Fibras cuánticas para sistemas clásicos: introducción a la cuantificación geométrica

Autores

  • Gabriel Catren Université Paris 7; Investigador del laboratorio Sphere

DOI:

https://doi.org/10.1590/S1678-31662013000100003

Palavras-chave:

Cuantificación geométrica, Geometría simpléctica, Mecánica cuántica

Resumo

En este artículo, se introducirá el formalismo de cuantificación canónica denominado "cuantificación geométrica". Dado que dicho formalismo permite entender la mecánica cuántica como una extensión geométrica de la mecánica clásica, se identificarán las insuficiencias de esta última resueltas por dicha extensión. Se mostrará luego como la cuantificación geométrica permite explicar algunos de los rasgos distintivos de la mecánica cuántica, como, por ejemplo, la noconmutatividad de los operadores cuánticos y el carácter discreto de los espectros de ciertos operadores.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Abraham, R. & Marsden, J. E. Foundations of mechanics. Massachusetts: Addison-Wesley Publishing Company, Inc., 1978.

Alvarez, O. Topological quantization and cohomology. Communications in Mathematical Physics, 100, p. 279-309, 1985.

Arnold, V. I. Mathematical methods of classical mechanics. New York: Springer, 1989.

Arnold, V. I.; Kozlov, V. V. & Neishtadt, A. I. (Ed.). Encyclopaedia of mathematical sciences. Berlin: Springer, 1985. v. 4: Dynamical systems.

Bayen, F. et al. Quantum mechanics as a deformation of classical mechanics. Letters of Mathematical Physics, 1, p. 521-30, 1977.

Bayen, F. et al. Deformation theory and quantization. Annals of Physics, 1, 3, p. 61-110, 1978.

Bitbol, M., Kerszberg, P. & Petitot, J. (Ed.). Constituting objectivity: transcendental approaches of modern physics. Berlin: Springer-Verlag, 2009. (The Western Ontario Series in the Philosophy of Science, 74).

Bott, R. & Tu, W. Differential forms in algebraic topology. New York: Springer-Verlag, 1982.

Brylinski, J. L. Loop spaces, characteristic classes, and geometric quantization. Boston: Birkhäuser Boston, 1993. (Program of Mathematics, 107).

Catren, G. On classical and quantum objectivity. Foundations of Physics, 38, p. 470-87, 2008a.

Catren, G. Geometric foundations of classical Yang-Mills theory. Studies in History and Philosophy of Modern Physics, 39, p. 511-31, 2008b.

Catren, G. Can classical description of physical reality be considered complete? In: Bitbol, M., Kerszberg, P. & Petitot, J. (Ed.). Constituting objectivity: transcendental approaches of modern physics. Berlin: Springer-Verlag, 2009. p. 375–86.

Catren, G. Quantum ontology in the light of Gauge theories. In: De Ronde, C.; Aerts, S. & Aerts, D. (Ed.). Probing the meaning of quantum mechanics: physical, philosophical, and logical perspectives. Singapore: World Scientific, en prensa.

de Ronde, C.; Aerts, S. & Aerts, D. (Ed.). Probing the meaning of quantum mechanics: physical, philosophical, and logical perspectives. Singapore: World Scientific, en prensa.

Dirac, P. A. M. Quantized singularities in the electromagnetic field. Procedings of Royal Society A, 133, p. 60, 1931.

Dirac, P. A. M. The principles of quantum mechanics. Oxford: Oxford University Press, 1967.

Flato, M. et al. Crochet de Moyal-Vey et quantification. Comptes Rendus de la Academie des Sciences de Paris I Math., 283, p. 1924, 1976.

Ginzburg, V. et al. Moment maps cobordisms and hamiltonian group actions. Rhode Island: American Mathematical Society, 2001.

Goldstein, H. Classical mechanics. 3. ed. Boston: Addison-Wesley Publishing Company, 2001.

Guillemin, V. & Sternberg, S. Symplectic techniques in physics. Cambridge: Cambridge University Press, 1984.

Hegel, G. W. F. Fenomenología del espíritu. Traducción W. Roses. México: Fondo de Cultura Económica, 1998.

Kant, I. Crítica de la razón pura. Traducción P. Ribas. Madrid: Alfaguara, 1998.

Kirillov, A. A. Geometric quantization. In: Arnold, V. I.; Kozlov, V. V. & Neishtadt, A. I. (Ed.). Encyclopaedia of mathematical sciences. Berlin: Springer, 1985. v. 4: Dynamical systems. p. 137-72.

Kobayashi, S. & Nomizu, K. Foundations of differential geometry. New York: Wiley, 1963. v. 1.

Konstant, B. Quantization and unitary representations. Lecture notes in mathematics. New York: Springer-Verlag, 170, 1970.

Marsden, J. E. & Ratiu, T. S. Introduction to mechanics and symmetry. New York: Springer-Verlag, 1999.

Puta, M. Hamiltonian mechanical systems and geometric quantization. London: Kluwer Academic Publishers, 1993.

Souriau, J. M. Structure of dynamical systems. A symplectic view of physics. Boston: Birkhäuser, 1997.

Woodhouse, N. Geometric quantization. Oxford: Oxford University Press, 1992.

Publicado

2013-03-01

Edição

Seção

Artigos

Como Citar

Fibras cuánticas para sistemas clásicos: introducción a la cuantificación geométrica. (2013). Scientiae Studia, 11(1), 35-74. https://doi.org/10.1590/S1678-31662013000100003