entropy models in science and engineering. New York: Wiley, 1989.

Krohn, W. & Küppers, G. The selforganization of science: outline of a theoretical model. In: Krohn, W.; Küppers, G. & Nowotny, H. (Org. ). Selforganization: portrait of a scientific revolution. Dordrecht: Kluwer, 1990. p. 208-22.

Landau, L. D. & Lifschitz, E. M. Cours de physique théorique. Moscou: MIR, 1966.

Lauretto, M.; Pereira, C. A. B.; Stern, J. M. & Zacks, S. Comparing parameters of two bivariate normal distributions using the invariant full Bayesian significance test. Brazilian Journal of Probability and Statistics, 17, p. 147-68, 2003.

Levi, I. Gambling with truth: an essay on induction and the aims of science. Cambridge: The MIT Press, 1974.

Lorentz, H. A.; Einstein, A.; Minkowsky, H. & Weyl, H. The principle of relativity: a collection of original memoirs on the special and general theory of relativity. New York: Dover, 1952.

Luhmann, N. Ecological communication. Chicago: Chicago University Press, 1989.

Luhmann, N. The cognitive program of constructivism and a reality that remains unknown. In: Krohn, W.;

Küppers, G. & Nowotny, H. (Org. ). Selforganization: portrait of a scientific revolution. Dordrecht: Kluwer, 1990a. p. 64-86.

Küppers, G. & Nowotny, H. Essays on self-reference. New York: Columbia University Press, 1990b.

Küppers, G. & Nowotny, H. Social systems. Stanford: Stanford University Press, 1995.

Madruga, M. R.; Esteves, L. G. & Wechsler, S. On the bayesianity of Pereira-Stern tests. Test, 10, p. 291-9, 2001.

Madruga, M. R.; Pereira, C. A. B. & Stern, J. Bayesian evidence test for precise hypotheses. Journal of Statistical Planning and Inference, 117, p. 185-98, 2003.

Maher, P.; Skyrms, B.; Adams, E. W.; Binmore, K.; Butterfield, J.; Diaconis, P. & Harper, W. L. Betting on theories. Cambridge: Cambridge University Press, 1993.

Maturana, H. R. & Varela, F. J. Autopoiesis and cognition: the realization of the living. Dordrecht: Reidel, 1980.

Michelson, A. A. & Morley, E. W. On the relative motion of the earth and the luminiferous ether. American Journal of Physics, 34, p. 333-45, 1887.

Mingers, J. Self-producing systems: implications and applications of autopoiesis. New York: Plenum, 1995.

Nachbin, L. The Haar integral. Princeton: Van Nostrand, 1965.

Noether, E. Invariant varlation problems. Tradução M. A. Tavel. Transport Theory and Statistical Physics, 1, p. 183-207, 1971 [1918].

Pereira, C. A. B. & Stern, J. M. Evidence and credibility: full Bayesian significance test for precise hypotheses. Entropy Journal, 1, p. 69–80, 1999.

Pereira, C. A. B. & Stern, J. M. Model selection: full Bayesian approach. Environmetrics, 12, p. 559-68, 2001.

Petitjean, M. (Org.). Foundations of Information Science. Basel: MDPI, 2005. v. 61.

Popper, K. R. A lógica da pesquisa científica. Tradução L. Hegenberg & O. S. da Mota. São Paulo: Cultrix, 1972 [1934].

Popper, K. R. Conjecturas e refutações. Tradução S. Bath. Brasília: Editora UnB, 1974 [1963].

Rasch, W. Luhmann’s Widerlegung des Idealismus: constructivism as a two-front war. Soziale Systeme, 4, p. 151-61, 1998.

Ressel, P. A Very general de Finetti type theorem. In: Viertl, R. Probability and Bayesian statistics. New York: Plenum, 1987. p. 403-14.

Rouanet, H.; Bernard, J. M.; Bert, M. C.; Lecoutre, B.; Lecoutre, M. P. & Le Roux, B. New ways in statistical methodology: from significance tests to Bayesian inference. Berna: Peter Lang, 1998.

Savage, L. J. The foundations of statistics. New York: Dover, 1954.

Segal, L. The dream of reality: Heinz von Foerster’s constructivism. New York: Springer, 2001.

Shafer, G. Lindley’s paradox. Journal of the American Statistical Association, 77, p. 325-51, 1982.

Stern, J. M. Significance tests, belief calculi, and burden of proof in legal and scientific discourse. Frontiers in Artificial Intelligence and its Applications, 101, p. 139-47, 2003. (Laptec’03. )

Stern, J. M. Cognitive constructivism, eigen-solutions, and sharp statistical hypotheses. In: Petitjean, M. (Org.). Foundations of information science. Basel: MDPI, 2005. v. 61. p. 1-23.

Stern, J. M. & Zacks, S. Testing independence of Poisson variates under the Holgate bivariate distribution: the power of a new evidence test. Statistical and Probability Letters, 60, p. 313-20, 2002.

Viertl, R. Probability and Bayesian statistics. New York: Plenum, 1987.

Williams, D. Weighing the odds. Cambridge: Cambridge University Press, 2001.

Wittgenstein, L. Tractatus logico-philosophicus. Tradução L. H. L. dos Santos. São Paulo: Edusp, 1993 [1921].

Zelleny, M. Autopoiesis, dissipative structures, and spontaneous social orders. Washington: American Association for the Advancement of Science, 1980.

Downloads

Publicado

2006-12-01

Edição

Seção

Artigos

Como Citar

Construtivismo cognitivo e estatística bayesiana . (2006). Scientiae Studia, 4(4), 598-613. https://doi.org/10.1590/S1678-31662006000400003