Continuous flow Aza-Michael reaction for preparing the fast-acting synthetic opioid drug Remifentanil
DOI:
https://doi.org/10.1590/s2175-97902023e22764%20%20Keywords:
Remifentanil, Opioids, Organic synthesis, Continuous flow synthesisAbstract
Remifentanil is a modern fentanyl analogue with ultrashort-action granted by an esterase-labile methyl propanoate chain. Here, we present the development of a continuous flow methodology for the key N-alkylation step of remifentanil preparation in a biphasic, “slug-flow” regime. We screened parameters under microwave-assisted reactions, translated conditions to flow settings, and obtained remifentanil under 15-min residence time in a 1-mL microreactor, with a space-time yield of 89 mg/mL·h and 94% yield.
Downloads
References
Adamo A, Beingessner RL, Behnam M, Chen J, Jamison TF, Jensen KF, et al. On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system. Science (80-). 2016;352(6281):61-7. Doi: 10.1126/science. aaf1337.
» https://doi.org/10.1126/science. aaf1337
Aguillon A, Leão R, Oliveira KT, Brocksom T, Miranda L, de Souza ROMA. Process intensification for obtaining a cannabidiol intermediate by Photo-oxygenation of limonene under continuous-glow conditions. Org Process Res Dev. 2020;24(10):2017-24. Doi: 10.1021/acs.oprd.0c00131.
» https://doi.org/10.1021/acs.oprd.0c00131
Bloemendal VRLJ, Janssen MACH, van Hest JCM, Rutjes FPJT. Continuous one-flow multi-step synthesis of active pharmaceutical ingredients. React Chem Eng. 2020;5(7):1186-97. Doi: 10.1039/d0re00087f.
» https://doi.org/10.1039/d0re00087f
Bürkle H, Dunbar S, van Aken H. Remifentanil: A novel, short-acting, μ-opioid. Anesth Analg. 1996;83(3):646-51. Doi: 10.1097/00000539-199609000-00038.
» https://doi.org/10.1097/00000539-199609000-00038
Dallinger D, Kappe CO. Why flow means green-Evaluating the merits of continuous processing in the context of sustainability. Curr Opin Green Sustain Chem. 2017;7:6-12. Doi: 10.1016/j.cogsc.2017.06.003.
» https://doi.org/10.1016/j.cogsc.2017.06.003
Feldman PL. Insights into the chemical discovery of remifentanil. Anesthesiology. 2020;(5):1229-34. Doi: 10.1097/ALN.0000000000003170.
» https://doi.org/10.1097/ALN.0000000000003170
Glasnov TN, Kappe CO. The microwave-to-flow paradigm: Translating high-temperature batch microwave chemistry to scalable continuous-flow processes. Chem-A Eur J. 2011;17(43):11956-68. Doi: 10.1002/chem.201102065.
» https://doi.org/10.1002/chem.201102065
Janssen PA, Gardocki JF. Method for producing analgesia. US 3141823 A, Dr. C. Janssen N.V., 1964.
Kockmann N, Gottsponer M, Zimmermann B, Roberge DM. Enabling continuous-flow chemistry in microstructured devices for pharmaceutical and fine-chemical production. Chem-A Eur J. 2008;14(25):7470-7. Doi: 10.1002/chem.200800707.
» https://doi.org/10.1002/chem.200800707
Malet-Sanz L, Susanne F. Continuous flow synthesis. a pharma perspective. J Med Chem. 2012;55(9):4062-98. Doi: 10.1021/jm2006029.
» https://doi.org/10.1021/jm2006029
Mandrelli F, Buco A, Piccioni L, Renner F, Guelat B, Martin B, et al. The scale-up of continuous biphasic liquid/liquid reactions under super-heating conditions: Methodology and reactor design. Green Chem. 2017;19(6):1425-30. Doi: 10.1039/c6gc02840c.
» https://doi.org/10.1039/c6gc02840c
Murie VE, Nicolino PV, dos Santos T, Gambacorta G, Nishimura RHV, Perovani IS, et al. Synthesis of 7-Chloroquinoline derivatives using mixed lithium-magnesium reagents. J Org Chem. 2021;86(19):13402-19. Doi: 10.1021/acs.joc.1c01521.
» https://doi.org/10.1021/acs.joc.1c01521
Pastre JC, Browne DL, Ley SV. Flow chemistry syntheses of natural products. Chem Soc Rev. 2013;42(23):8849-69. Doi: 10.1039/c3cs60246j.
» https://doi.org/10.1039/c3cs60246j
Pieber B, Gilmore K, Seeberger PH. Integrated flowprocessing-challenges in continuous multistep synthesis. J Flow Chem. 2017;7(October):1-8. Doi: 10.1556/1846.2017.00016.
» https://doi.org/10.1556/1846.2017.00016
Porta R, Benaglia M, Puglisi A. Flow chemistry: recent developments in the synthesis of pharmaceutical products. Org Process Res Dev. 2016;20(1):2-25. Doi: 10.1021/acs.oprd.5b00325.
» https://doi.org/10.1021/acs.oprd.5b00325
Raffa RB, Pergolizzi JV, LeQuang JA, Taylor R, Colucci S, Annabi MH. The fentanyl family: A distinguished medical history tainted by abuse. J Clin Pharm Ther. 2018;43(1):154-8. Doi: 10.1111/jcpt.12640.
» https://doi.org/10.1111/jcpt.12640
Sheldon RA. The: E factor 25 years on: The rise of green chemistry and sustainability. Green Chem. 2017;19(1):18-43. Doi: 10.1039/c6gc02157c.
» https://doi.org/10.1039/c6gc02157c
de Souza JM, Galaverna R, de Souza ANN, Brocksom TJ, Pastre JC, de Souza ROMA, et al. Impact of continuous flow chemistry in the synthesis of natural products and active pharmaceutical ingredients. An Acad Bras Cienc. 2018;90(1):1131-74. Doi: 10.1590/0001-3765201820170778.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Brazilian Journal of Pharmaceutical Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
All content of the journal, except where identified, is licensed under a Creative Commons attribution-type BY.
The on-line journal has open and free access.
How to Cite
Funding data
-
Fundação de Amparo à Pesquisa do Estado de São Paulo
Grant numbers 16/12718-1;17/50188-7;22/05327-7 -
Conselho Nacional de Desenvolvimento Científico e Tecnológico
-
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior