Development of plug-ins focused on analyzing requirements of the Brazilian Performance Standard

Authors

  • Juliano Lima da Silva Faculdade Meridional (PPGARQ - IMED)
  • Andréa Quadrado Mussi Faculdade Meridional (PPGARQ - IMED)
  • Thaísa Leal da Silva Faculdade Meridional (PPGARQ - IMED)
  • Paola Zardo Faculdade Meridional (PPGARQ - IMED)
  • Lauro André Ribeiro Faculdade Meridional (PPGARQ - IMED)

DOI:

https://doi.org/10.11606/gtp.v14i2.147285

Keywords:

Auxetics, Computational Design, Form-Finding, Synclastic Shell, 3D-printing

Abstract

Among the potentialities of Building Information Modeling, decision-making based on model verifications and simulations is one to be highlighted. However, this process can become complex if the information is not accessible or if the BIM software used does not have functionalities to manipulate it. In this context, programming in engineering and architecture emerges as a way of customizing solutions, overcoming software limitations and, consequently, improving decision-making capacity during design in preliminary stages. In the present paper, the objective is to develop programming tools for project design, by plug-ins aimed at integrating information, making it possible to analyze and explore alternatives in a model. In order to meet this objective, tools were developed to verify the requirements of the Brazilian Performance Standard in BIM software. The method used to guide the development of the study is Design Science Research, a constructive approach to the development of artifacts linked to a specific theme as a means of prescribing a solution to a practical problem. As a result, the research artifact construction stage is presented by means of two plug-ins: one aimed at estimating the acoustic performance of vertical partition walls, and another for estimating the internal illuminance of rooms. It is concluded that the process of tool creation by designers allows, in addition to automating many of the project verification processes, the adequacy to particularities of a variety of possible specific scenarios, being able to make BIM software programming a way to overcome limitations of platforms and assist design decision making in early stages of the design development process.

Downloads

Download data is not yet available.

Author Biographies

  • Juliano Lima da Silva, Faculdade Meridional (PPGARQ - IMED)

    Engenheiro Civil, com Especialização em Gerenciamento de Obras, Mestrando do Programa de Pós-Graduação em Arquitetura e Urbanismo da Faculdade Meridional (PPGARQ-IMED).

  • Andréa Quadrado Mussi, Faculdade Meridional (PPGARQ - IMED)

    Doutora em Arquitetura e Urbanismo, docente do Programa de Pós-Graduação em Arquitetura e Urbanismo da Faculdade Meridional (PPGARQ IMED).

  • Thaísa Leal da Silva, Faculdade Meridional (PPGARQ - IMED)

    Doutora em Engenharia Electrotécnica e de Computadores, docente do Programa de Pós-Graduação em Arquitetura e Urbanismo da Faculdade Meridional (PPGARQ IMED).

  • Paola Zardo, Faculdade Meridional (PPGARQ - IMED)

    Engenheira Civil, Mestranda do Programa de Pós-Graduação em Arquitetura e Urbanismo da Faculdade Meridional (PPGARQ-IMED).

  • Lauro André Ribeiro, Faculdade Meridional (PPGARQ - IMED)

    Doutor em Sistemas Sustentáveis de Energia, docente do Programa de Pós-Graduação em Arquitetura e Urbanismo da Faculdade Meridional (PPGARQ IMED).

References

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 15575-1: Edificações Habitacionais — Desempenho Parte 1 : Requisitos gerais. Rio de Janeiro, Brasil ,2013

AISH, R. Extensible Computational Design Tools for Exploratory Architecture. In: B. KOLAREVIC (Org.); Architecture in the digital age: design and manufacturing. p.338–347. New York: Taylor & Francis Group, 2003

AISH, R. First Build Your Tools. Inside Smartgeometry: Expanding the Architectural Possibilities of Computational Design, p. 36–49, 2013.

AISH, R. DesignScript: a learning environment for Design Computation. In: Design Modelling Symposium, Berlim, 2013b.

AISH, R.; MARSH, A. An Integrated Approach to Algorithmic Design and Environmental Analysis. Proceedings of the 2011 Symposium on Simulation for Architecture and Urban Design, p. 149–155, 2011.

VAN AKEN, J. E. Management research on the basis of the design paradigm: The quest for field-tested and grounded technological rules. Journal of Management Studies, v. 41, n. 2, p. 219–246, 2004.

CELANI, G.; SEDREZ, M.; LENZ, D.; MACEDO, A. The Future of the Architects’s Employment: To Which Extent Can Architectural Design be Computerised? In: G. Celani; D. M. Sperling; J. M. S. Franco (Orgs.), Computer-Aided Architectural Design. The Next City - New Technologies and the Future of the Built Environment. 16th International Conference, CAAD Futures 2015, São Paulo, Brasil, p.195-212, 2015.

COSTA, C. H. DE A.; ILHA, M. S. DE O. Componentes BIM de sistemas prediais hidráulicos e sanitários baseados em critérios de desempenho. Ambiente Construído, v. 17, n. 2, p. 157–174, 2017.

DAVOODI, A. Lighting Simulation for a more value-driven building design process. Department of Civil Engineering and Lighting Science, Jönköping University, 2016.

DRESCH, A.; LACERDA, D. P.; ANTUNES JR., J. A. V. Design Science Research : A Method for Science and Technology Advancement. Springer International Publishing, 2015.

DYNAMO. Dynamo BIM: Open source graphical programming for design. Disponível em: <http://dynamobim.org/>. Acesso em: 05/05/2018.

FELIPPE, A. R.; FONSECA, R. W. DA; MORAES, L. N.; PEREIRA, F. O. R. Modelagem paramétrica para simulação do desempenho da iluminação natural e termo-energético da edificação. Anais do SIGraDI 2015, Florianopolis, Brasil, p.398–404, 2015.

FERREIRA, B.; LEITÃO, A. Generative Design for Building Information Modeling. Proceedings of the 33rd eCAADe Conference, Vienna, Austria, v. 1, p.635–644, 2015.

GARBER, R. Optimisation Stories: The Impact of Building Information Modeling on Contemporary Design Practice. In: R. GARBER (Org.), Closing the Gap: Information Models in Contemporary Design Practice, John Wiley & Sons, p.6–13, 2009.

GRASSHOPPER. Grasshopper - Algorithmic Modeling for Rhino. 2018. Disponível em: <http://www.grasshopper3d.com/>. Acesso em: 05/05/2018.

HENSEN, J.; LAMBERTS, R. Building performance simulation for design and operation. Routledge, 2011.

HEVNER, A. R.; MARCH, S. T.; PARK, J.; RAM, S. Design Science in Information Systems Research. MIS Quarterly, v. 28, n. 1, p. 75–105, 2004.

HOLMSTRÖM, J.; KETOKIVI, M.; HAMERI, A.-P. Bridging Practice and Theory: A Design Science Approach. Decision Sciences, v. 40, n. 1, p. 65–87, 2009.

HOLZER, D. BIM and Parametric Design in Academia and Practice: The Changing Context of Knowledge Acquisition and Application in the Digital Age. International Journal of Architectural Computing, v. 13, n. 1, p. 65–82, 2015.

JALAEI, F.; JRADE, A. An Automated BIM Model to Conceptually Design, Analyze, Simulate, and Assess Sustainable Building Projects. Journal of Construction Engineering, v. 2014, p. 1–21, 2014.

KASANEN, A.; LUKKA, K.; SIITONEN, A. The Constructive Approach in Management Accounting Research. Journal of Management Accounting Research, v. 5, p. 243–264, 1993.

KEOUGH, I.; HAUCK, A. From Pencils to Partners: The Next Role of Computation in Building Design. In: R. Garber (Org.). Workflows: Expanding Architecture’s Territory in the Design and Delivery of Buildings. p.74–81, 2017.

KHAN, M. E. Different Approaches to Black Box Testing Technique for Finding Errors. International Journal of Software Engineering & Applictions, v. 2, n. 4, p. 31–40, 2011.

KIM, M. J.; KIM, H. G. Field measurements of façade sound insulation in residential buildings with balcony windows. Building and Environment, v. 42, n. 2, p. 1026–1035, 2007.

LACERDA, D. P.; DRESCH, A.; PROENÇA, A.; ANTUNES JR., J. A. V. Design Science Research : método de pesquisa para a engenharia de produção. Gestão & Produção, v. 20, n. 4, p. 741–761, 2013.

LEITÃO, A.; SANTOS, L.; LOPES, J. Programming Languages for Generative Design: A Comparative Study. International Journal of Architectural Computing, v. 10, n. 1, p. 139–162, 2012.

LOBANOV, A. Dyno Browser. Disponível em: <http://prorubim.com/en/tools/dyno/>. Acesso em: 05/05/2018.

LUKKA, K. The Constructive Research Approach. In: L. Ojala; O.-P. Hilmola (Orgs.); Case Study Research in Logistics. Turku School of Economics and Business Administration, Series B1, p.83–101, 2003.

MARCH, S. T.; SMITH, G. F. Design and natural science research on information technology. Decision Support Systems 15, v. 15, n. 4, p. 251–266, 1995.

NARDELLI, E. S.; OLIVEIRA, J. T. BIM e Desempenho no Programa Minha Casa Minha Vida ‐ PMCMV. Proceedings of SIGraDi 2013, Valparaiso, Chile, p.312–316, 2013.

PAPAMICHAEL, K.; LAPORTA, J.; CHAUVET, H.; et al. The Building Design Advisor. Proceedings of the ACADIA 1996 Conference, Tuscon, United States, p. 1–17, 1996.

SCHLUETER, A.; THESSELING, F. Building information model based energy/exergy performance assessment in early design stages. Automation in Construction, v. 18, n. 2, p. 153–163, 2009.

SEGHIER, T. E.; WAH, L. Y.; AHMAD, M. H.; SAMUEL, W. O. Building Envelope Thermal Performance Assessment Using Visual Programming and BIM , based on ETTV requirement of Green Mark and GreenRE. International Journal Of Built Environment And Sustainability, v. 4, n. 3, p. 227–235, 2017.

SILVA, F.; ARANTES, E. Proposta de verificação automática dos requisitos de projetos pelo uso de ferramentas de análise BIM aplicados a Norma de Desempenho. XVI Encontro Nacional de Tecnologia do Ambiente Construído, São Paulo, Brasil, p.5039–5052, 2016.

SILVA, J. L. BIM e Design Science Research: plug-ins de desempenho como ferramentas para customização do processo de projeto em arquitetura. 2018. 235 f. Dissertação (Mestrado em Arquitetura e Urbanismo) - Programa de Pós-Graduação em Arquitetura e Urbanismo, Faculdade Meridional IMED, Passo Fundo, 2018.

SILVA, J. L.; MUSSI, A. Q.; RIBEIRO, L. A.; SILVA, T. L. BIM Software Plug-ins: An Alternative to Optimize Design Processes from the Perspective of Performance and Sustainability. Journal of Civil Engineering and Architecture, v. 11, n. 3, p. 249–264, 2017.

SILVA JÚNIOR, M. A.; MITIDIERI FILHO, C. V. Requisitos de desempenho aplicados em projetos de arquitetura com o uso de BIM. Revista Téchne, v. 24, n. 33, p. 43–47, 2015.

SOLIBRI. Solibri Model Checker. Disponível em: <https://www.solibri.com/products/solibri-model-checker/>. Acesso em: 05/05/2018.

SOUZA, J. L. P. DE; KERN, A. P.; TUTIKIAN, B. F. Análise quantiqualitativa da Norma de Desempenho (NBR No 15.575/2013) e principais desafios da implementação do nível superior em edificação residencial de multipavimentos. Gestão & Tecnologia de Projetos, v. 13, n. 1, p. 127–144, 2018.

TAKAHASHI, V. F. DE M. Desempenho acústico de edificações: ferramenta computacional para avaliação, 2016. Tese (Doutorado em Engenharia Civil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo, Universidade Estadual de Campinas, Campinas, 2016.

WHITEHEAD, H. Laws of Form New York: Taylor & Francis, 2003. p. 116-148. In: B. Kolarevic (Org.). Architecture in the digital age: design and manufacturing, New York: Taylor & Francis Group, p.116–148, 2003..

WU, C.; CLAYTON, M. J. BIM-Based Acoustic Simulation Framework. CIB W78 International Conference, Beijing, China, p.99–108, 2013.

Published

2019-12-13

How to Cite

SILVA, Juliano Lima da; MUSSI, Andréa Quadrado; SILVA, Thaísa Leal da; ZARDO, Paola; RIBEIRO, Lauro André. Development of plug-ins focused on analyzing requirements of the Brazilian Performance Standard. Gestão & Tecnologia de Projetos (Design Management and Technology), São Carlos, v. 14, n. 2, p. 46–64, 2019. DOI: 10.11606/gtp.v14i2.147285. Disponível em: https://revistas.usp.br/gestaodeprojetos/article/view/147285.. Acesso em: 14 mar. 2025.