Evaluation of longitudinal ligament of the spine of Wistar rats in an experimental model of Suit therapy

Authors

  • Marcia Cristina Dias Borges Unioeste; Laboratório de Estudo das Lesões e Recursos Fisioterapêuticos
  • Tatiane Kamada Errero Unioeste; Laboratório de Estudo das Lesões e Recursos Fisioterapêuticos
  • Camila Thieimi Rosa Unioeste; Laboratório de Estudo das Lesões e Recursos Fisioterapêuticos
  • Giovanni Ribeiro Bernardino Unioeste; Laboratório de Estudo das Lesões e Recursos Fisioterapêuticos. PR. Brasil
  • Rose Meire Costa Brancalhão Universidade do Oeste do Parana. PR. Brasil
  • Lucinéia de Fátima Chasko Ribeiro Universidade do Oeste do Parana. PR. Brasil
  • Gladson Ricardo Flor Bertolini Universidade do Oeste do Parana. PR. Brasil

DOI:

https://doi.org/10.1590/1809-2950/14542923022016

Abstract

ABSTRACT Ligaments adapt according to the intensity of physical activity and mechanical load to which they are subjected. In the last decade there have been methods and protocols in the field of infant neurofunctional physiotherapy, which have the term "suit" in common, to characterize the existence of suits with adjustable elastic bands and the possibility of applying load on the human skeleton. Since the mechanical load can produce fibrocartilaginous changes on the ligaments and also that no studies evaluating the effect of suit therapy on ligaments of the spine were found, research with experimental methods of load are justified. The aim of this study was to analyze thickness and morphology of longitudinal ligaments of the spine of Wistar rats when subjected to mechanical load by vertebral compression. Thirty animals were separated into five groups (G1 - control; G2 - simulation of the use of suit; G3, G4, and G5 - maintenance of the suit). The suit experimental model, in G4 and G5, were adapted weights or elastic bands arranged in "X" for 50% of spinal overload of the weight of the animal, who remained with the suit for 40 hours over four weeks of experiment, five days a week. There were no significant differences for thickness, and morphological changes of longitudinal ligaments were also not observed. We concluded that there were no changes in longitudinal ligaments of the spine in animals subjected to the experimental model of suit therapy.

Downloads

Download data is not yet available.

References

Mizuno J, Nakagawa H, Song J. Symptomatic ossification

of the anterior longitudinal ligament with stenosis of the

cervical spine: a report of seven cases. J Bone Joint Surg Br.

;87(10):1375-9.

Solomonow M. Ligaments: a source of musculoskeletal

disorders. J Bodyw Mov Ther. 2009;13(2):136-54.

Benjamin M, Toumi H, Ralphs JR, Bydder G, Best TM, Milz S.

Where tendons and ligaments meet bone: attachment sites

(‘entheses’) in relation to exercise and/or mechanical load. J

Anat. 2006;208(4):471-90.

Okuda T, Baba I, Fujimoto Y, Tanaka N, Sumida T,

Manabe H, et al. The pathology of ligamentum flavum

in degenerative lumbar disease. Spine (Phila Pa 1976).

;29(15):1689-97.

Kuo CK, Marturano JE, Tuan RS. Novel strategies in tendon

and ligament tissue engineering: Advanced biomaterials

and regeneration motifs. Sports Med Arthrosc Rehabil Ther

Technol. 2010;2(20).

Benhardt HA, Cosgriff-Hernandez EM. The role of mechanical

loading in ligament tissue engineering. Tissue Eng Part B

Rev. 2009;15(4):467-75.

Therasuit. About TheraSuit [Internet]. TheraSuit Method.

Available from: www.suittherapy.com/TheraSuit%20

Information.htm

ADELI. Rehabilitation and training center [Internet]. 2014.

Available from: http://www.adeli.gr

Borges MCD, Ribeiro LFC, Brancalhão RMC, Bertolini GRF.

Experimental model of suit therapy with traction bands in

vertebral bone remodeling in Wistar rats. J Nov Physiother.

;5(4).

Roussouly P, Pinheiro-Franco JL. Biomechanical analysis of

the spino-pelvic organization and adaptation in pathology.

Eur Spine J. 2011;20(Suppl 5):609-18.

Solomonow M. Ligaments: a source of work-related

musculoskeletal disorders. J Electromyogr Kinesiol.

;14(1):49-60.

Solomonow D, Davidson B, Zhou BH, Lu Y, Patel V, Solomonow

M. Neuromuscular neutral zones response to cyclic lumbar

flexion. J Biomech. 2008;41(13):2821-8.

Wearing SC, Hennig EM, Byrne NM, Steele JR, Hills AP. The

impact of childhood obesity on musculoskeletal form. Obes

Rev. 2006;7(2):209-18.

Benjamin M, Ralphs JR. Fibrocartilage in tendons and

ligaments – an adaptation to compressive load. J Anat.

;193(4):481-94.

Kasashima Y, Smith RKW, Birch HL, Takahashi T, Kusano K,

Goodship AE. Exercise-induced tendon hypertrophy: crosssectional area changes during growth are influenced by

exercise. Equine Vet J Suppl. 2002;34(Suppl 34):264-8.

Fujie H, Yamamoto N, Murakami T, Hayashi K. Effects of

growth on the response of the rabbit patellar tendon to

stress shielding: a biomechanical study. Clin Biomech (Bristol,

Avon). 2000;15(5):370-8.

Mattjie TF, Rosa CT, Borges MCD, Brancalhão RMC, Ribeiro

LFC, Bertolini GRF. Avaliação do disco intervertebral de

ratos Wistar após uso de experimental suit therapy. Fisioter

Pesqui. 2015;5(3):202-9.

Waugh CM, Korff T, Fath F, Blazevich AJ. Effects of resistance

training on tendon mechanical properties and rapid force

production in prepubertal children. J Appl Physiol (1985).

;117(3):257-66.

Pinski SE, King KB, Davidson BS, Zhou BH, Lu Y, Solomonow

M. High-frequency loading of lumbar ligaments increases

proinflammatory cytokines expression in a feline

model of repetitive musculoskeletal disorder. Spine J.

;10(12):1078-85.

Okamoto K, Kobashi G, Washio M, Sasaki S, Yokoyama

T, Miyake Y, et al. Dietary habits and risk of ossification of

the posterior longitudinal ligaments of the spine (OPLL);

findings from a case-control study in Japan. J Bone Miner

Metab. 2004;22(6):612-7.

Sugita D, Yayama T, Uchida K, Kokubo Y, Nakajima H,

Yamagishi A, et al. Indian hedgehog signaling promotes

chondrocyte differentiation in enchondral ossification in

human cervical ossification of the posterior longitudinal

ligament. Spine (Phila Pa 1976). 2013;38(22):E1388-96.

Ikuta K, Arima J, Sasaki K, Oga M, Nakano S, Tanaka T, et al.

Hypertrophy of the posterior longitudinal ligament in the

thoracic spine. Spinal Cord. 2006;44(3):200-2.

Saetia K, Cho D, Lee S, Kim DH, Kim SD. Ossification of the

posterior longitudinal ligament: a review. Neurosurg Focus.

;30(3):E1.

King K, Davidson B, Zhou BH, Lu Y, Solomonow M. High

magnitude cyclic load triggers inflammatory response

in lumbar ligaments. Clin Biomech (Bristol, Avon).

;24(10):792-8.

Fu Z, Shi J, Jia Jr. L, Yuan Jr. W, Guan Z. Intervertebral thoracic

disc calcification associated with ossification of posterior

longitudinal ligament in an eleven-year-old child. Spine

(Phila Pa 1976). 2011;36(12):E808-10.

Uchida K, Yayama T, Sugita D, Nakajima H, Guerrero AR,

Watanabe S, et al. Initiation and progression of ossification

of the posterior longitudinal ligament of the cervical spine

in the hereditary spinal hyperostotic mouse (twy/twy). Eur

Spine J. 2012;21(1):149-55.

Nishida N, Kanchiku T, Kato Y, Imajo Y, Yoshida Y, Kawano

S, et al. Biomechanical analysis of cervical myelopathy

due to ossification of the posterior longitudinal ligament:

Effects of posterior decompression and kyphosis following

decompression. Exp Ther Med. 2014;7(5):1095-9.

Riquelme I, Cifre I, Muñoz MA, Montoya P. Altered

corticomuscular coherence elicited by paced isotonic

contractions in individuals with cerebral palsy: A case-control

study. J Electromyogr Kinesiol. 2014;24(6):928-33.

Published

2016-06-06

Issue

Section

Original Research

How to Cite

Evaluation of longitudinal ligament of the spine of Wistar rats in an experimental model of Suit therapy . (2016). Fisioterapia E Pesquisa, 23(2), 148-154. https://doi.org/10.1590/1809-2950/14542923022016