Object lessons: towards an epistemology of technoscience
DOI:
https://doi.org/10.1590/S1678-31662012000500002Palavras-chave:
Technoscience, Epistemology, Thing knowledge, Knowledge of control, PeirceResumo
Discussions of technoscience are bringing to light that scientific journals feature very different knowledge claims. At one end of the spectrum, there is the scientific claim that a hypothesis needs to be reevaluated in light of new evidence. At the other end of the spectrum, there is the technoscientific claim that some new measure of control has been achieved in a laboratory. The latter claim has not received sufficient attention as of yet. In what sense is the achievement of control genuine knowledge in its own right; how is this knowledge acquired; and publicly validated? Notions of tacit or embodied knowledge, of knowledge by acquaintance, of engineering or thing knowledge, and reconstructions of ability or skill take us only part of the way towards answering such questions. The epistemology of technoscience needs to account for the acquisition and demonstration of a public knowledge of control that does not consist in the holding of propositions, even though it is usually communicated in writing: Technoscientific knowledge is, firstly, objective and public insofar as it is exhibited and documented. Secondly, it presupposes a specific context of technology and expertise. Thirdly, it is communicable, even where the achieved capability itself is not. Knowledge of control entails, fourthly, a knowledge of causal relationships, and it sediments itself, fifthly, as a habit of action in the sense proposed by Charles Sanders Peirce.
Downloads
Referências
Baird, D. Thing knowledge. Berkeley: University of California Press, 2004.
Bensaude-Vincent, B. et al. Matters of interest: the objects of research in science and technoscience. Journal for General Philosophy of Science, 42, p. 365–83, 2011.
Carrier, M. Knowledge gain and practical use: models in pure and applied research. In: Gillies, D. B. (Ed.). Laws and models in science. London: College Publications, 2004. p. 1-17.
Carrier, M. & Nordmann, A. (Ed.). Science in the context of application. Dordrecht: Springer, 2010.
Cleland, A. N. Carbon nanotubes tune up. Nature, 431, p. 251-2, 2004.
Daston, L. & Galison, P. Objectivity. New York: Zone Books, 2007.
Galison, P. The pyramid and the ring. Conference abstract, Gesellschaft für analytische Philosophie (GAP), Berlin 2006.
Gethmann, F. (Ed.). Lebenswelt und Wissenschaft: Kolloquiumsband des XXI Deutschen Kongresses für Philosophie. Hamburg: Meiner, 2011.
Gettier, E. Is justified true belief knowledge? Analysis, 23, p. 121-3, 1963.
Gillies, D. B. (Ed.). Laws and models in science. London: College Publications, 2004.
Hacking, I. Representing and intervening. Cambridge: Cambridge University Press, 1983.
Heidelberger, M. & Schiemann, G. (Ed.). The significance of the hypothetical in the natural sciences. Berlin: de Gruyter, 2009.
Houser, N. & Kloesel, C. (Ed.). The essential Peirce. Bloomington: Indiana University Press, 1992. v. 1.
Jones, R. What has nanotechnology taught us about contemporary technoscience? In: Zülsdorf, T. B. et al. (Ed.). Quantum engagements: social reflections of nanoscience and emerging technologies. Amsterdam: IOS Press, 2011. p. 13-26.
Knorr-Cetina, K. The manufacture of knowledge: an essay on the constructivist and contextual nature of science. Oxford: Pergamon, 1981.
Krohn, W. (Ed.). Ästhetik in der Wissenschaft: interdisziplinärer Diskurs über das Gestalten und Darstellen von Wissen. Hamburg: Felix Meiner, 2006.
Lacey, H. Reflections on science and technoscience. Scientiae Studia, 2012. This issue.
Lenhard, J. Mit dem Unerwarteten rechnen? Computersimulation und Nanowissenschaft. In: Nordmann, A.; Schummer, J. & Schwarz, A. (Ed.). Nanotechnologien im Kontext: philosophische, ethische und gesellschaftliche Perspektiven. Berlin: Akademische Verlagsanstalt, 2006. p. 151-68.
Mackie, J. L. The cement of the universe: a study of causation. Oxford: Clarendon Press, 1974.
Medawar, P. B. Is the scientific paper a fraud? In: Medawar, P. B. The threat and the glory: reflections on science and scientists. Oxford: Oxford University Press, 1991. p. 228-33.
Medawar, P. B. The threat and the glory: reflections on science and scientists. Oxford: Oxford University Press, 1991.
Merton, R. The sociology of science: theoretical and empirical investigations. Chicago: University of Chicago Press, 1973.
Mildenberger, G. Wissen und Können im Spiegel gegenwärtiger Technikforschung. Berlin: Lit Verlag, 2006.
Moser, P. K. (Ed.). Empirical knowledge: readings in contemporary epistemology. Lanham: Rowman and Littlefield, 1996.
Nordmann, A. Vor-schrift – Signaturen der Visualisierungskunst. In: Krohn, W. (Ed.). Ästhetik in der Wissenschaft: interdisziplinärer Diskurs über das Gestalten und Darstellen von Wissen. Hamburg: Felix Meiner, 2006. p. 117-29.
Nordmann, A. Philosophy of nanotechnoscience. In: Schmid, G. et al. (Ed.). Nanotechnology, principles and fundamentals. Weinheim: Wiley, 2008. v. 1. p. 217-44.
Nordmann, A. The hypothesis of reality and the reality of hypotheses. In: Heidelberger, M. & Schiemann, G. (Ed.). The significance of the hypothetical in the natural sciences. Berlin: de Gruyter, 2009. p. 313-39.
Nordmann, A. Science in the context of technology. In: Carrier, M. & Nordmann, A. (Ed.). Science in the context of application. Dordrecht: Springer, 2010. p. 467-82.
Nordmann, A. Was wissen die Technowissenschaften? In: Gethmann, F. (Ed.). Lebenswelt und Wissenschaft: Kolloquiumsband des XXI Deutschen Kongresses für Philosophie. Hamburg: Meiner, 2011. p. 566-79.
Nordmann, A.; Schummer, J. & Schwarz, A. (Ed.). Nanotechnologien im Kontext: philosophische, ethische und gesellschaftliche Perspektiven. Berlin: Akademische Verlagsanstalt, 2006.
Peirce, C. S. The fixation of belief and How to make our ideas clear. In: Houser, N. & Kloesel, C. (Ed.). The essential Peirce. Bloomington: Indiana University Press, 1992. v. 1. p. 109–41.
Popper, K. R. Epistemology without a knowing subject. In: Popper, K. R. Objective knowledge. Oxford: Clarendon, 1979. p. 109-57.
Sazonova, V. et al. A tunable carbon nanotube electromechanical oscillator. Nature, 431, p. 284-7, 2004.
Selzer, Y. et al. Temperature effects on conduction through a molecular junction. Nanotechnology, 15, p. 483-8, 2004.
Schmid, G. et al. (Ed.). Nanotechnology, principles and fundamentals. Weinheim: Wiley, 2008. v. 1.
Wise, N. Growing explanations: historical perspectives on recent science. Durham: Duke University Press, 2004.
Ziman, J. M. Public knowledge: an essay concerning the social dimension of science. London: Cambridge University Press, 1968.
Zülsdorf, T. B. et al. (Ed.). Quantum engagements: social reflections of nanoscience and emerging technologies. Amsterdam: IOS Press, 2011.
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2012 Scientiae Studia

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
A revista detém os direitos autorais de todos os textos nela publicados. Os autores estão autorizados a republicar seus textos mediante menção da publicação anterior na revista. A revista adota a Licença Creative Commons Attribution-NonCommercial-ShareAlike 4.