Inteligencia artificial en el apoyo a la deconstrucción de edificios: una revisión sistemática de la literatura

Autores/as

DOI:

https://doi.org/10.11606/gtp.v20i1.231590

Palabras clave:

IA, economía circular, fin de vida, TIC, BIM

Resumen

La deconstrucción de edificios puede fomentar la reutilización de materiales en nuevas construcciones, minimizando costos y reduciendo la degradación ambiental, mientras se apunta a una economía circular. Sin embargo, la implementación de este concepto aún enfrenta desafíos, como la necesidad de optimizar la clasificación de materiales para reducir el tiempo y los costos del proceso. En este sentido, la Inteligencia Artificial (IA) puede ayudar en el proceso de deconstrucción como una herramienta eficiente para mejorar los niveles de productividad y la gestión de recursos. Así, este estudio propone una revisión sistemática de la literatura para comprender cómo la combinación de la IA con metodologías digitales y herramientas tecnológicas puede superar las barreras encontradas en el proceso de deconstrucción de edificios, presentando una visión más práctica de esta integración. Se seleccionaron trece publicaciones que abarcan el período de 2022 a 2024 y emplean la metodología PRISMA. Estos estudios destacaron la relevancia del aprendizaje automático combinado con el Building Information Modeling (BIM) para abordar problemas en el campo de la deconstrucción, particularmente en la clasificación de materiales. Se identificaron y analizaron brechas específicas para proponer enfoques basados en IA que permita resolver cuestiones críticas en el proceso de deconstrucción, como la evaluación de la masa de los materiales.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Carolina Mendonça de Freitas Mendes de Souza, Universidade Federal do Rio de Janeiro

    Arquiteta e Urbanista Mestranda no Programa de Engenharia Civil (PEC/COPPE/UFRJ)

  • Bárbara dos Santos Rezende, Universidade Federal do Rio de Janeiro

    Arquiteta e Urbanista Mestranda no Programa de Engenharia Civil (PEC/COPPE/UFRJ)

  • Alexandre Santana Cruz, Universidade Federal do Rio de Janeiro

    Engenheiro Civil Doutorando no Programa de Pós-Graduação em Arquitetura (PROARQ/FAU/UFRJ)

  • Lucas Rosse Caldas, Universidade Federal do Rio de Janeiro

    Engenheiro Civil, Ambiental e Sanitarista Doutor em Engenharia Civil (PEC/COPPE/UFRJ). Professor no Programa de Pós-Graduação em Arquitetura (PROARQ/FAU/UFRJ) e no Programa de Engenharia Civil (PEC/COPPE/UFRJ).

Referencias

ABIOYE, S. O., OYDELE, L. O., AKANBI, L., AJAYI, A., DELGADO, J. M. D., BILAL, M., AKINADE, O. O., AHMED, A.. Artificial intelligence in the construction industry: A review of present status, opportunities and future challenges. Journal of Building Engineering, v. 44, dez. 2021, 103299. ISSN 2352-7102. Disponível em: https://doi.org/10.1016/j.jobe.2021.103299.

AKANBI, L. A., OYDELE, L. O., AKINADE, O. O., AJAYI, A., DELGADO, J. M. D., BILAL, M., BELLO, S. A. Salvaging building materials in a circular economy: A BIM-based whole-life performance estimator. Resources, Conservation and Recycling, v. 129, p. 175-186, fev. 2018, ISSN 0921-3449. Disponível em: https://doi.org/10.1016/j.resconrec.2017.10.026.

ALESSANDRI-BONETTI, M., LIU, H. Y., GIORGINO, R., NGUYEN, V. T., EGRO F. M. The first months of life of ChatGPT and its impact in healthcare: A bibliometric analysis of the current literature. Annals Biomedical Engineering, v. 52, p. 1107–1110, mar. 2024. Disponível em: https://doi.org/10.1007/s10439-023-03325-8

AMARASINGHE, I., HONG, Y., STEWART, RODNEY, A. Visualising a framework for enhancing material circularity in building construction projects: Drivers, barriers, and strategies. Building and Environment, v. 253., fev. 2024, 111359, ISSN 0360-1323. Disponível em: https://doi.org/10.1016/j.buildenv.2024.111359.

BALOGUN, H., ALAKA, H., DEMIR, E., EGWIM, C.N., OLU-AJAYI, R., SULAIMON, I., OSEGHALE, R. Artificial intelligence for deconstruction: Current state, challenges, and opportunities. Automation in Construction, v. 166, out. 2024, 105641, ISSN 0926-5805. Disponível em: https://doi.org/10.1016/j.autcon.2024.105641.

BELLINI, A., ANDERSEN, B., KLUNGSETH, N. J., TADAYON, A. Achieving a circular economy through the effective reuse of construction products: A case study of a residential building. Journal of Cleaner Production, v. 450, abr. 2024, 141753, ISSN 0959-6526. Disponível em: https://doi.org/10.1016/j.jclepro.2024.141753.

BENACHIO, G. L. F., FREITAS, M. D. C. D., TAVARES, S. F. Circular economy in the construction industry: a systematic literature review. Journal of Cleaner Production, v. 260, jul. 2020, 121046. Disponível em: https://doi.org/10.1016/j.jclepro.2020.121046.

BISWAS, H. K., SIM, T. Y., LAU, S. L. Impact of Building Information Modelling and Advanced Technologies in the AEC Industry: A Contemporary Review and Future Directions. Journal of Building Engineering, v. 82, abr. 2024, 108165, ISSN 2352-7102. Disponível em: https://doi.org/10.1016/j.jobe.2023.108165.

ÇETIN, S., RAGHU, D., HONIC, M., STRAUB, A., GRUIS, V. Data requirements and availabilities for material passports: A digitally enabled framework for improving the circularity of existing buildings. Sustainable Production and Consumption, v. 40, p. 422-437, set. 2023. Disponível em: https://doi.org/10.1016/j.spc.2023.07.011.

CHEN, J., FU, Y., LU, W., PAN, Y. Augmented reality-enabled human-robot collaboration to balance construction waste sorting efficiency and occupational safety and health. Journal of Environmental Management, v. 348, dez. 2023, 119341, ISSN 0301-4797. Disponível em: https://doi.org/10.1016/j.jenvman.2023.119341.

CHEN, X., HUANG, H., LIU, Y., LI, J., LIU, M. Robot for automatic waste sorting on construction sites. Automation in Construction, v. 141, set. 2022, 104387, ISSN 0926-5805. Disponível em: https://doi.org/10.1016/j.autcon.2022.104387.

CRUZ, A. S., CALDAS, L. R., MENDES, V. M., MENDES, J. C., BASTOS, L. E. G. Multi-objective optimization based on surrogate models for sustainable building design: A systematic literature review. Building and Environment, v. 266, dez. 2024a, 112147, ISSN 0360-1323. Disponível em: https://doi.org/10.1016/j.buildenv.2024.112147.

CRUZ, A. S., MENDES, V. F., MENDES, J. C., CALDAS, L. R., BASTOS, E. G. B. What lies ahead? The future performance of Global South residential buildings amid climate change: a systematic literature review. Journal of Building Engineering, v. 98, dez. 2024b, 111486, ISSN 2352-7102. Disponível em: https://doi.org/10.1016/j.jobe.2024.111486.

DEEPIKA, R., ARETI, M., MATHILDE, M., IACOPO, N., ANGELOS, C., CATHERINE, D. W. Enabling component reuse from existing buildings through machine learning, using Google Street View to enhance building databases. POST-CARBON - 27th CAADRIA Conference, Sydney, v. 2, abr. 2022, p. 577-586, Disponível em: https://doi.org/10.52842/conf.caadria.2022.2.577

ELLEN MACARTHUR FOUNDATION. Towards a circular economy: Business rationale for an accelerated transition. Disponível em: https://www.ellenmacarthurfoundation.org/towards-a-circular-economy-business-rationale-for-an-accelerated-transition. Acesso em: 20 de ago. 2024.

EPA (U.S. Environmental Protection Agency). Lifecycle construction resource guide. Atlanta, 2008. 72 p.

FRAGA-LAMAS, P., LOPES, S. I., FERNÁNDEZ-CARAMÉS, T. M. Green IoT and edge AI as key technological enablers for a sustainable digital transition towards a smart circular economy: An industry 5.0 use case. Sensors, v. 21, ago. 2021. Disponível em: https://doi.org/10.3390/s21175745.

GORDON, M., BATALLÉ, A., DE WOLF, C., SOLLAZZO, A., DUBOR, A., WANG, T. Automating building element detection for deconstruction planning and material reuse: A case study. Automation in Construction, v. 146, p. 104697, fev. 2023. Disponível em: https://doi.org/10.1016/j.autcon.2022.104697.

GUERRA, B. C., SHAHI, S., MOLLAEI, A., SKAF, N., WEBER, O., LEITE, F., HAAS, C. Circular economy applications in the construction industry: A global scan of trends and opportunities. Journal of Cleaner Production, v. 324, nov. 2021, 129125, ISSN 0959-6526, Disponível em: https://doi.org/10.1016/j.jclepro.2021.129125.

GUY, B., CIARIMBOLI, N. Design for Disassembly in the Built Environment: a guide to closed-loop design and building. Seattle: City of Seattle, King County, WA, and Resource Venture, Inc., 2007. Prepared by the Hamer Center for Community Design, The Pennsylvania State University. Disponível em: https://www.lifecyclebuilding.org/docs/DfDseattle.pdf

HASSLER, S. C. BAYSAL-GUREL, F. Unmanned Aircraft System (UAS) Technology and Applications in Agriculture. Agronomy, v. 9, out. 2019. Disponível em: https://doi.org/10.3390/agronomy9100618.

HOPKINSON, P., CHEN, H. M., ZHOU, K., WANG, Y., LAM, D. Recovery and reuse of structural products from end-of-life buildings. Proceedings of the Institution of Civil Engineers– Engineering Sustainability, v. 172 p. 119–128, maio 2019. Disponível em: https://doi.org/10.1680/jensu.18.00007.

HU, X., ZHOU, Y., VANHULLEBUSCH, S., MESTDAGH, R., CUI, Z., LI, J. Smart building demolition and waste management frame with image-to-BIM. Journal of Building Engineering, v. 49, maio 2022, 104058, ISSN 2352-7102. Disponível em: https://doi.org/10.1016/j.jobe.2022.104058.

LACOVIDOU, E., PURNELL, P., LIM, M. K. The use of smart technologies in enabling construction components reuse: A viable method or a problem creating solution? Journal of Environmental Management, v. 216, p. 214-223, jun. 2018, ISSN 0301-4797. Disponível em: https://doi.org/10.1016/j.jenvman.2017.04.093.

LIMA, P. R. B., RODRIGUES, C. S., POST, J. M. Integration of BIM and design for deconstruction to improve circular economy of buildings. Journal of Building Engineering, v. 80, dez. 2023, 108015, ISSN 2352-7102. Disponível em: https://doi.org/10.1016/j.jobe.2023.108015.

LIU, J., WU, P., JIANG, Y., WANG, X. Explore potential barriers of applying circular economy in construction and demolition waste recycling. Journal of Cleaner Production, v. 326, dez. 2021, 129400, ISSN 0959-6526 . Disponível em: https://doi.org/10.1016/j.jclepro.2021.129400.

MOLLAEI, A., BACHMANN, C., HAAS, C. Assessing the impact of policy tools on building material recovery. Resources, Conservation and Recycling, v. 198, nov. 2023, 107188, ISSN 0921-3449. Disponível em: https://doi.org/10.1016/j.resconrec.2023.107188.

MRAD, C., RIBEIRO, L. F. A review of Europe’s circular economy in the building sector. Sustainability, v. 14, Out. 2022, 14211. Disponível em: https://doi.org/10.3390/su142114211

NASCIMENTO ,C. R. S. de M. et al. O BIM como instrumento para gestão da manutenção e operação de edificações: um panorama atual. Gestão & Tecnologia de Projetos. São Carlos, v. 18, n. 1, ago. 2023. Disponível em: https://doi.org/10.11606/gtp.v18i1.185678

O'GRADY, T., MINUNNO,R., CHONG, H., MORRISON, G. M. Design for disassembly, deconstruction and resilience: A circular economy index for the built environment. Resources, Conservation and Recycling, v. 175, dez. 2021, 105847, ISSN 0921-3449. Disponível em: https://doi.org/10.1016/j.resconrec.2021.105847.

PRASAD, V., ARASHPOUR, M. Optimally leveraging depth features to enhance segmentation of recyclables from cluttered construction and demolition waste streams. Journal of Environmental Management, v. 354, mar. 2024, 120313, ISSN 0301-4797. Disponível em: https://doi.org/10.1016/j.jenvman.2024.120313.

QUÉHEILLE, E., TAILLANDIER, F., SAIYOURI, N., FERNANDEZ, C. A many-objective optimization model for the end-of-life of buildings. Environment Systems and Decisions, jun. 2024. Disponível em: https://doi.org/10.1007/s10669-024-09984-9.

RICH, E., KNIGHT, K., NAIR, S. B. Artificial intelligence. 3. ed. New Delhi: Tata McGraw-Hill Education Pvt. Ltd., 2010. 585 p.

SACKS, Rafael, EASTMAN, Charles, LEE, Ghang, TEICHOLZ, Paul. BIM Handbook: A Guide to Building Information Modeling for Owners, Designers, Engineers, Contractors, and Facility Managers. 3. ed. Hoboken, NJ: Wiley, 2018, 682 p.

SANCHEZ, B., HAAS, C. A novel selective disassembly sequence planning method for adaptive reuse of buildings. Journal of Cleaner Production, v. 183, maio 2018, p. 998-1010, ISSN 0959-6526. Disponível em: https://doi.org/10.1016/j.jclepro.2018.02.201.

SANCHEZ, B., HONIC, M., LEITE, F., HERTHOGS, P., STOUFFS, R. Augmenting materials passports to support disassembly planning based on building information modelling standards. Journal of Building Engineering, v. 90, ago. 2024, 109083, ISSN 2352-7102. Disponível em: https://doi.org/10.1016/j.jobe.2024.109083.

SUCCAR, B. Building information modelling framework: A research and delivery foundation for industry stakeholders. Automation in Construction, v. 18, n. 3, p. 357-375, maio 2009, ISSN 0926-5805. Disponível em: https://doi.org/10.1016/j.autcon.2008.10.003.

SCHROEDER, H.; LEMKE, M. Sustainability of Earth Building Materials—Environmental Product Declarations as an Instrument of Competition in Building Material Industry. Vitruvio, International journal of Architecture Technology and Sustainability, p. 45-55, dez. 2015. Disponível em: https://doi.org/10.4995/vitruvio-ijats.2015.4474

SETAKI, F., TIMMEREN, A. V. Disruptive technologies for a circular building industry. Building and Environment, v. 223, set. 2022, 109394, ISSN 0360-1323. Disponível em: https://doi.org/10.1016/j.buildenv.2022.109394.

SHON, D.; NOH, B.; BYUN, N. Identification and extracting method of exterior building information on 3D map. Buildings, v. 12, abr. 2022, 452. Disponível em: https://doi.org/10.3390/buildings12040452

SIRIMEWAN, D., BAZLI, M., RAMAN, S., MOHANDES, S. R., KINEBER, A. F., ARASHPOUR, M. Deep learning-based models for environmental management: Recognizing construction, renovation, and demolition waste in-the-wild. Journal of Environmental Management, v. 351, fev. 2024, 119908, ISSN 0301-4797. Disponível em: https://doi.org/10.1016/j.jenvman.2023.119908.

TATIYA, A., ZHAO, D., SYAL, M., BERGHORN, G. H., LAMORE, R. Cost prediction model for building deconstruction in urban areas. Journal of Cleaner Production, v. 195, p. 1572-1580, set. 2018, ISSN 0959-6526. Disponível em: https://doi.org/10.1016/j.jclepro.2017.08.084.

THOMSEN A., SCHULTMANN F., KOHLER, N. Deconstruction, demolition and destruction. Building Research & Information, v. 39, p. 327-332, jun. 2011. Disponível em: https://doi.org/10.1080/09613218.2011.585785.

UNEP (United Nations Environment Programme). Beyond foundations: Mainstreaming sustainable solutions to cut emissions from the buildings sector. Global status report for buildings and construction, 2024. Disponível em: https://www.unep.org/pt-br/resources/relatorios/relatorio-de-status-global-para-edificacoes-e-construcao. Acesso em 15 jul. 2024.

VASCONCELOS, B. M., OLIVEIRA, V. S. Diretrizes para projeto de ambiente construído inclusivo (pessoas com deficiência auditiva): revisão sistemática. Gestão e Tecnologia de Projetos, São Carlos, v.15, n. 2, p.98-112, jun. 2020. Disponível em: http://dx.doi.org/10.11606/gtp.v15i2.162777.

WANG, Q., KIM, M. Applications of 3D point cloud data in the construction industry: A fifteenyear review from 2004 to 2018. Advanced Engineering Informatics, v. 39, p. 306-319, jan. 2019, ISSN 1474-0346. Disponível em: https://doi.org/10.1016/j.aei.2019.02.007.

WEBSTER, M. D., GUMPERTZ, S., COSTELLO, D. T. Designing structural systems for deconstruction: How to extend a new building’s useful life and prevent it from going to waste when the end finally comes. Greenbuild Conference, Atlanta, nov. 2005.

WU, B., MAALEK, R. Renovation or redevelopment: The case of smart decision-support in aging buildings. Smart Cities, v. 6, p. 1922-1936, ago. 2023. Disponível em: https://doi.org/10.3390/smartcities6040089.

YUE, H., WANG, Q., ZHAO, H., ZENG, N., TAN, Y. Deep learning applications for point clouds in the construction industry. Automation in Construction, v. 168, dez. 2024, 105769, ISSN 0926-5805. Disponível em: https://doi.org/10.1016/j.autcon.2024.105769.

Publicado

2025-09-05

Datos de los fondos

Cómo citar

SOUZA, Carolina Mendonça de Freitas Mendes de; REZENDE, Bárbara dos Santos; CRUZ, Alexandre Santana; CALDAS, Lucas Rosse. Inteligencia artificial en el apoyo a la deconstrucción de edificios: una revisión sistemática de la literatura. Gestão & Tecnologia de Projetos (Gestión y tecnología de proyectos), São Carlos, v. 20, n. 1, p. 21–47, 2025. DOI: 10.11606/gtp.v20i1.231590. Disponível em: https://revistas.usp.br/gestaodeprojetos/article/view/231590.. Acesso em: 2 jan. 2026.