Penetração de corante superficial de dois ionômeros convencionais usados como selantes de fissuras dentárias

Autores

  • Marcella C. B. Malta Universidade do Estado do Rio de Janeiro
  • Márcia R. T. C. Andrade Universidade Federal Fluminense
  • Mirian de W. S. de Marsillac Universidade do Estado do Rio de Janeiro
  • Luiz H. M. Prates Universidade Federal de Santa Catarina
  • Ricardo de S. Vieira Universidade Federal de Santa Catarina

DOI:

https://doi.org/10.11606/issn.2357-8041.clrd.2021.181208

Palavras-chave:

Cimentos de ionômeros de vidro, Selantes de fossas e fissuras, Teste de materiais

Resumo

Objetivo: Este estudo in vitro objetivou avaliar a infiltração superficial de dois cimentos de ionômero de vidro (CIV) convencionais, sendo um de alta viscosidade. Método: 20 amostras de discos padronizados de CIV, com 2 mm de espessura e 4 mm de diâmetro, foram feitos para cada grupo. O CIV de alta viscosidade foi utilizado como controle (Grupo 1). Esses corpos de prova foram embutidos em blocos de cera e submetidos à ciclagem de pH por 7 dias, a fim de simular um alto desafio cariogênico em estufa à 37º C. Todas as amostras foram escovadas com uma escova de dentes infantil de cerdas extra macias para reproduzir a higiene bucal após a exposição por 6 horas a solução desmineralizante. Ao final do processo de ciclagem de pH os corpos de prova foram submersos em azul de metileno à 1% por 2 horas. O teste estatístico Mann-Whitney foi usado para avaliar a diferença entre os dois CIV. Resultados: Todas as amostras tiveram mais de 0,5 mm de infiltração superficial. Não ocorreu diferença estatística significante entre os CIV testados (p = 0,883). Conclusão: Ambos CIV testados no presente estudo apresentaram infiltração superficial de corante na profundidade de até pelo menos um terço a partir da sua superfície.

Downloads

Os dados de download ainda não estão disponíveis.

Biografia do Autor

  • Marcella C. B. Malta, Universidade do Estado do Rio de Janeiro

    Department of Community and Preventive Dentistry, School of Dentistry of the State University of Rio de Janeiro (FOUERJ), Rio de Janeiro, RJ, Brazil

  • Márcia R. T. C. Andrade, Universidade Federal Fluminense

    Department of Pediatric Dentistry, School of Dentistry, Health Institute of the Federal University Fluminense (UFF), Nova Friburgo, RJ, Brazil

  • Mirian de W. S. de Marsillac, Universidade do Estado do Rio de Janeiro

    Department of Community and Preventive Dentistry, School of Dentistry of the State University of Rio de Janeiro (FOUERJ), Rio de Janeiro, RJ, Brazil

  • Luiz H. M. Prates, Universidade Federal de Santa Catarina

    Department of Stomatology, Dental School of the Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil

  • Ricardo de S. Vieira, Universidade Federal de Santa Catarina

    Department of Stomatology, Dental School of the Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil

Referências

Frencken JE, Holmgren CJ. Atraumatic Restorative Treatment (ART) for dental caries. Nijmegen: STI Book; 1999.

Ahovuo-Saloranta A, Forss H, Walsh T, Nordblad A, Mäkelä M, Worthington HV. Pit and fissure sealants for preventing dental decay in permanent teeth. Cochrane Database Syst Rev. 2017;31(7):CD001830. https://doi.org/10.1002/14651858.CD001830.pub5.

American Academy of Pediatric Dentistry. The reference Manual of Pediatric Dentistry [Internet]. Chicago: American Academy of Pediatric Dentistry; 2016 [cited 2019 Oct 2019]. Available from: https://www.aapd.org/research/oral-health-policies--recommendations/pit_and_fissure_sealants/

Davidson AL. Advances in Glass-Ionomer Cements. J Appl Oral Sci. 2006;14(Suppl):3-9. https://doi.org/10.1590/s1678-77572006000700002

Smales RJ, Gao W, Ho FT. In vitro evaluation of sealing pits and fissures with newer glass-ionomer cements developed for the ART technique. J Clin Pediatr Dent. 1997;21(4):321-3.

Berg JH, Croll TP. Glass ionomer restorative cement systems: an update. Pediatr Dent. 2015;37(2):116-24.

Guggenberg R, May R, Stefan KP. New trends in glass-ionomer chemistry. Biomaterials. 1998;19(6):479-83. https://doi.org/10.1016/s0142-9612(97)00127-0

Crisp S, Lewis BG, Wilson AD. Glass ionomer cements: Chemistry of erosion. J Dent Res. 1976;55(6):1032-41. https://doi.org/10.1177/00220345760550060501

Bueno LS, Silva RM, Magalhães APR, Navarro MFL, Pascotto RC, Buzalaf MAR, et al. Positive correlation between fluoride release and acid erosion of restorative glass-ionomer cements. Dent Mater. 2019;35(1):135-43. https://doi.org/10.1016/j.dental.2018.11.007.

Forss H, Seppä L. Studies on the effect of fluoride release by glass ionomers in the oral cavity. Adv Dent Res. 1995;9(4):389-93. https://doi.org/ 10.1177/08959374950090040801

Perez CR, Jr Hirata R, Silva AHMFT. Glaze/composite sealant on the 3-D surface roughness of esthetic materials. Oper Dent. 2009;34(6):674-80. https://doi.org/10.2341/08-014-L

KaraoĞlanoĞlu S, Akgül N, Özdabak HN, Akgül HM. Effectiveness of surface protection for glass-ionomer, resin-modified glass-ionomer and polyacid-modified composite resins. Dent Mater J. 2009;28(1):96-101.

Argenta RM, Tabchoury CP, Cury JA. A modified pH-cycling model to evaluate fluoride effect on enamel demineralization. Pesqui Odontol Bras. 2003;17(3):241-6. https://doi.org/10.1590/s1517-74912003000300008

Souchois MW, Vieira RS. Effect of a glass ionomer cement and a fluoride varnish on cross-sectional microhardness values of artificial occlusal caries: In vitro study. Ind J Dent Res. 2012;23(6):732-7. https://doi.org/10.4103/0970-9290.111248

Kuhn AT, Wilson AD. The dissolution mechanisms of silicate and glass-ionomer dental cements. Biomaterials. 1985;6(6):378-82. https://doi.org/10.1016/0142-9612(85)90096-1

Fukasawa M, Matsuya S, Yamane M. Mechanism for erosion of glass-ionomer cements in an acidic buffer solution. J Dent Res. 1987;66(12):1770-4. https://doi.org/10.1177/00220345870660121401

Momoi Y, MC Cabe JF. Fluoride release from light-activated glass ionomer restorative cements. Dent Mater. 1993;9(3):151-4. https://doi.org/10.1016/0109-5641(93)90112-4

Wilson AD, Groffman DM, Kuhn AT. The release of fluoride and other chemical species from a glass-ionomer cement. Biomaterials. 1985;6(6):431-3. https://doi.org/10.1016/0142-9612(85)90107-3

Serra MC, Cury JA. The in vitro effect of glass-ionomer cement restoration on enamel subjected to a demineralization and remineralization model. Quintessence Int. 1992;23(2):143-7.

Tantbironjn D, Douglas WH, Versluis A. Inhibitive Effect of a Resin-Modified Glass Ionomer Cement on Remote Enamel Artificial Caries. Caries Res. 1997;31(4):275-80. https://doi.org/10.1159/000262411

Mejàre I, Mjör IA. Glass ionomer and resin-based fissure sealants: a clinical study. Scand J Dent Res. 1990;98(4):345-50. https://doi.org/10.1111/j.1600-0722.1990.tb00983.x

Wilson AD, Prosser HJ, Powis DM. Mechanism of adhesion of polyelectrolyte cements to hydroxyapatite. J Dent Res. 1983;62(5):590-2. https://doi.org/10.1177/00220345830620051801

Ngo H, Mount GJ, Peters MC. A study of glass-ionomer cement and its interface with enamel and dentin using a low-temperature, high-resolution scanning electron microscopic technique. Quintessence Int. 1997;28(1): 63-9.

Ten Cate JM, Buijs MJ, Damen JJM. The effects of GIC restorations on enamel and dentin demineralization and remineralization. Adv Dent Res. 1995;9(4):384-8. https://doi.org/10.1177/08959374950090040701

Mustafa HA, Soares AP, Paris S, Elhennawy K, Zaslansky P. The forgotten merits of GIC restorations: a systematic review. Clin Oral Investig. 2020;24(7):2189-201. https://doi.org/10.1007/s00784-020-03334-0

Hicks MJ, Flaitz CM. Caries-like lesion formation in oclusal fissures: an in vitro study. Quintessence Int. 1986;17(7):405-10.

Carvalho JC, Ekstrand KR, Thylstrup A. Dental plaque and caries on occlusal surfaces of first permanent molars in relation to stage of eruption. J Dent Res. 1989;68(5):773-9. https://doi.org/10.1177/00220345890680050401

Downloads

Publicado

2021-07-02

Edição

Seção

Artigos originais