A reformulação do conceito de predicatividade segundo Poincaré

Autores

  • Jacintho Del Vecchio Junior Academia de Polícia Militar do Barro Branco

DOI:

https://doi.org/10.1590/S1678-31662013000200009

Resumo

Este texto introduz a tradução do discurso de intitulado "Sobre os números transfinitos" ("Über transfinite Zahlen"), proferido por Henri Poincaré em 27 de abril de 1909, na Universidade de Göttingen. Após uma breve apresentação do pensamento do autor acerca dos fundamentos da aritmética, procura-se citar os aspectos mais relevantes da chamada crise dos fundamentos da matemática, para então introduzir a reformulação do conceito de predicatividade aventada no referido discurso sobre números transfinitos, contribuição compreendida como um recurso teórico necessário para a superação dos paradoxos relativos à teoria dos conjuntos. Com isso, pretende-se evidenciar o papel central do texto publicado nesta edição para o desenvolvimento da concepção matemática de Henri Poincaré.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Barot, E. En quoi la crise des fondements des mathématiques est-elle terminée? Philosophia Scientiae, 9, p. 23-39, 2005.

Bernays, P. On platonism in mathematics. In: Benacerraf, P. & Putnam, H. (Org.). Philosophy of mathematics: selected readings. 2. ed. Cambridge: Cambridge University Press, 1983 [1934]. p. 258-71.

Borel, É. Leçons sur la théorie des functions. 3. ed. Paris: Gauthier, 1928 [1904].

Brouwer, L. E. J. On the foundations of mathematics. In: Brouwer, L. E. J. Brouwer collected works. Amsterdam: North Holland, 1975 [1907]. p. 13-97.

Brouwer, L. E. J. Formalism and intuitionism. In: Benacerraf, P. & Putnam, H. (Org.). Philosophy of mathematics: selected readings. 2. ed. Cambridge: Cambridge University Press, 1983 [1912]. p. 77-89.

Cantor, G. Contributions to the founding of the theory of transfinite numbers. New York: Dover, 1915.

Cavaillès, J. Sur la logique et la theorie de la science. 4. ed. Paris:Vrin, 1987 [1942].

Couturat, L. Les principes des mathématiques. Paris: Blanchard, 1980 [1904].

da Costa, N. Ensaio sobre os fundamentos da lógica. São Paulo: Hucitec/Edusp, 1980.

Frege, G. The concept of number. In: Benacerraf, P. & Putnam, H. (Org.). Philosophy of mathematics: selected readings. 2. ed. Cambridge: Cambridge University Press, 1983 [1884]. p. 130-59.

Heinzmann, G. Entre intuition et analyse: Poincaré et le concept de prédicativité. Paris: Blanchard, 1985.

Heinzmann, G. (Org.). Poincaré, Russell, Zermelo et Peano. Paris: Blanchard, 1986.

Heinzmann, G. Henri Poincaré et sa pensée en philosophie des sciences. In: Charpentier, E. & Ghys, A. (Org.). L’héritage scientifique de Poincaré. Paris: Belin, 2006. p. 399-418.

Hilbert, D. On the foundations of logic and arithmetic. In: Van Heijenoort, J. (Org.). From Frege to Gödel: A source book in mathematical logic, 1879-1931. Cambridge: Harvard University Press, 1967 [1904]. p. 129-138.

Hobsbawm, E. A era do capital. 4. ed. São Paulo: Paz e Terra, 1988.

Kant, I. Crítica da razão pura. Lisboa: Fundação Calouste Gulbenkian, 1994 [1781].

Kant, I. Prolegômenos a toda a metafísica futura. 3. ed. Lisboa: Edições 70, 1990 [1783].

Kline, M. Mathematical thought from ancient to modern times. New York: Oxford University Press, 1972.

Leibniz, G. Letters to Samuel Clarke. The philosophical works of Leibnitz. New Heaven: Tuttle, Morehouse & Taylor, p. 238-86, 1890 [1715-16].

Mooij, J. La philosophie des mathématiques de Henri Poincaré. Paris: Gauthier-Villars, 1966. (Collection de Logique Mathématique.)

Peano, G. Aditione. In: Heinzmann, G. (Org.). Poincaré, Russell, Zermelo et Peano. Paris: Blanchard, p. 106-20 [143-57], 1986 [1906].

Poincaré, H. Science et méthode. Paris: Flammarion, 1920 [1908].

Poincaré, H. La valeur de la science. Paris: Flammarion, 1923 [1905].

Poincaré, H. La science et l’hypothèse. Paris: Flammarion, 1968 [1902].

Poincaré, H. Les mathématiques et la logique. In: Heinzmann, G. (Org.). Poincaré, Russell, Zermelo et Peano. Paris: Blanchard, p. 11-41 [815-35], 1986 [1905].

Poincaré, H. Les mathématiques et la logique. In: Heinzmann, G. (Org.). Poincaré, Russell, Zermelo et Peano. Paris: Blanchard, p. 42-53 [17-34], 1986 [1906a].

Poincaré, H. Les mathématiques et la logique. In: Heinzmann, G. (Org.). Poincaré, Russell, Zermelo et Peano. Paris: Blanchard, p. 79-104 [294-317], 1986 [1906b].

Poincaré, H. Über transfinite Zahlen. In: Heinzmann, G. (Org.). Poincaré, Russell, Zermelo et Peano. Paris: Blanchard, p. 231-4 [45-8], 1986 [1909a].

Poincaré, H. La logique de l’infini. In: Heinzmann, G. (Org.). Poincaré, Russell, Zermelo et Peano. Paris: Blanchard, p. 235-56 [461-82], 1986 [1909b].

Poincaré, H. La logique de l’infini. In: Heinzmann, G. (Org.). Poincaré, Russell, Zermelo et Peano. Paris: Blanchard, p. 305-16 [1-11], 1986 [1912].

Richard, J. The principles of mathematics and the problem of sets. In: Van Heijenoort, J. (Org.). From Frege to Gödel: A source book in mathematical logic, 1879-1931. Cambridge: Harvard University Press, p. 142-4, 1967 [1905].

Russell, B. On some difficulties in the theory of transfinite numbers and order types. Proceedings of the London Mathematical Society, 4, p. 29-53, 1906.

Russell, B. The principles of mathematics. 2. ed. New York: W. W. Norton, 1937 [1903].

Russell, B. A filosofia de Leibniz. São Paulo: Biblioteca Universitária, 1968 [1958].

Russell, B. Les paradoxes de la logique. Heinzmann, G. (Org.). Poincaré, Russell, Zermelo et Peano. Paris: Blanchard, p. 121-43 [627-50], 1986 [1906].

Russell, B. Mathematical logic as based on the theory of types. In: Heinzmann, G. (Org.). Poincaré, Russell, Zermelo et Peano. Paris: Blanchard, p. 200-23 [222-44], 1986 [1908].

Schoenflies, A. Die Krisis in Cantor’s mathematischem Schaffen. Acta Mathematica, 50, p. 1-23, 1927.

Stoll, R. Set theory. In: Encyclopaedia britannica. 15. ed., 1993. v. 27, p. 226-32.

Van Heijenoort, J. (Org.). From Frege to Gödel: a source book in mathematical logic, 1879-1931. Cambridge: Harvard University Press, 1967.

Zermelo, E. Proof that every set can be well-ordered. Van Heijenoort, J. (Org.). From Frege to Gödel: A source book in mathematical logic, 1879-1931. Cambridge: Harvard University Press, 1967 [1904]. p. 139-41.

Zermelo, E. Untersuchungen über die Grundlagen der Megenlehre. In: Heinzmann, G. (Org.). Poincaré, Russell, Zermelo et Peano. Paris: Blanchard, 1986 [1907]. p. 179-99.

Downloads

Publicado

2013-06-01

Edição

Seção

Documentos Científicos

Como Citar

A reformulação do conceito de predicatividade segundo Poincaré . (2013). Scientiae Studia, 11(2), 391-416. https://doi.org/10.1590/S1678-31662013000200009