Analysis of pulmonary function and micromechanics structure after 14 days of movement restriction in female rats

Authors

  • Francisco Fleury Uchoa Santos Júnior Centro Universitário Estácio do Ceará. CE. Brasil
  • Karla Camila Lima de Souza Universidade Estadual do Ceará
  • Daniel Silveira Serra Universidade Estadual do Ceará. CE. Brasil
  • Vânia Marilande Ceccatto Universidade Estadual do Ceará
  • Francisco Sales Ávila Cavalcante Universidade Estadual do Ceará. CE. Brasil

DOI:

https://doi.org/10.1590/1809-2950/17484624022017

Keywords:

Immobilization, Respiratory System, Lung

Abstract

Immobilization is a condition that affects several segments and organic systems, including the respiratory system, leading to structural and functional alterations. The purpose of this study was to analyze pulmonary function and micromechanical structure after 14 days of movement restriction in rats. Fourteen female Wistar rats with body mass between 210±50 g were used, divided into two groups, composed of (n=7) each group: Control (C) and Immobilized (I). The immobilization procedure involved the abdomen (and last ribs), pelvis, hip and knee extension and the ankle in plantar flexion in the two week period. After the immobilization period, an analysis of the pulmonary function was performed using a mechanical ventilator for small animals, flexVent, and alveolar recruitment maneuvers. Subsequently, lung strips were removed from each animal for pulmonary micromechanics analysis. Statistical analysis was performed using the unpaired t test with p<0.05, expressed as mean±standard error of the mean. Group I presented significant changes in the parameters of airway resistance (Raw) Pre RM (C=0.067±0.003 cmH2O.s/mL, I=0.095±0.004 cmH2O.s/mL, p<0.05) and Hysteresivity (η) Pre RM (C=0.203±0.004 cmH2O.s/mL, I=0.248±0.013 cmH2O.s/mL, p<0.05), which returned to their normal values after RM. Raw Post RM (C=0.064±0.003 cmH2O.s/mL, I=0.065±0.004 cmH2O.s/mL, p<0.05) and η (C=0.209±0.005 cmH2O.s/mL, I=0.214±0.007 cmH2O.s/mL, p<0.05). It is concluded that immobilization causes reversible functional changes in the respiratory system after 14 days of movement restriction evidenced by the reduction of RN and η after RM.

Downloads

Download data is not yet available.

References

Santos FFU Jr, Souza ALQ, Franco FGS, André NM, Ceccatto VM.

Reabilitação diafragmática de ratos pós-imobilização com

terapia aquática. Fisioter Bras. 2012;13(6):419-3.

Santos FFU Jr, Pires AF, Ribeiro NM, Mendonça VA, Alves JO,

Soares PM, et al. Sensorial, structural and functional response

of rats subjected to hind limb immobilization. Life Sci.

;137:158-63. doi: 10.1016/j.lfs.2015.07.020.

Vasconcelos APT, Santos FFU Jr. Alterações na densidade

óssea pós-imobilização em ratos. Rev Saúde Diálogo.

;1(1):59-65.

Carvalho LC, Shimano AC, Picado CHF. Estimulação

elétrica neuromuscular e o alongamento passivo manual

na recuperação das propriedades mecânicas do músculo

gastrocnêmio imobilizado. Acta Ortop Bras. 2008;16(3):161-

doi: 10.1590/S1413-78522008000300007.

Abdalla DR, Bertoncello D, Carvalho LC. Avaliação das

propriedades mecânicas do músculo gastrocnêmio de ratas

Fisioter Pesqui. 2017;24(2):205-210

imobilizado e submetido à corrente russa. Fisioter Pesqui.

;16(1):59-64. doi: 10.1590/S1809-29502009000100011.

Santos FFU Jr, Alves JSM, Machado AAN, Carlos PS,

Ferraz ASM, Barbosa R, et al. Alterações morfométricas em

músculo respiratório de ratos submetidos à imobilização

de pata. Rev Bras Med Esporte. 2010;16(3):215-8. doi:

1590/S1517-86922010000300012.

Alves JS, Leal-Cardoso JH, Santos FFU Jr, Carlos PS,

Silva RC, Lucci CM, et al. Limb immobilization alters functional

electrophysiological parameters of sciatic nerve. Braz J Med

Biol Res. 2013;46(8):715-21. doi: 10.1590/1414-431X20132626.

Volpon JB, Cecim PES, Miyase CI, Gava NF. O alendronato

de sódio na prevenção da osteopenia secundária á

imobilização gessada, em ratas: avaliação histomorfométrica.

Rev Bras Ortop. 2008;43(10):442-51. doi: 10.1590/

S0102-36162008001000004.

Cazeiro APM, Peres PT. A terapia ocupacional na prevenção e

no tratamento de complicações decorrentes da imobilização

no leito. Cad Ter Ocup. UFSCar. 2010;18(2):149-67.

Gomes RF, Shen X, Ramchandani R, Tepper RS Bates JH.

Comparative respiratory system mechanics in rodents. J

Appl Physiol. 2000;89(3):908-16.

Leite JH Jr, Rocco PR, Faffe DS, Romero PV, Zin WA. On the

preparation of lung strip for tissue mechanics measurement.

Respir Physiol Neurobiol. 2003;134(3):255-62. doi: 10.1016/

S1569-9048(02)00217-3.

Bates, JHT. Lung mechanics: an inverse modeling approach.

Cambridge: Cambridge University Press, 2009.

Salerno DF, Werner RA, Albers JW, Becker MP, Armstrong TJ,

Franzblau A. Reliability of nerve conduction studies among

active workers. Muscle Nerve. 1999;22(10):1372-9.

Martin JG, Duguet A, Eidelman DH. The contribution of

airway smooth muscle to airway narrowing and airway

hyperresponsiveness in disease. Eur Respir J. 2000;16(2):349-54.

Bates JHT, Rincon M, Irvin CG. Animal models of asthma. Am

J Physiol Lung Cell Mol Physiol. 2009;297(3):L401-10. doi:

1152/ajplung.00027.2009.

Fredberg JJ, Ingram RH Jr, Castile RG, Glass GM, Drazen JM.

Nonhomogeneity of lung response to inhaled histamine assessed

with alveolar capsules. J Appl Physiol. 1985;58(6):1914-22.

Wagers S, Lundblad LK, Ekman M, Irvin CG, Bates JH. The

allergic mouse model of asthma: normal smooth muscle in

an abnormal lung? J Appl Physiol. 2004;96(6):2019-27. doi:

1152/japplphysiol.00924.2003.

Bates JH, Cojocaru A, Lundblad LK. Bronchodilatory effect

of deep inspiration on the dynamics of bronchoconstriction

in mice. J Appl Physiol. 2007;103(5):1696-705. doi: 10.1152/

japplphysiol.00698.2007.

Kapsali T, Permutt S, Laube B, Scichilone N, Togias A. Potent

bronchoprotective effect of deep inspiration and its absence

in asthma. J Appl Physiol. 2000;89(2):711-20.

Published

2017-07-07

Issue

Section

Original Research

How to Cite

Analysis of pulmonary function and micromechanics structure after 14 days of movement restriction in female rats. (2017). Fisioterapia E Pesquisa, 24(2), 205-210. https://doi.org/10.1590/1809-2950/17484624022017