Effect of different intensities of inspiratory muscle exercise on cardiac autonomic control in the post-exercise recovery in healthy adults: a controlled and randomized study
DOI:
https://doi.org/10.1590/Keywords:
Breathing Exercise, Autonomic System, Heart Rate Variability.Abstract
This study aimed to investigate the effect of different
intensities of Inspiratory Muscle Exercise (IME) on cardiac autonomic
control during the period of post-exertion recovery in healthy
adults. Thus, an experimental, controlled, and randomized study
was conducted with 15 men aged from 18 to 40 years, including
sedentary and healthy individuals. Participants underwent four IME
sessions: a sham session, followed by sessions with 30%, 40%, and
60% of maximal inspiratory pressure. Pulse intervals were recorded
using digital infrared photoplethysmography to obtain heart rate
(HR) values. Measurements included HR, interbeat interval, standard
deviation of all normal RR intervals (SDNN), root mean square
of successive differences between adjacent normal RR intervals
(RMSSD), percentage of adjacent RR intervals greater than 50ms
(pNN50) (time domain), total power, power of low-frequency
spectral bands (LF), and power of high-frequency spectral bands
(HF) (ms²), LF and HF (n.u.), and LF/HF (frequency domain). These
measures were assessed simultaneously for 10 minutes at rest
and during recovery period (15, 30, 45, and 60 minutes). Twoway
analysis of variance was used, considering a 5% significance
level. We observed that RMSSD and pNN50 showed higher values
compared to baseline (Time Effect: P=0.004; P<0.01, respectively).
No differences were found in HRV measures in the frequency domain
(Time Effect: P>0.05). Additionally, there was no difference in the
comparison between intensities for all HRV measures (Session Effect:
p>0.05). We conclude that, regardless of the applied load, there is a
similar increase in parasympathetic cardiac autonomic modulation
indices in the post-IME recovery period in healthy adults
Downloads
References
Caruso FCR, Simões RP, Reis MS, Guizilini S, Alves VLS, et al. Highintensity
inspiratory protocol increases heart rate variability
in myocardial revascularization patients. Br J Cardiovas Surg.
;31:38-44. doi: 10.5935/1678-9741.20160007
Sasaki M, Kurosawa H, Kohzuki M. Effects of inspiratory and
expiratory muscle training in normal subjects. J Jpn Phys Ther
Assoc. 2005;8(1):29-37. doi: 10.1298/jjpta.8.29
Di Mambro TR, Figueiredo PH, Wanderley TR, Kritski AL,
Guimarães F. Treinamento muscular inspiratório na doença
pulmonar obstrutiva crônica: impacto na qualidade de vida,
intolerância ao esforço e dispnéia. Fisioter Pesqui. 2007 [cited
10 06];14(2):65-71. Available from: https://pesquisa.
bvsalud.org/portal/resource/pt/lil-469892
Plentz RDM, Sbruzzi G, Ribeiro RA, Ferreira JB, Dal
Lago P. Treinamento muscular inspiratório em pacientes
com insuficiência cardíaca: metanálise de estudos
randomizados. ASOBRAFIR. 2012;99:762-71. doi: 10.1590/
S0066-782X2012001100011
Vranish JR, Bailey EFJS. Inspiratory muscle training improves
sleep and mitigates cardiovascular dysfunction in obstructive
sleep apnea. Sleep. 2016;39(6):1179-85. doi: 10.5665/sleep.5826
Ferreira JB, Plenz RDM, Stein C, Casali KR, Arena R, et al.
Inspiratory muscle training reduces blood pressure and
sympathetic activity in hypertensive patients: a randomized
controlled trial. Int J Cardiol. 2013;166(1):61-7. doi: 10.1016/j.
ijcard.2011.09.069
Kaminski DM, Schaan BD, Silva AMV, Soares PP, Dal Lago P.
Inspiratory muscle training in patients with diabetic autonomic
neuropathy: a randomized clinical trial. Clin Autonomic
Research. 2015;25(4):263-6. doi: 10.1007/s10286-015-0291-0
Almeida LB, Seixas MB, Trevizan PF, Laterza MC, Silva LP, et al.
Efeitos do treinamento muscular inspiratório no controle
autonômico: revisão sistemática. Fisioter Pesqui. 2018;25:345-51.
doi: 10.1590/1809-2950/17015425032018
Wehrwein EA, Orer HS, Barman SMJCP. Overview of the
anatomy, physiology, and pharmacology of the autonomic
nervous system. Comprehensive Physiology. 2011;6(3):1239-78.
doi: 10.1002/cphy.c150037
Archiza B, Simões RP, Mendes RG, Fregonezi GAF, Catai AM,
et al. Acute effects of different inspiratory resistive loading
on heart rate variability in healthy elderly patients. Br J Phys
Ther. 2013;17:401-8. doi: 10.1590/S1413-35552013005000100
Plentz RDM, Silva VG, Dipp TJL, Macagnan FE, Lemos LC, et al.
Treinamento (Entrenamiento) muscular inspiratório para o
controle. Salud(i) Cienc. 2014 [cited 2024 10 06];21:28-34. Available
from: https://www.siicsalud.com/dato/sic/211/140299.pdf
Fang S-C, Wu Y-L, Tsai P-SJ. Heart rate variability and risk of
all-cause death and cardiovascular events in patients with
cardiovascular disease: a meta-analysis of cohort studies.
;22(1):45-56. doi: 10.1177/1099800419877442
Ernst G. Heart-rate variability-more than heart beats? Front
Public Health. 2017;5:240. doi: 10.3389/fpubh.2017.00240
Malachias MVB, Souza WKSB, Plavnik FL, Rodrigues CIS,
Brandão AA, et al. 7ª Diretriz Brasileira de hipertensão arterial:
Cap 1-Conceituação, Epidemiologia e Prevenção Primária. Arq
Br Cardiol. 2016;107:1-6. doi: 10.5935/abc.20160151
Schulz KF, Altman DG, Moher D, et al. CONSORT 2010 statement:
updated guidelines for reporting parallel group randomised
trials. BMC Med. 2010;1(2):100-7. doi: 10.1186/1741-7015-8-18
Med ATSJAJRCC. ATS/ERS Statement on respiratory
muscle testing. Am J Respir Crit Care Med. 2002 [cited
10 06];166:518-624. Available from: https://cir.nii.ac.jp/
crid/1573105975842035840
Neder JA,Andreoni S, Lerario MC, Nery LE. Reference values
for lung function tests: II. Maximal respiratory pressures
and voluntary ventilation. Br J Med Biol Res. 1999;32:719-27.
doi: 10.1590/S0100-879X1999000600007
Souza H, Rocha T, Pessoa M, Rattes C, Brandão D, et al. Effects
of inspiratory muscle training in elderly women on respiratory
muscle strength, diaphragm thickness and mobility. J Gerontol
Ser A: Biomed Sci Med Sci. 2014;69(12):1545-53. doi: 10.1093/
gerona/glu182
Michel-Chávez A, Estañol B, Gien-López JÁ, Robles-Cabrera A,
Huitrado-Duarte ME, et al. Variabilidade da frequência cardíaca
e da pressão arterial sistólica em diabéticos com diagnóstico
recente. Arq Bras Cardiol. 2015;105:276-84. doi: 10.5935/
abc.20150073
Malik M, Camm AJJBhj. Heart rate variability and clinical
cardiology. Br Heart J. 1994;71(1):3. doi: 10.1136/hrt.71.1.3
Tarvainen MP, Ranta-Aho PO, Karjalainen PAJ. An advanced
detrending method with application to HRV analysis. IEEE
Trans Biomed Eng. 2002;49(2):172-5. doi: 10.1109/10.979357
Heart rate variability: standards of measurement, physiological
interpretation and clinical use. Task Force of the European
Society of Cardiology and the North American Society of
Pacing and Electrophysiology. Circulation. 1996;93(5):1043-65.
Bernardi L, Porta C, Gabutti A, Spicuzza L, Sleight P. Modulatory
effects of respiration. Auton Neurosci. 2001;90(1-2):47-56.
doi: 10.1016/S1566-0702(01)00267-3
Shamsuzzaman AS, Somers VKJA. Cardiorespiratory
interactions in neural circulatory control in humans. Ann
New York Acad Scies. 2001;940(1):488-99. doi: 10.1111/j.1749-
2001.tb03700.x
Yasuma F, Hayano J-iJC. Respiratory sinus arrhythmia: why
does the heartbeat synchronize with respiratory rhythm? Chest.
;125(2):683-90. doi: 10.1378/chest.125.2.683
Seals DR, Chase PBJJ. Influence of physical training on heart
rate variability and baroreflex circulatory control. J Appl Physiol.
;66(4):1886-95. doi: 10.1152/jappl.1989.66.4.1886
Shi X, Stevens GH, Foresman BH, Stern SA, Raven PB. Autonomic
nervous system control of the heart: endurance exercise
training. Med Sci Sports Exerc. 1995;27(10):1406-13.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Pedro Lima Souza, Leila Dal Poggetto Moreira, Lilian Pinto da Silva, Vinicius Faria Weiss Weiss, Pedro Augusto Carvalho Mira, Patrícia Fernandes Trevizan, Mateus Camaroti Laterza, Daniel Godoy Martinez

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.