Low-intensity laser favors muscle regeneration in a malnourished and recovered experimental model

Authors

  • Maisa Cardoso da Silva Universidade Metodista de Piracicaba; Programa de Mestrado em Ciências do Movimento Humano
  • Rafael Schimith da Silveira Universidade Metodista de Piracicaba; Programa de Mestrado em Ciências do Movimento Humano
  • Cintia Yuri Matsumura Universidade Júlio de Mesquita Filho; Instituto de Biociências; Departamento de Anatomia
  • Adriana Pertille Universidade Metodista de Piracicaba; Programa de Pós-Graduação em Ciências do Movimento Humano

DOI:

https://doi.org/10.1590/1809-2950/17527425022018

Keywords:

Malnutrition, Muscles/Injuries, Low-Level Laser Therapy

Abstract

Low-Level Laser Therapy - LLLT is used frequently on muscle lesions, but needs to be investigated in a malnutrition model. The aim of this study was to analyze the effects of LLLT on muscle regeneration of rats subjected to malnutrition and protein recovery. Forty recently weaned Wistar rats were used, divided into control group (C), subjected to a normal-protein diet (14% casein), and the malnourished group (D), subjected to a low-protein diet (6% casein) for 45 days and to a normal-protein diet until the end of the experiment. Subsequently, the right tibialis anterior muscle was subjected to cryogenic cooling and treated with LLLT (830 nm AsGaAl, 30 mW, 20 J/cm²), three times a week, for 7 and 21 days. There was a reduction of the inflammation/regeneration area in the C21 group compared to D21 (p<0.05), which became more evident with the LLLT (C21L and D21L). The TNF-α contents were reduced after 21 days of the injury. The connective tissue density area (CTDA) was lower in the C21 and C21L groups compared to the respective malnourished groups (p<0.05). LLLT reduced the CTDA in group D21L in comparison to D21 (p<0.05), but the TGF-β1 contents were not influenced. The cross-sectional area (CSA) of the muscle fiber increased in the 21-day groups. Higher levels of m-TOR were found in the C21L group when compared to D21L (p<0.05). It was concluded that LLLT favored muscle regeneration in the late stage of the experimental model of postnatal malnutrition and subsequent protein recovery.

Downloads

Download data is not yet available.

References

Mann CJ, Perdiguero E, Kharraz Y, Aguilar S, Pessina P,

Serrano AL et al. Aberrant repair and fibrosis development

in skeletal muscle. Skelet Muscle. 2011;1(1):1-21. doi:

1186/2044-5040-1-21

Tidball JG, Villalta SA. Regulatory interactions between muscle

and the immune system during muscle regeneration. Am

J Physiol Regul Integr Comp Physiol. 2010;298(5):R1173-87.

doi: 10.1152/ajpregu.00735.2009

Shin EH, Caterson EJ, Jackson WM, Nesti LJ. Quality of

healing: defining, quantifying, and enhancing skeletal muscle

healing. Wound Repair Regen. 2014; 22(Supl 1):18-24. doi:

1111/wrr.12163

Dortbudak O, Haas R, Mallath-Pokorny G. Biostimulation of

bone marrow cells with a diode soft laser. Clin Oral Implants

Res. 2000;11(6):540-5.

Meireles GCS, Silva CA, Marques AMCM, Pinheiro ALB.

A efetividade da fototerapia laser no reparo tecidual em

portadores de desordem funcional sistêmica. Rev Eletr

Fainor. 2014;7(2):71-84.

Monteiro CA. A dimensão da pobreza, da desnutrição

e da fome no Brasil. Estud Av. 2003;17(48):7-20. doi:

1590/S0103-40142003000200002

Silveira IS, Raiser AG, Polydoro AS, Santos MN. Efeitos

da dieta protéica na cicatrização de fraturas distais

de fêmur imobilizadas com pinos intramedulares

em cão. Acta Cirurg Bras. 1997;12(3):178-81. doi:

1590/S0102-86501997000300008

Pinheiro ALB, Meireles GC, Vieira ALB, Almeida D, Carvalho

CM, Santos JN. Phototherapy improves healing of cutaneous

wounds in nourished and undernourished wistar rats. Braz

Dent J. 2004;15(Special issue):SI21-8.

Pinheiro ALB, Meireles GC, Carvalho CM, Ramalho LM,

Santos JN. Biomodulative effects of visible and IR laser

light on the healing of cutaneous wounds of nourished

and undernourished Wistar rats. Photomed Laser Surg.

;27(6):947-57. doi: 10.1089/pho.2009.2607

Reeves PG, Nielsen FH, Fahey Jr GC. AIN-93 purified diets for

laboratory rodents: final report of the American Institute of

Nutrition ad hoc writing committee on the reformulation of

the AIN-76A rodent diet. J Nutr. 1993;123(11):1939-51.

Miyabara EH, Martin JL, Griffin TM, Moriscot AS, Mestril

R. Overexpression of inducible 70 kDa heat shock protein

in mouse attenuates skeletal muscle damage induced by

cryolesioning. Am J Physiol Cell Physiol. 2006;290(4):C1128-38.

doi: 10.1152/ajpcell.00399.2005

Pertille A, Macedo AB, Oliveira CP. Evaluation of muscle

regeneration in aged animals after treatment with low-level

laser therapy. Rev Bras Fisioter. 2012;16(6):495-501.

Marques MJ, Machado RV, Minatel E, Santo Neto H. Disodium

cromoglycate protects dystrophin-deficient muscle

fibers from leakiness. Muscle Nerve. 2008;37(1):61-7. doi:

1002/mus.20892

Escriva F, Kergoat M, Bailbe D, Pascual-Leone AM, Portha B.

Increased insulin action in the rat after protein malnutrition

early in life. Diabetologia. 1991;34(8):559-64.

Ihemelandu EC. Fibre number and sizes of mouse soleus

muscle in early postnatal protein malnutrition. Acta Anat.

;121(2):89-93.

Jarvinen TA, Jarvinen TL, Kaariainen M, Kalimo H, Jarvinen

M. Muscle injuries: biology and treatment. Am J Sports Med.

;33(5):745-64. doi: 10.1177/0363546505274714

Renno ACM, Assis L, Peres B, Rodrigues NC, Brunelli RM,

TomaRL, et al. The effects of low level laser therapy on injured

skeletal muscle. Braz Arch Biol Technol. 2014;57(1):48-54.

doi: 10.1590/S1516-89132014000100008

Aimbire F, Albertini R, Pacheco MT, Castro-Faria-Neto HC,

Leonardo PS, Iversen VV, et al. Low-level laser therapy

induces dose-dependent reduction of TNFalpha levels in

acute inflammation. Photomed Laser Surg. 2006;24(1):33-7.

doi: 10.1089/pho.2006.24.33

Pertille A, Moura KF, Matsumura CY, Ferretti R, Ramos DM,

Petrini AC, et al. Evaluation of skeletal muscle regeneration

in experimental model after malnutrition. Braz J Biol.

;77(1):83-91. doi: 10.1590/1519-6984.10415

Lopes TS, Quintana HT, Bortolin JA, Alves PHM, Matos

RSB, Liberti EA, et al. Protein malnutrition pre- and postnatal

and nutritional rehabilitation modulates the morphology of

muscle fibers in wistar rats. J Diet Suppl. 2017;14(3):278-87.

doi: 10.1080/19390211.2016.1212960

Lehto M, Duance VC, Restall D. Collagen and fibronectin in a

healing skeletal muscle injury. An immunohistological study

of the effects of physical activity on the repair of injured

gastrocnemius muscle in the rat. J Bone Joint Surg Br.

;67B(5):820-8.

Reis SRA, Medrado AP, Marchionni AMT, Figueira C,

Fracassi LD, Knop LAH. Effect of 670-nm laser therapy

and dexamethasone on tissue repair: a histological and

ultrastructural study. Photomed Laser Surg. 2008;26:307-13.

doi: 10.1089/pho.2007.2151

Heldin CH, Miyazono K, Dijke P. TGF-β signaling from cell

membrane to nucleus through SMAD proteins. Nature.

;390:465-71. doi: 10.1038/37284

Laplante M, Sabatini DM. mTOR signaling in growth

control and disease. Cell. 2012; 149:274-93. doi:

1016/j.cell.2012.03.017

Mahoney SJ, Dempsey JM, Blenis J. Cell signaling in protein

synthesis ribosome biogenesis and translation initiation and

elongation. Prog Mol Biol Transl Sci. 2009;90C:53-107. doi:

1016/S1877-1173(09)90002-3

Oliveira NM, Parizzotto NA, Salvini TF. GaAs (904-nm) laser

radiation does not affect muscle regeneration in mouse

skeletal muscle. Lasers Surg Med. 1999; 25(1):13-21.

Correa DG, Okita JT, Martins HRF, Gomes ARS. Effects of GaAS

laser and stretching on muscle contusion in rats. Fisioter Pesqui.

;23(1):3-11. doi: 10.1590/1809-2950/13903823012016

Published

2018-07-07

Issue

Section

Original Research

How to Cite

Low-intensity laser favors muscle regeneration in a malnourished and recovered experimental model. (2018). Fisioterapia E Pesquisa, 25(2), 158-165. https://doi.org/10.1590/1809-2950/17527425022018