Effects of transcutaneous electrical diaphragmatic stimulation on the cardiac autonomic balance in healthy individuals: a randomized clinical trial

Authors

  • Luana Godinho Maynard Universidade Tiradentes. São Paulo. SP. Brasil
  • André Sales Barreto Universidade Federal de Sergipe (UFS). Aracaju, SE, Brasil
  • Valter Joviniano Santana-Filho Universidade Federal de Sergipe (UFS). Aracaju, SE, Brasil
  • Manoel Luiz de Cerqueira Neto Universidade Federal de Sergipe (UFS). Aracaju, SE, Brasil
  • Daniel Penteado Martins Dias University of São Paulo; Ribeirão Preto Medical School; Department of Physiology
  • Walderi Monteiro da Silva-Júnior Universidade Federal de Sergipe (UFS). Aracaju, SE, Brasil

DOI:

https://doi.org/10.1590/1809-2950/14720423032016

Abstract

The transcutaneous electrical diaphragmatic stimulation (TEDS) is a technique of respiratory muscle activation that affects breathing pattern and rhythm. In an attempt to evaluate changes in cardiac autonomic balance in response to TEDS in healthy individuals, we used a well-established TEDS model. Twenty-two volunteers aged between 22 and 35 years old, with no cardiac pathology history, were randomized into two groups (control, n = 8; TEDS, n = 14). The individuals were allowed to rest in supine position and were then subjected to the electrical stimulation protocol. The control group was subjected to electrical stimulation at perceptive level, whereas for the TEDS group the electric stimulus generated diaphragm contraction. Cardiac intervals (CI) were sampled by a Polar RS800CX monitor. Cardiac interval variability was studied in the time and frequency domains. In the control group, electrical stimulation did not change cardiac interval length and variability (CI: 761±44 vs. 807±39 ms; RMSSD: 37±9 vs. 42±13 ms ; LF: 69±6 vs. 67±5 nu; HF: 31±6 vs. 33±5 nu; all comparisons versus baseline). Nevertheless, as compared to baseline, TEDS group showed decreased sympathetic cardiac modulation (LF: 43±3 vs. 63±4 nu) and increased parasympathetic cardiac modulation (RMSSD: 109±10 vs. 41±6 ms; HF: 57±3 vs. 37±4 nu) during diaphragmatic stimulation. However, cardiac interval length was not changed by electrical stimulation (CI: 686±59 vs. 780±31 ms). It can be suggested that the use of TEDS stimulus leads to pronounced changes in the cardiac sympathovagal balance, with higher parasympathetic cardiac modulation, possibly induced by increased diaphragmatic excursion.

Downloads

Download data is not yet available.

References

Hassoun PM, Celli BR. Bilateral diaphragm paralysis

secondary to central von Recklinghausen’s disease. Chest. 2000 [acesso em 27 out. 2016];117(4):1196-200. Disponível

em: http://bit.ly/2dPZnEb

Moreno MA, Catai AM, Teodori RM, Borges BLA, Cesar MC, Silva E. Effect of a muscle stretching program using the

Global Postural Reeducation method on respiratory muscle strength and thoracoabdominal mobility of sedentary

young males. J Bras Pneumol. 2007 [acesso em 27 out. 2016];33(6):679-86. Disponível em: http://bit.ly/2fk5GVU

Reid WD, Dechman G. Considerations when testing and training the respiratory muscles. Phys Ther. 1995 [acesso

em 27 out. 2016];75(11):971-82. Disponível em: http://bit.ly/2eKVXXO

Shoemaker MJ, Donker S, Lapoe A. Inspiratory muscle training in patients with chronic obstructive pulmonary

disease: the state of the evidence. Cardiopulm Phys Ther J. 2009 [acesso em 27 out. 2016];20(3):5-15. Disponível em:

http://bit.ly/2eKitx2

Barbalho-Moulim MC, Miguel GPS, Forti EMP, Campos FA, Costa D. Effects of preoperative inspiratory muscle training in obese women undergoing open bariatric surgery: respiratory

muscle strength, lung volumes, and diaphragmatic excursion.

Clinics (São Paulo). 2011 [acesso em 27 out. 2016];66(10):1721

Disponível em: http://bit.ly/2fbDRQf

Robinson AJ, Snyder-Mackler L. Eletrofisiologia clínica: eletroterapia e teste eletrofisiológico. Artmed; 2002.

Forti EMP, Pachani GP, Montebelo MIL, Costa D. Transcutaneous diaphragmatic electrostimulation in healthy individuals. Fisioter Bras. 2005 [acesso em 27 out.

;6(4):261-4. Disponível em: http://bit.ly/2eKdcpp

Costa D, Forti EMP, Barbalho-Moulim MC, Rasera-Junior

I. Study on pulmonary volumes and thoracoabdominal

mobility in morbidly obese women undergoing bariatric surgery, treated with two different physical therapy methods.

Braz J Phys Ther. 2009 [acesso em 27 out. 2016];13(4):294-301. Disponível em: http://bit.ly/2e1sDey

Geddes LA, Voorhees WD, Babbs CF, Deford JA.

Electroventilation. Am J Emerg Med. 1985 [acesso em 27 out.

;3(4):337-9. Disponível em: http://bit.ly/2eAdWj7

Cuello A, Masciantonio L, Mendoza S. Estimulación

diafragmática eléctrica transcutânea. Med Intensiva. 1991

[acesso em 27 out. 2016];8(4):194-202. Disponível em: http://

bit.ly/2eRihNj

Pavlovic D, Wendt M. Diaphragm pacing during prolonged

mechanical ventilation of the lungs could prevent from

respiratory muscle fatigue. Med Hypotheses. 2003 [acesso

em 27 out. 2016];60(3):398-403. Disponível em: http://bit.

ly/2eRkI2F

Bernardi L, Spadacini G, Bellwon J, Hajric R, Roskamm H,

Frey AW. Effect of breathing rate on oxygen saturation and

exercise performance in chronic heart failure. Lancet. 1998

[acesso em 27 out. 2016];351(9112):1308-11. Disponível em:

http://bit.ly/2efJ2tl

Stauss HM. Heart rate variability. Am J Physiol Regul Integr

Comp Physiol. 2003 [acesso em 27 out. 2016];285(5):R927-

Disponível em: http://bit.ly/2fbBmNY

Yasuma F, Hayano J-I. Respiratory sinus arrhythmia: why

does the heartbeat synchronize with respiratory rhythm?

Chest. 2004 [acesso em 27 out. 2016];125(2):683-90.

Disponível em: http://bit.ly/2eAhfHa

Guz A, Innes JA, Murphy K. Respiratory modulation of left

ventricular stroke volume in man measured using pulsed

Doppler ultrasound. J Physiol (Lond). 1987 [acesso em 27

out. 2016];393:499-512. Disponível em: http://bit.ly/2eV105y

Taha BH, Simon PM, Dempsey JA, Skatrud JB, Iber C.

Respiratory sinus arrhythmia in humans: an obligatory role

for vagal feedback from the lungs. J Appl Physiol. 1995

[acesso em 27 out. 2016];78(2):638-45. Disponível em:

http://bit.ly/2eRlRqW

Daly MD, Kirkman E. Cardiovascular responses to stimulation

of pulmonary C fibres in the cat: their modulation by changes

in respiration. J Physiol (Lond). 1988 [acesso em 27 out.

;402:43-63. Disponível em: http://bit.ly/2eWdqsC

Cohen MA, Taylor JA. Short-term cardiovascular oscillations

in man: measuring and modelling the physiologies. J Physiol

(Lond). 2002 [acesso em 27 out. 2016];542(Pt 3):669-83.

Disponível em: http://bit.ly/2fbGIbE

Eckberg DL. The human respiratory gate. J Physiol (Lond).

[acesso em 27 out. 2016];548(Pt 2):339-52. Disponível

em: http://bit.ly/2e1v2pq

Denver JW, Reed SF, Porges SW. Methodological issues in the

quantification of respiratory sinus arrhythmia. Biol Psychol.

[acesso em 27 out. 2016];74(2):286-94. Disponível em:

http://bit.ly/2eUU5JA

Montano N, Ruscone TG, Porta A, Lombardi F, Pagani M,

Malliani A. Power spectrum analysis of heart rate variability

to assess the changes in sympathovagal balance during

graded orthostatic tilt. Circulation. 1994 [acesso em 27 out.

;90(4):1826-31. Disponível em: http://bit.ly/2eKPvQH

Task Force. Heart rate variability: standards of measurement,

physiological interpretation and clinical use. Task Force of

the European Society of Cardiology and the North American

Society of Pacing and Electrophysiology. Circulation. 1996

[acesso em 27 out. 2016];93(5):1043-65. Disponível em:

http://bit.ly/2eKeOPT

Lanfranchi PA, Somers VK. Arterial baroreflex function and

cardiovascular variability: interactions and implications. Am J

Physiol Regul Integr Comp Physiol. 2002 [acesso em 27 out.

;283(4):R815-26. Disponível em: http://bit.ly/2eRkMiF

Lombardi F, Malliani A, Pagani M, Cerutti S. Heart rate

variability and its sympatho-vagal modulation. Cardiovasc

Res. 1996 [acesso em 27 out. 2016];32(2):208-16. Disponível

em: http://bit.ly/2eUXAjm

DeGiorgio CM, Miller P, Meymandi S, Chin A, Epps J, Gordon

S, et al. RMSSD, a measure of vagus-mediated heart rate

variability, is associated with risk factors for SUDEP: the

Fisioter Pesqui. 2016;23(3):248-56

SUDEP-7 Inventory. Epilepsy Behav. 2010 [acesso em 27 out.

;19(1):78-81. Disponível em: http://bit.ly/2eUWDHy

Viera AJ, Bangdiwala SI. Eliminating bias in randomized

controlled trials: importance of allocation concealment and

masking. Fam Med. 2007 [acesso em 27 out. 2016];39(2):132-

Disponível em: http://bit.ly/2dPTXc8

Torgerson DJ, Roberts C. Randomisation methods:

concealment. BMJ. 1999 [acesso em 27 out.

;319(7206):375-6. Disponível em: http://bit.ly/2e1vLXF

Riscili CE, Hinds M, Voorhees WD, Bourland JD, Geddes

LA. The safety factor for electroventilation measured by

production of cardiac ectopy in the anesthetized dog. Chest.

[acesso em 27 out. 2016];95(1):214-7. Disponível em:

http://bit.ly/2eKdU68

Sinnreich R, Kark JD, Friedlander Y, Sapoznikov D, Luria MH.

Five minute recordings of heart rate variability for population

studies: repeatability and age-sex characteristics. Heart.

;80 [acesso em 27 out. 2016] (2):156-62. Disponível em:

http://bit.ly/2eRffbS

Min KB, Min J-Y, Paek D, Cho S-I, Son M. Is 5-minute

heart rate variability a useful measure for monitoring the

autonomic nervous system of workers? Int Heart J. 2008

[acesso em 27 out. 2016];49(2):175-81. Disponível em: http://

bit.ly/2dPYQCc

Gamelin FX, Berthoin S, Bosquet L. Validity of the polar S810

heart rate monitor to measure R-R intervals at rest. Med Sci

Sports Exerc. 2006 [acesso em 27 out. 2016];38(5):887-93.

Disponível em: http://bit.ly/2dPUyuo

Vanderlei LCM, Silva RA, Pastre CM, Azevedo FM, Godoy MF.

Comparison of the Polar S810i monitor and the ECG for the

analysis of heart rate variability in the time and frequency

domains. Braz J Med Biol Res. 2008 [acesso em 27 out.

;41(10):854-9. Disponível em: http://bit.ly/2dPUWsV

Porto LGG, Junqueira LF Jr. Comparison of time-domain

short-term heart interval variability analysis using a

wrist-worn heart rate monitor and the conventional

electrocardiogram. Pacing Clin Electrophysiol. 2009 [acesso

em 27 out. 2016];32(1):43-51. Disponível em: http://bit.

ly/2eRhdco

Pimentel AS, Alves ES, Alvim RO, Nunes RT, Costa CMA,

Lovisi JCM, et al. Polar S810 as an alternative resource to the

use of the electrocardiogram in the 4-second exercise test.

Arq Bras Cardiol. 2010 [acesso em 27 out. 2016];94(5):580-4.

Disponível em: http://bit.ly/2dPZjUY

Fernandes G. A Eficácia de um protocolo utilizando a

estimulação diafragmática elétrica transcutânea (Edet)

sobre a força muscular do diafragma, avaliada através da

Pimax, e sobre a expansibilidade torácica, verificada através

da cirtometria [Course Completion Assignment]. [Cascavel,

PR, Brazil]: Universidade Estadual do Oeste do Paraná; 2004

[acesso em 27 out. 2016]. Disponível em: http://bit.ly/2dMtt0i

Brown TE, Beightol LA, Koh J, Eckberg DL. Important

influence of respiration on human R-R interval power spectra

is largely ignored. J Appl Physiol. 1993 [acesso em 27 out.

;75(5):2310-7. Disponível em: http://bit.ly/2eUX7xv

Kobayashi H. Normalization of respiratory sinus arrhythmia

by factoring in tidal volume. Appl Human Sci. 1998 [acesso

em 27 out. 2016];17(5):207-13. Disponível em: http://bit.

ly/2eKh35R

Giardino ND, Glenny RW, Borson S, Chan L. Respiratory sinus

arrhythmia is associated with efficiency of pulmonary gas

exchange in healthy humans. Am J Physiol Heart Circ Physiol.

[acesso em 27 out. 2016];284(5):H1585-91. Disponível

em: http://bit.ly/2dPZEqz

Raupach T, Bahr F, Herrmann P, Luethje L, Heusser K, Hasenfuss

G, et al. Slow breathing reduces sympathoexcitation in COPD.

Eur Respir J. 2008 [acesso em 27 out. 2016];32(2):387-92.

Disponível em: http://bit.ly/2dMtkcX

Downloads

Published

2016-09-09

Issue

Section

Original Research

How to Cite

Effects of transcutaneous electrical diaphragmatic stimulation on the cardiac autonomic balance in healthy individuals: a randomized clinical trial . (2016). Fisioterapia E Pesquisa, 23(3), 248-256. https://doi.org/10.1590/1809-2950/14720423032016