Effect of different intensities of inspiratory muscle exercise on cardiac autonomic control in the post-exercise recovery in healthy adults: a controlled and randomized study

Authors

DOI:

https://doi.org/10.1590/

Keywords:

Breathing Exercise, Autonomic System, Heart Rate Variability.

Abstract

This study aimed to investigate the effect of different
intensities of Inspiratory Muscle Exercise (IME) on cardiac autonomic
control during the period of post-exertion recovery in healthy
adults. Thus, an experimental, controlled, and randomized study
was conducted with 15 men aged from 18 to 40 years, including
sedentary and healthy individuals. Participants underwent four IME
sessions: a sham session, followed by sessions with 30%, 40%, and
60% of maximal inspiratory pressure. Pulse intervals were recorded
using digital infrared photoplethysmography to obtain heart rate
(HR) values. Measurements included HR, interbeat interval, standard
deviation of all normal RR intervals (SDNN), root mean square
of successive differences between adjacent normal RR intervals
(RMSSD), percentage of adjacent RR intervals greater than 50ms
(pNN50) (time domain), total power, power of low-frequency
spectral bands (LF), and power of high-frequency spectral bands
(HF) (ms²), LF and HF (n.u.), and LF/HF (frequency domain). These
measures were assessed simultaneously for 10 minutes at rest
and during recovery period (15, 30, 45, and 60 minutes). Twoway
analysis of variance was used, considering a 5% significance
level. We observed that RMSSD and pNN50 showed higher values
compared to baseline (Time Effect: P=0.004; P<0.01, respectively).
No differences were found in HRV measures in the frequency domain
(Time Effect: P>0.05). Additionally, there was no difference in the
comparison between intensities for all HRV measures (Session Effect:
p>0.05). We conclude that, regardless of the applied load, there is a
similar increase in parasympathetic cardiac autonomic modulation
indices in the post-IME recovery period in healthy adults

Downloads

Download data is not yet available.

References

Caruso FCR, Simões RP, Reis MS, Guizilini S, Alves VLS, et al. Highintensity

inspiratory protocol increases heart rate variability

in myocardial revascularization patients. Br J Cardiovas Surg.

;31:38-44. doi: 10.5935/1678-9741.20160007

Sasaki M, Kurosawa H, Kohzuki M. Effects of inspiratory and

expiratory muscle training in normal subjects. J Jpn Phys Ther

Assoc. 2005;8(1):29-37. doi: 10.1298/jjpta.8.29

Di Mambro TR, Figueiredo PH, Wanderley TR, Kritski AL,

Guimarães F. Treinamento muscular inspiratório na doença

pulmonar obstrutiva crônica: impacto na qualidade de vida,

intolerância ao esforço e dispnéia. Fisioter Pesqui. 2007 [cited

10 06];14(2):65-71. Available from: https://pesquisa.

bvsalud.org/portal/resource/pt/lil-469892

Plentz RDM, Sbruzzi G, Ribeiro RA, Ferreira JB, Dal

Lago P. Treinamento muscular inspiratório em pacientes

com insuficiência cardíaca: metanálise de estudos

randomizados. ASOBRAFIR. 2012;99:762-71. doi: 10.1590/

S0066-782X2012001100011

Vranish JR, Bailey EFJS. Inspiratory muscle training improves

sleep and mitigates cardiovascular dysfunction in obstructive

sleep apnea. Sleep. 2016;39(6):1179-85. doi: 10.5665/sleep.5826

Ferreira JB, Plenz RDM, Stein C, Casali KR, Arena R, et al.

Inspiratory muscle training reduces blood pressure and

sympathetic activity in hypertensive patients: a randomized

controlled trial. Int J Cardiol. 2013;166(1):61-7. doi: 10.1016/j.

ijcard.2011.09.069

Kaminski DM, Schaan BD, Silva AMV, Soares PP, Dal Lago P.

Inspiratory muscle training in patients with diabetic autonomic

neuropathy: a randomized clinical trial. Clin Autonomic

Research. 2015;25(4):263-6. doi: 10.1007/s10286-015-0291-0

Almeida LB, Seixas MB, Trevizan PF, Laterza MC, Silva LP, et al.

Efeitos do treinamento muscular inspiratório no controle

autonômico: revisão sistemática. Fisioter Pesqui. 2018;25:345-51.

doi: 10.1590/1809-2950/17015425032018

Wehrwein EA, Orer HS, Barman SMJCP. Overview of the

anatomy, physiology, and pharmacology of the autonomic

nervous system. Comprehensive Physiology. 2011;6(3):1239-78.

doi: 10.1002/cphy.c150037

Archiza B, Simões RP, Mendes RG, Fregonezi GAF, Catai AM,

et al. Acute effects of different inspiratory resistive loading

on heart rate variability in healthy elderly patients. Br J Phys

Ther. 2013;17:401-8. doi: 10.1590/S1413-35552013005000100

Plentz RDM, Silva VG, Dipp TJL, Macagnan FE, Lemos LC, et al.

Treinamento (Entrenamiento) muscular inspiratório para o

controle. Salud(i) Cienc. 2014 [cited 2024 10 06];21:28-34. Available

from: https://www.siicsalud.com/dato/sic/211/140299.pdf

Fang S-C, Wu Y-L, Tsai P-SJ. Heart rate variability and risk of

all-cause death and cardiovascular events in patients with

cardiovascular disease: a meta-analysis of cohort studies.

;22(1):45-56. doi: 10.1177/1099800419877442

Ernst G. Heart-rate variability-more than heart beats? Front

Public Health. 2017;5:240. doi: 10.3389/fpubh.2017.00240

Malachias MVB, Souza WKSB, Plavnik FL, Rodrigues CIS,

Brandão AA, et al. 7ª Diretriz Brasileira de hipertensão arterial:

Cap 1-Conceituação, Epidemiologia e Prevenção Primária. Arq

Br Cardiol. 2016;107:1-6. doi: 10.5935/abc.20160151

Schulz KF, Altman DG, Moher D, et al. CONSORT 2010 statement:

updated guidelines for reporting parallel group randomised

trials. BMC Med. 2010;1(2):100-7. doi: 10.1186/1741-7015-8-18

Med ATSJAJRCC. ATS/ERS Statement on respiratory

muscle testing. Am J Respir Crit Care Med. 2002 [cited

10 06];166:518-624. Available from: https://cir.nii.ac.jp/

crid/1573105975842035840

Neder JA,Andreoni S, Lerario MC, Nery LE. Reference values

for lung function tests: II. Maximal respiratory pressures

and voluntary ventilation. Br J Med Biol Res. 1999;32:719-27.

doi: 10.1590/S0100-879X1999000600007

Souza H, Rocha T, Pessoa M, Rattes C, Brandão D, et al. Effects

of inspiratory muscle training in elderly women on respiratory

muscle strength, diaphragm thickness and mobility. J Gerontol

Ser A: Biomed Sci Med Sci. 2014;69(12):1545-53. doi: 10.1093/

gerona/glu182

Michel-Chávez A, Estañol B, Gien-López JÁ, Robles-Cabrera A,

Huitrado-Duarte ME, et al. Variabilidade da frequência cardíaca

e da pressão arterial sistólica em diabéticos com diagnóstico

recente. Arq Bras Cardiol. 2015;105:276-84. doi: 10.5935/

abc.20150073

Malik M, Camm AJJBhj. Heart rate variability and clinical

cardiology. Br Heart J. 1994;71(1):3. doi: 10.1136/hrt.71.1.3

Tarvainen MP, Ranta-Aho PO, Karjalainen PAJ. An advanced

detrending method with application to HRV analysis. IEEE

Trans Biomed Eng. 2002;49(2):172-5. doi: 10.1109/10.979357

Heart rate variability: standards of measurement, physiological

interpretation and clinical use. Task Force of the European

Society of Cardiology and the North American Society of

Pacing and Electrophysiology. Circulation. 1996;93(5):1043-65.

Bernardi L, Porta C, Gabutti A, Spicuzza L, Sleight P. Modulatory

effects of respiration. Auton Neurosci. 2001;90(1-2):47-56.

doi: 10.1016/S1566-0702(01)00267-3

Shamsuzzaman AS, Somers VKJA. Cardiorespiratory

interactions in neural circulatory control in humans. Ann

New York Acad Scies. 2001;940(1):488-99. doi: 10.1111/j.1749-

2001.tb03700.x

Yasuma F, Hayano J-iJC. Respiratory sinus arrhythmia: why

does the heartbeat synchronize with respiratory rhythm? Chest.

;125(2):683-90. doi: 10.1378/chest.125.2.683

Seals DR, Chase PBJJ. Influence of physical training on heart

rate variability and baroreflex circulatory control. J Appl Physiol.

;66(4):1886-95. doi: 10.1152/jappl.1989.66.4.1886

Shi X, Stevens GH, Foresman BH, Stern SA, Raven PB. Autonomic

nervous system control of the heart: endurance exercise

training. Med Sci Sports Exerc. 1995;27(10):1406-13.

Published

2025-02-05

Issue

Section

Original Research

How to Cite

Effect of different intensities of inspiratory muscle exercise on cardiac autonomic control in the post-exercise recovery in healthy adults: a controlled and randomized study. (2025). Fisioterapia E Pesquisa, 31(cont), e22006324pt. https://doi.org/10.1590/