Integrando simulação de iluminação natural no processo de projeto: análise comparativa entre duas plataformas computacionais
DOI:
https://doi.org/10.11606/gtp.v15i2.161997Palavras-chave:
Simulação de luz do dia, Modelagem da Informação da Construção, BIM, Insight, DIVAResumo
Daylighting presents an important role for high performance buildings. Currently, Building Information Modeling (BIM) has excelled in the Architecture and Engineering (A&E) industry as a collaboration and information exchange methodology that generates integrated computational models. Simulation plug-ins for BIM tools capable of performing daylighting simulations in a semi-automated way have been developed, thus presenting a more simplified simulation process and favoring the adoption of performance analysis since initial design stages; being a little explored subject. This article aims to investigate the Insight plug-in for Revit, focusing on its daylighting features. The workflow, input-output structure and results of Insight dynamic (sDA) and static (illuminance levels) daylighting metrics were analyzed, comparatively to the plug-in DIVA-for-Rhino, which simulation engines were considered validated by literature. Simulations on both software used the same model of a reference office space for the city of Belo Horizonte. Results indicate that Insight’s favors the daylighting analysis in the initial phases of the design process and allows the verification of code compliances, however determining materials optical properties presents some degree of complexity. Low sensitivity to glasses with low and medium values of light transmittance was noticed in the case study. Evidence of consideration of internal reflections of light rays (ambient bounces) close to 7 may leed to overestimated results in the case of low complexity models. This study intends to contribute to the understanding of the potentials and limitations of both analyzed tools, especially in regard to the specificities of BIM daylight simulation with Insight.
Downloads
Referências
ADVANCED BUILDINGS. Daylighting Pattern Guide. Available in: <http://patternguide.advancedbuildings.net/patterns>.Access: nov. 2017.
ALRUBAIH, M. S. et al. Research and Development on Aspects of Daylight Fundamentals. Renewable and Sustainable Energy Reviews, v. 21, p. 494-505, 2013. doi: https://doi.org/10.1016/j.rser.2012.12.057
ALVES, T. Energy savings potential of the high-rise office building stock: a case study of Belo Horizonte, Brazil. Doctoral Thesis, Mechanical Engineering School of UFMG. Belo Horizonte, 2017.
ALVES, T.; MACHADO, L.; SOUZA, R. G.; DE WILDE, P. DE. A methodology for estimating office building energy use baselines by means of land use legislation and reference buildings. Energy and Buildings. v. 143. p. 100-113, 2017. doi:http://dx.doi.org/10.1016/j.enbuild.2017.03.017.
AMCNEIL. Gendaylit.pdf. 2017. Available in:<https://www.radiance-online.org/learning/documentation/manual-pages/pdfs/gendaylit.pdf/view>. Access: may 2018.
AUTODESK. Light Analysis for Revit. 2015. Available in: <https://knowledge.autodesk.com/search-result/caas/CloudHelp/cloudhelp/ENU/BPA-PerformanceStudies/files/GUID-5AE6A81D-B170-47A5-8BF8-190235F25287-htm.html>. Access: nov. 2018.
AUTODESK. Insight Building performance analysis software. 2017a. Available in: <https://www.autodesk.com/products/insight/overview>. Access: may 2017.
AUTODESK. Insight Lighting Analysis Help. Autodesk, Inc, 2017b. Available in: <https://forums.autodesk.com/autodesk/attachments/autodesk/19/1006/2/insight-lighting-analysis-help.pdf>. Access: nov. 2017.
AUTODESK. Specify the Location. 2017d. Available in: <https://knowledge.autodesk.com/support/revit-products/learn-explore/caas/CloudHelp/cloudhelp/2017/ENU/Revit-Analyze/files/GUID-85FA464E-D604-4242-9711-6183A5EF7F0A-htm.html>. Access: mar. 2018.
AUTODESK. Weather Data. 2017c. Available in: <https://knowledge.autodesk.com/support/revit-products/learn-explore/caas/CloudHelp/cloudhelp/2017/ENU/Revit-Analyze/files/GUID-CE607F67-D169-4E6D-9B7F-35BEE9101BEC-htm.html>. Access: mar. 2018.
AUTODESK. Welcome to Green Building Studio. 2018. Available in: <https://gbs.autodesk.com/GBS/>. Access: may 2018.
CAVALERI, M. P. M.; CUNHA, G. R. M.; GONÇALVES, J. C. S. Iluminação natural em edifícios de escritórios: avaliação dinâmica de desempenho para São Paulo. PARC Pesquisa em Arquitetura e Construção, Campinas, v. 9, n. 1, p. 19-34, 2018. doi:https://doi.org/10.20396/parc.v9i1.8650725
CHENG, H.; LI, Z.; WANG, X.; LIN, B. A graph- and feature-based building space recognition algorithm for performance simulation in the early design stage. Building Simulation, v. 11, n. 2, p. 281-292, 2018. doi: https://doi.org/10.1007/s12273-017-0412-x
CHONG, H-Y.; WANG, X.; LEE, C-Y. A mixed review of the adoption of Building Information Modeling (BIM) for sustainability. Journal of Cleaner Production, v. 142, p. 4114-4126, 2017. doi: http://dx.doi.org/10.1016/j.jclepro.2016.09.222
DUNN, J.; SCHEER, D.; ASL, M.; ARBREE, A. A New Tool and Calculation Methodology for BIM? integrated Rapid Daylight Simulation (Preliminary Draft for ASHRAE Energy Modeling Conference). 2015. Available in: <https://forums.autodesk.com/autodesk/attachments/autodesk/19/1382/1/2015_11_16_LAR_Interim_Paper_FINAL_PRELIM_DRAFT.pdf>. Access: june 2019.
EASTMAN, C.; TEICHOLZ, P.; SACKS, R.; LISTON, K. BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers, and Contractors. 2. ed. Nova Jersey: John Wileu & Sons, Inc., 2011, 626p.
ELEFTHERIADIS, S.; MUMOVIC, D.; GREENING, P. Life-cycle energy efficiency in building structures: A review of current developments and future outlooks based on BIM capabilities. Renewable and Sustainable Energy Reviews, v. 67, p. 811-825, 2017. doi: http://dx.doi.org/10.1016/j.rser.2016.09.028
ERBS, D. G.; KLEIN, S. A.; DUFFIE, J. A. Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation. Solar Energy, v. 28, n. 4, p. 293-302, 1982.
FERREIRA, S. L. Definição de propriedades e características de componentes BIM comuns a partir do EnergyPlus. Gestão e Tecnologia de Projetos, São Paulo, v. 10, n. 2, p. 61-70 , jul./dez. 2015. doi: http://dx.doi.org.br/10.11606/gtp.v10i2.102600
FONSECA, R. W.; PEREIRA, F. O. R. Sequência metodológica para a estimativa da iluminação natural e suas implicações em sistemas de avaliação de desempenho de edificações. Ambiente Construído, Porto Alegre, v. 17, n. 1, p. 55-68, jan./mar. 2017. doi: http://dx.doi.org/10.1590/s1678-86212017000100123
FONSECA, R. W.; FERNANDES, F. F. A.; PEREIRA, F. O. R. Zoneamento bioclimático referente à iluminação natural para o território brasileiro. In: XIV ENCAC E X ELACAC, 2017, Balneário Camboriú. Proceedings... Balneário Camboriú: UNIVALI, 2017, p. 1889-1898.
GARCIA, M. S.; FREITAS, M. L. M.; SOUZA, R. V. G.; VELOSO, A. C. O. Comparison of daylighting simulation workflows and results using plugins for BIM and 3D Modeling programs: application on early phases of design process. In: 7TH INTERNATIONAL BUILDING PHYSICS CONFERENCE, Syracuse. Proceedings... Syracuse: IBPC, 2018, p. 1007-1012.
GERRISH, T.; RUIKAR, K.; COOK, M.; JOHNSON, M.; PHILLIP, M.; LOWRY, C. BIM application to building energy performance visualization and management: challenges and potential. Energy and Buildings. v. 144. p. 218-228, 2017. doi: http://dx.doi.org/10.1016/j.enbuild.2017.03.032
GHAFFARIANHOSEINI, A.; TOOKEY, J.; GHAFFARIANHOSEINI, A.; NAISMITH, N.; AZHAR, S.; EFIMOVA, O.; RAAHEMIFAR, K. Building Information Modeling (BIM) uptake: clear benefits, understanding its implementation, risks and challenges. Renewable and Sustainable Energy Reviews, v. 75, p. 1046-1053, 2017. doi: http://dx.doi.org/10.1016/j.rser.2016.11.083
GHOBAD, L.; GLUMAC, S. Daylighting and energy simulation workflow in performance- based building simulation tools. In: 2018 BUILDING PERFORMANCE ANALYSIS CONFERENCE AND SIMBUILD, 2018, Chicago. Proceedings... Chicago: ASHRAE/IBPSA-USA, 2018, p. 382–389.
GUIDI, C. R.; ABRAHÃO, K. C. DE F. J.; VELOSO, A. C. O.; SOUZA, R. V. G. Influência dos parâmetros urbanísticos e da topografia na admissão da luz natural em edifícios residenciais. Ambiente Construído, Porto Alegre, v. 18, n. 3, p. 49–66, 2018. doi: http://dx.doi.org/10.1590/s1678-86212018000300267
ILLUMINATING ENGINEERING SOCIETY OF NORTH AMERICA (IES). Approved Method: IES Spatial Daylight Autonomy (sDA) and Annual Sunlight Exposure (ASE). New York: IES. ISBN: 978-0-87995-272-3, 2012.
JAKUBIEC, J. A.; REINHART, C. F. DIVA 2.0: Integrating daylight and thermal simulations using Rhinoceros 3D, Daysim and EnergyPlus. In: 12TH INTERNATIONAL IBPSA CONFERENCE, 2011, Sydney. Proceedings... Sydney: IBPSA, 2011, p. 2202-2209.
KOTA, S.; HABERL, J. S.; CLAYTON, M. J.; YAN, W. Building Information Modeling (BIM)-based daylighting simulation and analysis. Energy and Buildings, v. 81, p. 391–403, 2014. doi:http://dx.doi.org/10.1016/j.enbuild.2014.06.043
LIU, B. Y. H.; JORDAN, R. C. The Interrelationship and of Direct, Diffuse and Characteristic Distribution Total Solar Radiation. Solar Energy, v. 4, n. 3, p. 1-19, 1960. doi: https://doi.org/10.1016/0038-092X(60)90062-1
MCNEEL, R.; ASSOCIATES. Rhinoceros 3D. 2018. Available in: <https://www.rhino3d.com/>. Access: jun. 2018.
NABIL, A; MARDALJEVIC, J. Useful Daylight Illuminance: A New Paradigm for Assessing Daylight in Buildings. Lighting Research and Technology, v. 37, p. 41-59, 2005. doi: https://doi.org/10.1191/1365782805li128oa
NEGENDAHL, K. Building performance simulation in the early design stage: An introduction to integrated dynamic models. Automation in Construction, v. 54. p 39-53, 2015. Doi: http://dx.doi.org/10.1016/j.autcon.2015.03.002
NIEMASZ, J. Diva for Rhino: Simulations in general. 2018. Available in: <http://diva4rhino.com/user-guide/simulation-types/simulations-general#SkyCondition>. Access: june 2018.
NIZAM, R. S.; ZHANG, C.; TIAN, L. A BIM based tool for assessing embodied energy for buildings. Energy and Buildings, v. 170, p. 1–14, 2018. doi: https://doi.org/10.1016/j.enbuild.2018.03.067
ØSTERGÅRD, T.; JENSEN, R. L.; MAAGAARD, S. E. Building simulation supporting decision making in early design - A review. Renewable and Sustainable Energy Reviews, v. 61. p. 187-201, 2016. doi: http://dx.doi.org/10.1016/j.rser.2016.03.045
REINHART, C. F. Daylighting Availability and Manual Lighting Control in Office Buildings - Simulation Studies and Analysis of Measurements. Departamento de Engenharia, University of Karlsruhe, Düsseldorf, 2001. 139 p.
REINHART, C. F.; ANDERSON, M. Development and validation of a Radiance model for a translucent panel. Energy and Buildings, v. 38, p. 890-904, 2006. doi: https://doi.org/10.1016/j.enbuild.2006.03.006
REINHART, C. F; BRETON, P-F. Experimental validation of 3DS MAX® design 2009 and DAYSIM 3.0. In: 11th INTERNATIONAL IBPSA CONFERENCE, 2009, Glasgow. Proceedings… Glasgow: IBPSA, 2009, p. 1514-1521.
REINHART, C. Daylight performance prediction. In: HENSEN, J. L. M.; LAMBERTS, R. (Ed.). Building Performance Simulation for Design and Operation. London: Spon Press, 2011, p.235-276.
REINHART, C.F.; WALKENHORST, O. Validation of dynamic RADIANCE-based daylight simulations for a test office with external blinds. Energy and Buildings, v. 33, n.7, p. 683-697, 2001. doi: https://doi.org/10.1016/S0378-7788(01)00058-5
REINHART. C. 4.430 Daylighting: MIT Open Course Ware. 2012. Available in: <https://ocw.mit.edu/index.htm>. Access: may 2018..
SANTOS, I. G.; AUER, T.; SOUZA, R. V. G. DE. Optimized indoor daylight for tropical dense urban environments. Ambiente Construído, Porto Alegre, v. 17, n. 3, p. 87–102, 2017. doi: http://dx.doi.org/10.1590/s1678-86212017000300164
STOUTZ, R. M; CLARO, A. Análise comparativa de fluxos de trabalho para simulação da iluminação natural em processo de projeto BIM (Building Information Modeling). In: XIV ENCAC E X ELACAC, 2017, Balneário Camboriú. Proceedings... Balneário Camboriú: UNIVALI, 2009, p. 1750-1759.
USBBC. LEED v4 para projeto e construção de edifícios (Building design and construction). Available in: <<http://www..usgbc.org/sites/default/files/LEED_v4_BDC_10_01_14_PT_3_24_17.pdf>>. Access: jun. 2018.
YAN, W. et al. Interfacing BIM with building thermal and daylighting modeling. In: 13TH CONFERENCE OF INTERNATIONAL BUILDING PERFORMANCE SIMULATION ASSOCIATION, 2013, Chambéry. Proceedings... Chambéry: IBPSA, 2013, p.3521–3528, 2013.
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2020 Marina da Silva Garcia, Roberta Vieira Gonçalves de Souza, Maíra Louise Martins de Freitas, Ana Carolina de Oliveira Veloso
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).