El efecto Hall cuántico y sus contextos
DOI:
https://doi.org/10.1590/S1678-31662013000100007Palavras-chave:
Efecto Hall clásico, Efecto Hall cuántico, Topología cuánticaResumo
En este artículo, se atienden ciertas facetas conceptuales y experimentales del efecto Hall cuántico. Se argumenta que el mismo ofrece variados matices para la reflexión filosófica, desde la generación de entidades teóricas hasta la epistemología de la experimentación. La exposición pretende mantener cierta sensibilidad por la dinámica histórica en torno del tema, como así también por las implicaciones metrológicas de ámbitos cuánticos específicos. Dada la enorme producción científica sobre el tema, se hace un recorte a los fines de rescatar algunos perfiles significativos de los fenómenos asociados con ese efecto.
Downloads
Referências
Ando, T. Theory of quantum transport in a two-dimensional electron system under magnetic fields. Journal of Physics Society, 37, p. 622-30, 1974.
Anderson, P. W. More is different. Science, 177, 4047, p. 393-6, 1972.
Anderson, P. W. Physics: the opening to complexity. Proceeding National Academy of Science USA, 92, p. 6653-4, 1995.
Arovas, D. et al. Fractional statistics and the quantum Hall effect. Physics Review Letters, 53, p. 722-3, 1984.
Avron, E. et al. A topological look at the quantum Hall effect. Physics Today, 56, 8, p. 38-42, 2003.
Bms News. Search and discovery: quantized Hall effect yields e2/h to a part per million. Physics Today, 19, p. 17-19, 1981.
Brüne C. et al. Spin polarization of the quantum spin Hall edge states. Nature Physics, 8, p. 485-90, 2012.
Chern, S. S. & Simons, J. Characteristic forms and geometric invariants. Annals of Mathematics, 99, 1, p. 48–69, 1974.
Dolev, M. et al. Observation of a quarter of an electron charge at the v = 5/2 quantum Hall state. Nature, 452, p. 829-34, 2008.
Dyakonov, M. I. Twenty years since the discovery of the fractional quantum Hall effect: current state of the theory. In: Vagner, I. D.; Wyder, P. & Maniv, T. (Ed.). Recent trends in theory of physical phenomena in high magnetic fields. Berlin: Springer, 2003. p. 75-88.
Ezawa, Z. F. Quantum Hall effects. 2 ed. Singapore: World Scientific, 2008.
Greiter, M., Quantum Hall quarks. Physica, E 1, p. 1-6, 1997.
Girvin, S. M. The quantum Hall effect: novel excitations and broken symmetries. Bloomington: Course 2, Dept. of Physics, Indiana University, 1999.
Goldhaber, A. S. Fractional charge definitions and conditions. Journal of Mathematical Physics, 44, 8, p. 3607-19, 2003.
Hall, E. H. On a new action of the magnet on electric currents. American Journal of Mathematics, 2, p. 287-92, 1879.
Hasan, M. & Kane, C. L. Topological insulators. Review of Modern Physics, 82, 4, p. 3045. 2010.
Jackson, J. D. Electrodinámica clásica. Madrid: Alhambra, 1980.
Jain, J. K. The composite fermion: a quantum particle and its quantum fluids. Physics Today, 53, 4, p. 39-45, 2000.
Laughlin R. B. Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Physics Review Letters, 50, 18, p. 1395-8, 1983.
Laughlin R. B. Nobel Lecture: Fractional quantization. Review of Modern Physics, 71, 4, p. 863-74, 1999.
Laughlin R. B. A different universe. Reinventing physics from the bottom down. Cambridge: Basic Books, 2005.
Maxwell, J. C. A treatise on electricity and magnetism. Oxford: Clarendon Press, 1873. 2 v.
Moore, J. The birth of topological insulators. Nature, 464, p. 194-8, 2010.
Mourik, V. et al. Signatures of Majorana Fermions in hybrid superconductor-semiconductor nanowire devices. Science, 336, 6084, p. 1003-7, 2012.
Murthy G. & Shankar, R. Hamiltonian theories of the fractional quantum Hall effect. Review of Modern Physics 75, 4, p. 1101-58, 2003.
Nayak, C. et al. Non-abelian anyons and topological quantum computation. Review of Modern Physics, 80, 3, p. 1083-159, 2008.
Panofsky, W. & Phillips, M. Classical electricity and magnetism. Nova York: Dover, 1962.
Qi X. L. & Zhang S. C. Topological insulators and superconductors. Review Modern Physics, 83, p. 1057-110, 2011.
Rodgers, P. New paths to the ultimate theory. Physics World, 14, 12, p. 5, 2001.
Stern, A. Anyons and the quantum Hall effect. A pedagogical review. Annals of Physics, 323, p. 204-49, 2008.
Stern, A. Non-abelian states of matter. Nature, 464, p. 187-93, 2010.
Stone, M. (Ed.). Quantum Hall effect. Singapore: World Scientific, 1992.
Stormer, H. L. Nobel lecture: the fractional quantum Hall effect. Review Modern Physics, 71, 4, p. 875-89, 1999.
Tsui, D. et al. Two-dimensional magnetotransport in the extreme quantum limit. Physics Review Letters, 48, 22, p. 1559, 1982.
Vagner, I. D.; Wyder, P. & Maniv, T. (Ed.). Recent trends in theory of physical phenomena in high magnetic fields. Berlin: Springer, 2003.
Von Klitzing, K. 25 years of quantum hall effect (QHE). A personal view on the discovery, physics and applications of this quantum effect. Séminaire Poincaré, 2, p. 1-16, 2004.
Von Klitzing, K. et. al. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Physics Review Letters, 45, 6, p. 494, 1980.
Weinberg, S. Dreams of a final theory. Nova York: Pantheon Books, 1993.
Wilczek, F. (Ed.). Fractional statistics and Anyon superconductivity. Singapore: World Scientific, 1990.
Wilczek, F. Some basic aspects of fractional quantum numbers. Fantastic Realities, 49, p. 359-83. 2006a.
Wilczek, F. From electronics to anyonics. Physics World, 19, 1, p. 22-3, 2006b.
Zhang S. & Hu, J. A four dimensional generalization of the quantum Hall effect. Science, 294, p. 823, 2001.
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2013 Scientiae Studia

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
A revista detém os direitos autorais de todos os textos nela publicados. Os autores estão autorizados a republicar seus textos mediante menção da publicação anterior na revista. A revista adota a Licença Creative Commons Attribution-NonCommercial-ShareAlike 4.