Comparación entre pico de torque y flexibilidad de los miembros inferiores de individuos con y sin diabetes mellitus tipo 2
DOI:
https://doi.org/10.1590/1809-2950/17024826022019Palabras clave:
Fuerza Muscular, Diabetes Mellitus Tipo 2, Dinamómetro de Fuerza Muscular, Torque, Miembros InferioresResumen
El objetivo de este trabajo fue comparar el pico de torque y la flexibilidad de los miembros inferiores de individuos con y sin diabetes mellitus tipo 2 (DM2). El método fue el estudio con grupos expuestos y no expuestos al DM2. Se incluyeron individuos con diagnóstico médico de DM2, encaminados para electroneuromiografía, y no expuestos al DM2. Se excluyeron de la investigación a individuos mayores de 70 años o que, por algún motivo, no pudieron realizar una o dos de las pruebas. La muestra fue no probabilística, compuesta por 64 individuos: 34 (53,1%) expuestos al DM2 y 30 no expuestos; 50 (78,1%) eran de sexo femenino, la edad media era de 60,7±7,1 años, y el miembro inferior dominante era el derecho en 57 (89,1%) de los individuos. En comparación con individuos con y sin diagnóstico de DM2, se observó reducción del torque de flexión a la izquierda, en velocidad angular de 120° (25,94±2,26 frente a 33,79±2,4nm, p=0,027, respectivamente). Se ha reportado un menor valor del torque de dorsiflexión a la derecha, en velocidad angular de 60°, de los diabéticos con relación a los no diabéticos (10,95±0,89 frente a 13,95±0,96nm, p=0,033, respectivamente). Al comparar individuos con DM2, con y sin diagnóstico de neuropatía diabética periférica (NDP), se notó mayor déficit de flexión entre los individuos neuropáticos en comparación con no neuropáticos (46,57±9,47 vs. 11,63±13,85nm, p=0,049, respectivamente). No se encontraron diferencias estadísticamente significativas al comparar los grupos de expuestos y no expuestos al DM2 y los diabéticos neuropáticos y no neuropáticos.
Descargas
Referencias
Pan American Health Organization. Health in the Americas 2012
edition: regional outlook and country profiles. Washington, DC:
Pan American Health Organization; 2012.
World Health Organization. Global status report on
noncommunicable diseases 2014. Geneva: World Health
Organization; 2014.
Ministério da Saúde (BR). Secretaria de Vigilância em Saúde.
Departamento de Análise e Situação de Saúde. Plano de ações
estratégicas para o enfrentamento das doenças crônicas
não transmissíveis (DCNT) no Brasil, 2011-2022. Brasília, DF:
Ministério da Saúde; 2011.
World Health Organization. Fact sheets: noncommunicable
diseases. Geneva: World Health Organization; 2015.
Oliveira JEP, Vencio S, editors. Diretrizes da Sociedade Brasileira
de Diabetes: 2014-2015. São Paulo: AC Farmacêutica; 2015.
World Health Organization. Definition, diagnosis and
classification of diabetes mellitus and its complications: report
of a WHO Consultation. Part 1: diagnosis and classification of
diabetes mellitus. Geneva: World Health Organization; 1999.
American Diabetes Association. Diagnosis and classification
of diabetes mellitus Diabetes Care. 2013;36(1):S67-74. doi:
2337/dc13-S067
Vukojević Z, Pekmezović T, Nikolić A, Perić S, Basta I, Marjanović,
et al. Correlation of clinical and neurophysiological findings
with health related quality of life in patients with diabetic
polyneuropathy. Vojnosanit Pregl. 2014;71(9):833-8. doi:
2298/VSP120919015V
Mochizuki Y, Tanaka H, Matsumoto K, Sano H, Toki H, Shimoura
H, et al. Association of peripheral nerve conduction in diabetic
neuropathy with subclinical left ventricular systolic dysfunction.
Cardiovasc Diabetol. 2015;14:47. doi: 10.1186/s12933-015-0213-4
Park SW, Goodpaster BH, Strotmeyer ES, Kuller LH, Broudeau R,
Kammerer C, et al. Accelerated loss of skeletal muscle strength
in older adults with type 2 diabetes: the health, aging, and
body composition study. Diabetes Care. 2007;30(6):1507-12.
doi: 10.2337/dc06-2537
Sacchetti MS, Balducci S, Bazzucchi I, Carlucci F, Palumbo A,
Haxhi J, et al. Neuromuscular dysfunction in diabetes: role of
motor nerve impairment and training status. Med Sci Sports
Exerc. 2013;45(1):52-9. doi: 10.1249/MSS.0b013e318269f9bb
Orlando G, Balducci S, Bazzucchi I, Pugliese G, Sacchetti M.
Neuromuscular dysfunction in type 2 diabetes: underlying
mechanisms and effect of resistance training. Diabetes Metab
Res Rev. 2016;32(1):40-50. doi: 10.1002/dmrr.2658
Balducci S, Sacchetti M, Orlando G, Salvi L, Pugliese L, Salerno
G, et al. Correlates of muscle strength in diabetes: the study on
the assessment of determinants of muscle and bone strength
abnormalities in diabetes (SAMBA). Nutr Metab Cardiovasc
Dis. 2014;4(1):18-26. doi: 10.1016/j.numecd.2013.04.010
Parmenter BJ, Raymond J, Dinnen PJ, Lusby RJ, Singh
MAF. Preliminary evidence that low ankle-brachial index is
associated with reduced bilateral hip extensor strength and
functional mobility in peripheral arterial disease. J Vasc Surg.
;57(4):963-73. doi: 10.1016/j.jvs.2012.08.103
Andreassen CS, Jakobsen J, Ringgaard S, Ejskjaer N, Andersen
H. Accelerated atrophy of lower leg and foot muscles: a followup study of long-term diabetic polyneuropathy using magnetic
resonance imaging (MRI). Diabetologia. 2009;52(6):1182-91.
doi: 10.1007/s00125-009-1320-0
Allen MD, Kimpinski K, Doherty TJ, Rice CL. Decreased muscle
endurance associated with diabetic neuropathy may be
attributed partially to neuromuscular transmission failure. J Appl
Physiol. 2015;118(8):1014-22. doi: 10.1152/japplphysiol.00441.2014
Ijzerman TH, Schaper NC, Melai T, Meijer K, Willems PJB,
Savelberg HHCM. Lower extremity muscle strength is reduced in
people with type 2 diabetes, with and without polyneuropathy,
and is associated with impaired mobility and reduced quality
of life. Diabetes Res Clin Pract. 2012;95(3):345-51. doi: 10.1016/j.
diabres.2011.10.026
Bianchi L, Zuliani G, Volpato S. Physical disability in the elderly
with diabetes: epidemiology and mechanisms. Curr Diab Rep.
;13(6):824-30. doi: 10.1007/s11892-013-0424-6
Gregg EW, Beckles GL, Williamson DF, Leveille SG, Langlois
JA, Engelgau MM, et al. Diabetes and physical disability among
older U.S. adults. Diabetes Care. 2000;23(9):1272-7. doi: 10.2337/
diacare.23.9.1272
Sayer AA, Dennison EM, Syddall HE, Gilbody HJ, Phillips DIW,
Cooper C. Type 2 diabetes, muscle strength, and impaired
physical function: the tip of the iceberg? Diabetes Care.
;28(10):2541-2. doi: 10.2337/diacare.28.10.2541
Andersen H, Nielsen S, Mogensen CE, Jakobsen J. Muscle
strength in type 2 diabetes. Diabetes. 2004;53(6):1543-8. doi:
2337/diabetes.53.6.1543
Bokan V. Muscle weakness and other late complications of
diabetic polyneuropathy. Acta Clin Croat [Internet]. 2011 [cited
Apr 24];50(3):351-5. Available from: hrcak.srce.hr/84096
Halvatsiotis P, Short KR, Bigelow M, Nair KS. Synthesis rate of
muscle proteins, muscle functions, and amino acid kinetics in
type 2 diabetes. Diabetes. 2002;51(8):2395-404. doi: 10.2337/
diabetes.51.8.2395
Andreassen CS, Jakobsen J, Andersen H. Muscle weakness:
a progressive late complication in diabetic distal symmetric
polyneuropathy. Diabetes. 2006;55(3):806-12. doi: 10.2337/
diabetes.55.03.06.db05-1237
Hawley J, Zierath JR, editors. Physical activity and type 2
diabetes: therapeutic effects and mechanisms of action.
Champaign: Human Kinetics; 2008.
Park SW, Goodpaster BH, Strotmeyer ES, Rekeneire N, Harris
TB, Schwartz AV, et al. Decreased muscle strength and quality
in older adults with type 2 diabetes: the health, aging, and body
composition study. Diabetes. 2006;55(6):1813-8. doi: 10.2337/
db05-1183
Harbo T, Brincks J, Andersen H. Maximal isokinetic and isometric
muscle strength of major muscle groups related to age, body
mass, height, and sex in 178 healthy subjects. Eur J Appl Physiol.
;112(1):267-75. doi: 10.1007/s00421-011-1975-3
Jones EJ, Bishop PA, Woods AK, Green JM. Cross-sectional
area and muscular strength: a brief review. Sports Med.
;38(12):987-94. doi: 10.2165/00007256-200838120-00003
Boshra H, Bahrpeyma F, Tehrani MRM. The comparison of
muscle strength and short term endurance in the different
periods of type 2 diabetes. J Diabetes Metab Disord. 2014;13:22.
doi: 10.1186/2251-6581-13-22
Ijzerman TH, Schaper NC, Melai T, Blijham P, Meijer K, Willems
PJB, et al. Motor nerve decline does not underlie muscle
weakness in type 2 diabetic neuropathy. Muscle Nerve.
;44(2):241-5. doi: 10.1002/mus.22039
Allen MD, Major B, Kimpinski K, Doherty TJ, Rice CL. Skeletal
muscle morphology and contractile function in relation to
muscle denervation in diabetic neuropathy. J Appl Physiol.
;116(5):545-52. doi: 10.1152/japplphysiol.01139.2013
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2019 Fisioterapia e Pesquisa
Esta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.