Falls risk detection based on spatiotemporal parameters of three-dimensional gait analysis in healthy adult women from 50 to 70 years old

Authors

  • Flávia Martins Gervásio Universidade Estadual de Goiás (UEG) – Goiânia (GO), Brasil.
  • Guilherme Augusto Santos Universidade Estadual de Goiás (UEG) – Goiânia (GO), Brasil.
  • Darlan Martins Ribeiro Universidade Estadual de Goiás (UEG) – Goiânia (GO), Brasil.
  • Ruth Losada de Menezes Universidade de Brasília (UnB) - Brasília (DF). Brasil

DOI:

https://doi.org/10.1590/1809-2950/15661923042016

Keywords:

Gait, Accidental Falls, Women’s Health, Middle Age, Biomedical Technology

Abstract

The aim of this study was to compare and correlate spatiotemporal parameters that would indicate falls risk. Thirty-five healthy women without a history of falls in the previous year were selected. Five spatiotemporal parameters were collected from right (R) and left (L) lower limbs using three-dimensional gait analysis. Two groups: young women (20-40 years) and adult/older women (50-70 years) were analyzed. The comparisons between the groups differed in R (p=0.003) and L (p=0.002) stride length, R (p=0.008) and L (p=0.001) step length, L stance period (p=0.008), R step period (p=0.049), L double support time (p=0.003), step width (p=0.005), L loading response time (p=0.001), R (p=0.001) and L (p=0.001) pre-swing time. Gait cycle percentage data also showed statistical difference in L stance (p=0.001), L swing (p=0.001), L single support (p=0.025), L loading response (p=0.001), R (p=0.014) and L (p=0.001) pre-swing. Linear regression indicated that step and stride length increased 18% and gait velocity increased 20% with age variation. The results propose that functional measures (velocity, step and stride length) decrease as age increases, while stability measures (stance, double support and pre-swing time) increase. These findings suggest that women aged between 50-70 years may have falls risk. Women aged 50-60 are usually considered as having low falls risk.

Downloads

Download data is not yet available.

References

Ganz DA, Bao Y, Shekelle PG, Rubenstein LZ. Will my patient

fall? JAMA. 2007;297(1):77-86.

Senden R, Savelberg HH, Grimm B, Heyligers IC, Meijer K.

Accelerometry-based gait analysis, an additional objective

approach to screen subjects at risk for falling. Gait Posture.

;36(2):296-300. doi: 10.1016/j.gaitpost.2012.03.015.

Callisaya ML, Blizzard L, Schmidt MD, McGinley JL, Srikanth

VK. Ageing and gait variability – a population-based study

of older people. Age Ageing. 2010;39(2):191-7. doi: 10.1093/

ageing/afp250.

Thaler-Kall K, Peters A, Thorand B, Grill E, Autenrieth

CS, Horsch A, et al. Description of spatio-temporal gait

parameters in elderly people and their association with

history of falls: results of the population-based crosssectional KORA-Age study. BMC Geriatr. 2015;15(1):32. doi:

1186/s12877-015-0032-1.

Schwesig R, Fischer D, Lauenroth A, Becker S, Leuchte S. Can

falls be predicted with gait analytical and posturographic

measurement systems? A prospective follow-up study in a

nursing home population. Clin Rehabil. 2013;27(2):183-90.

doi: 10.1177/0269215512452880.

MacAulay RK, Allaire TD, Brouillette RM, Foil HC, BruceKeller AJ, Han H, et al. Longitudinal assessment of

neuropsychological and temporal/spatial gait characteristics

of elderly fallers: taking it all in stride. Front Aging Neurosci.

;7:34. doi: 10.3389/fnagi.2015.00034.

Verghese J, Holtzer R, Lipton RB, Wang C. Quantitative gait

markers and incident fall risk in older adults. J Gerontol A

Biol Sci Med Sci. 2009;64A(8):896-901. doi: 10.1093/gerona/

glp033.

Doyo W, Kozakai R, Kim HY, Ando F, Shimokata H.

Spatiotemporal components of the 3-D gait analysis of

community-dwelling middle-aged and elderly Japanese: age

and sex-related differences. Geriatr Gerontol Int. 2011;11(1):39-

doi: 10.1111/j.1447-0594.2010.00632.x.

Talbot LA, Musiol RJ, Witham EK, Metter EJ. Falls in young,

middle-aged and older community dwelling adults: perceived

cause, environmental factors and injury. BMC Public Health.

;5:86. doi: 10.1186/1471-2458-5-86.

Oh-Park M, Holtzer R, Xue X, Verghese J. Conventional

and robust quantitative gait norms in community-dwelling

older adults. J Am Geriatr Soc. 2010;58(8):1512-8. doi:

1111/j.1532-5415.2010.02962.x.

Arnold JB, Mackintosh S, Jones S, Thewlis D. Differences

in foot kinematics between young and older adults during

walking. Gait Posture. 2014;39(2):689-94. doi: 10.1016/j.

gaitpost.2013.09.021.

Suzuki T, Bean JF, Fielding RA. Muscle power of the ankle

flexors predicts functional performance in communitydwelling older women. J Am Geriatr Soc. 2001;49(9):1161-7.

Silva-Hamu TCD, Formiga CKMR, Gervásio FM, Ribeiro DM,

Christofoletti G, França Barros J. The impact of obesity in the

kinematic parameters of gait in young women. Int J Gen Med.

;6:507-13. doi: 10.2147/IJGM.S44768.

Ko S, Stenholm S, Ferrucci L. Characteristic gait patterns

in older adults with obesity – Results from the Baltimore

Longitudinal Study of Aging. J Biomech. 2010;43(6):1104-10.

doi: 10.1016/j.jbiomech.2009.

Kadaba MP, Ramakrishnan HK, Wootten ME. Measurement

of lower extremity kinematics during level walking. J Orthop

Res. 1990;8(3):383-92. doi: 10.1002/jor.1100080310.

Peak Performance Technologies. Manual Peak Motus 9.2.

Colorado: Motus; 2000.

Elble RJ, Thomas SS, Higgins C, Colliver J. Stride-dependent

changes in gait of older people. J Neurol. 1991;238(1):1-5.

Novaes RD, Miranda AS, Dourado VZ. Usual gait speed

assessment in middle-aged and elderly Brazilian subjects.

Rev Bras Fisioter. 2011;15(2):117-22.

Kaufman KR, Sutherland DH. Cinemática da marcha normal.

In: Rose J, Gamble JG, editors. Marcha: teoria e prática da

locomoção humana. 3. ed. São Paulo: Guanabara Koogan;

p. 35-52.

Perry J, Burnfield JM. Gait analysis: normal and pathological

function. 2. ed. New Jersey: Slack Incorporated; 2010.

Lipschitz DA. Screening for nutritional status in the elderly.

Prim Care. 1994;21(1):55-67.

Moreira BS, Sampaio RF, Kirkwood RN. Spatiotemporal gait

parameters and recurrent falls in community-dwelling elderly

women: a prospective study. Braz J Phys Ther. 2015;19(1):61-

doi: 10.1590/bjpt-rbf.2014.0067.

DeVita P, Hortobagyi T. Age causes a redistribution of joint

torques and powers during gait. J Appl Physiol (1985).

;88(5):1804-11.

Talbot LA, Musiol RJ, Witham EK, Metter EJ. Falls in young,

middle-aged and older community dwelling adults: perceived

cause, environmental factors and injury. BMC Public Health.

;18(5):86. doi: 10.1186/1471-2458-5-86.

Kerrigan DC, Todd MK, Della Croce U, Lipsitz LA, Collins JJ.

Biomechanical gait alterations independent of speed in the

healthy elderly: evidence for specific limiting impairments.

Arch Phys Med Rehabil. 1998;79(3):317-22.

Patterson KK, Nadkarni NK, Black SE, McIlroy WE. Gait

symmetry and velocity differ in their relationship to age. Gait

Posture. 2012;35(4):590-4. doi: 10.1016/j.gaitpost.2011.11.030.

Krishnan V, Rosenblatt NJ, Latash ML, Grabiner MD. The

effects of age on stabilization of the mediolateral trajectory

of the swing foot. Gait Posture. 38(4):923-8. doi: 10.1016/j.

gaitpost.2013.04.023.

Muir BC, Rietdyk S, Haddad JM. Gait initiation: the first

four steps in adults aged 20-25 years, 65-79 years, and

-91 years. Gait Posture. 2014;39(1):490-4. doi: 10.1016/j.

gaitpost.2013.08.037.

McAndrew Young PM, Dingwell JB. Voluntarily changing

step length or step width affects dynamic stability of

Fisioter Pesqui. 2016;23(4):358-364

human walking. Gait Posture. 2012;35(3):472-7. doi: 10.1016/j.

gaitpost.2011.11.010.

Montero-Odasso M, Schapira M, Soriano ER, Varela M, Kaplan

R, Camera LA, et al. Gait velocity as a single predictor of

adverse events in healthy seniors aged 75 years and older. J

Gerontol A Biol Sci Med Sci. 2005;60(10):1304-9.

Allard P, Lachance C, Aissaoui R, Duhaime M. Simultaneous

bilateral 3-D able-bodied gait. Hum Mov Sci. 1996;15:327-46.

Crosbie J, Vachalathiti R, Smith R. Age, gender and speed

effects on spinal kinematics during walking. Gait Posture.

;5:13-20.

Freire Junior RC, Porto JM, Rodrigues NC, Brunelli R M, Braga

LF, Abreu DC. Spatial and temporal gait characteristics in

pre-frail community-dwelling older adults. Geriatr Gerontol

Int. 2016;16(10):1102-8. doi: 10.1111/ggi.12594.

Bridenbaugh SA, Kressig RW. Laboratory review: the role

of gait analysis in seniors’ mobility and fall prevention.

Gerontology. 2011;57(3):256-64. doi: 10.1159/000322194.

König N, Singh NB, von Beckerath J, Janke L, Taylor WR. Is

gait variability reliable? An assessment of spatio-temporal

parameters of gait variability during continuous overground

walking. Gait Posture. 2014;39(1):615-7. doi: http://dx.doi.

org/10.1016/j.gaitpost.2013.06.014.

LaRoche DP, Greenleaf BL, Croce RV, McGaughy JA.

Interaction of age, cognitive function, and gait performance

in 50-80-year-olds. Age (Dordr.) 2014;36(4):9693. doi:

1007/s11357-014-9693-5.

Verlinden VJ, van der Geest JN, Hoogendam YY, Hofman

A, Breteler MM, Ikram MA. Gait patterns in a communitydwelling population aged 50 years and older. Gait Posture.

;37(4):500-5. doi: 10.1016/j.gaitpost.2012.09.005.

Published

2016-12-12

Issue

Section

Original Research

How to Cite

Falls risk detection based on spatiotemporal parameters of three-dimensional gait analysis in healthy adult women from 50 to 70 years old. (2016). Fisioterapia E Pesquisa, 23(4), 358-364. https://doi.org/10.1590/1809-2950/15661923042016