Funicular form-finding for planar quad gridshells

Authors

DOI:

https://doi.org/10.11606/gtp.v18i2.196944

Keywords:

Rigid Gridshells, Funicular shape, Planar quad mesh

Abstract

The funicular shell forms follow the history of architecture, engineering and construction since antiquity, and this system has both the advantage of being compatible with stone materials and the strength to reach large spans. With industrial development and especially since the 20th century, there was a great development on construction of reticulated versions of these shells, bringing with it several advantages in architectural and constructive aspects. Lately, there has been a consolidation of numerical formulations methods for obtaining the funicular form, but with the recent development of computers and parametric tools, there is a diversified opportunity for implementing these methods in computational algorithms. However, it is not clearly reported in the literature how these implementations can be performed in the parametric tools or digital platforms available. In this article, the results of experiments of these computational algorithms implementations used to obtain the funicular shape, developed in the Grasshopper visual programming environment, are presented. Additionally, to bring constructive efficiency, algorithms for remesh, planarity measurement and planarization of quadrangular faces in polygonal meshes were implemented and tested. The experiments showed valid results, comparing the tested methods performances and clarifying the variability of different results that these processes can generate. These results contribute to the development of teaching and the design and construction of rigid gridshells.

Downloads

Download data is not yet available.

References

ADDIS, B. Edificação: 3000 Anos de Projeto, Engenharia e Arquitetura. 1ª Ed. Porto Alegre: Bookman, 2009. 640p.

ADRIAENSSENS, S.; BLOCK, P.; VEENENDAAL, D.; WILLIAMS, C. Shell structures for architecture: Form Finding and Optimization. 1a Ed. New York: Routledge, 2014. 323p.

ADRIAENSSENS, S.; BARNES, M.; HARRIS, R.; WILLIAMS, C. Dynamic Relaxation: Design of strained timber gridshell. In: ADRIAENSSENS, S.; BLOCK, P.; VEENENDAAL, D.; WILLIAMS, C. (org.). Shell structures for architecture: Form Finding and Optimization. 1a Ed. New York: Routledge. p. 89-101. 2014b.

BECKH, M.; BARTHEL, R. The First Doubly Curved Gridshell Structure - Shukhovs Building for the Plate Rolling Workshop in Vyksa. In: Third International Congress on Construction History. May 2009. Proceedings […]. Cottbus. 2009.

BOUHAYA, L.; BAVEREL, O.; CARON, J. F. Optimization of gridshell bar orientation using a simplified genetic approach. Structural and Multidisciplinary Optimization. V. 50, p. 839–848, 2014. https://doi.org/10.1007/s00158-014-1088-9

BERK, A.; GILES, H. Quadrilateral panelization of freeform surface structures. Automation in Construction. V. 76, p. 36-44, 2017. https://doi.org/10.1016/j.autcon.2017.01.007

CASSINELO, P.; SCHLAICH, M.; TORROJA, J. A. Félix Candela. In memorian (1910-1997). From thin concrete shells to the 21st century’s lightweight structures. Informes de la Construcción. V. 62-519. P. 5-26. 2010. http://doi.org/10.3989/ic.10.040

DIMCIC, M. Structural optimization of grid shells based on genetic algorithms. Tese (Doutorado) – Itke, Universidade de Stuttgart, Stuttgart. 2011. http://dx.doi.org/10.18419/opus-81

DOUTHE, C.; MESNIL, R.; ORTS, H.; BAVEREL, O. Isoradial meshes: covering elastic gridshells with planar facets. Automation in Construction. V. 83, p. 222-236, 2017. http://doi.org/10.1016/j.autcon.2017.08.015

DRESCH, A.; LACERDA, D. P.; ANTUNES JÚNIOR, J. A. V. Design Science Research: Método de pesquisa para avanço da ciência e tecnologia. 1a Ed. Porto Alegre: Bookman, 2015. 181 p.

ECHENAGUCIA, T., M.; PIGRAM, D.; LIEW, D.; MELE, T., V.; BLOCK, P. A Cable-Net and Fabric Formwork System for the Construction of Concrete Shells: Design, Fabrication and Construction of a Full Scale Prototype. Structures. V. 18, p. 72-82. 2019. https://doi.org/10.1016/j.istruc.2018.10.004

EIGENSATZ, M.; KILIAN, M.; SHIFTNER, A.; MITRA, N. J.; POTTMANN, H.; PAULY, M. Paneling architectural freeform surfaces. In: SIGGRAPH '10: Special Interest Group on Computer Graphics and Interactive Techniques Conference. July 2010. Proceedings […]. Los Angeles. p.1-10.2010. https://doi.org/10.1145/1833349.1778782

GREEN, H.; LAURI, D. Form Finding of Grid Shells - a Parametric Approach using Dynamic Relaxation. 2017. Dissertação (Mestrado) - Department of Mechanics KTH, Royal Institute of Technology. Stockholm, 2017.

HENRIKSSON, V.; HULT, M. Rationalizing freeform architecture: surface discretization and multi-objective optimization.2015. 76 fl. Dissertação (Master Thesis in Structural Engineering and Building Technology) – Department of Applied Mechanics, Chalmers University of Technology, Gothenburg, 2015.

IRVINE, H. M. Cable Structures. 1a Ed. 1981. Cambridge: MIT Press, 1981. 271 p.

KUNZ, M.; PRAUCHNE, M. B. Uso do sistema estrutural Gridshell na criação de formas complexas em estruturas de madeira. Revista de Arquitetura IMED. V. 4-1. p. 19-25. 2015. https://doi.org/10.18256/2318-1109/arqimed.v4n1p19-25

LIENHARD, J. Bending-Active Structures: Form-finding strategies using elastic deformation in static and kinematic systems and the structural potentials therein. Tese (Doutorado) – Itke, Universidade de Stuttgart. Stuttgart, 2014. http://dx.doi.org/10.18419/opus-107

LINKWITZ, K. Force density method: design of a timber shell. In: ADRIAENSSENS, S.; BLOCK, P.; VEENENDAAL, D.; WILLIAMS, C. (org.). Shell structures for architecture: Form Finding and Optimization. 1a Ed. New York: Routledge. p. 59-70. 2014.

LIU, Y.; XU, W.; WANG, J.; ZHU, L.; GUO, B.; CHEN, F.; WANG, G. General Planar Quadrilateral Mesh Design Using Conjugate Direction Field. In: SIGGRAPH 2011 SA '11: Proceedings of the 2011 SIGGRAPH Asia Conference. December 2011. Proceedings […]. Hong Kong. Article No.: 140. Pages 1–10. 2011. https://doi.org/10.1145/2024156.2024174

LIU, Y.; POTTMANN, H.; WALLNER, J.; YANG, Y. L.; WANG, W. Geometric modeling with conical meshes and developable surfaces. ACM Transactions. V. 25, p. 681-689, 2006. https://doi.org/10.1145/1141911.1141941

MELARAGNO, M. An introduction to shell structures: the art and science of vaulting. 1st Ed. New York: Van Nostrand Reinhold, 1991. 429 p.

MEZA, E. G. The triangle grid, the evolution of layered shells since the beginning of the 19th century. Curved and Layered Structures. V. 8. p. 337-353. 2021. https://doi.org/10.1515/cls-2021-0028

MEYER, C.; SHEER, M. H. Do Concrete Shells Deserve Another Look?. Concrete International, V. 27-10. P. 43-50. 2005.

MESNIL, R.; DOUTHE, C.; BAVEREL, O.; LÉGER, B.; CARON, J. F. Isogonal moulding surfaces: A Family of shapes for high node congruence in free-form structures. Automation in Construction. V. 59. P. 38-47, 2015. https://doi.org/10.1016/j.autcon.2015.07.009

MESNIL, R.; DOUTHE, C.; BAVEREL, O.; LEGER, B. Morphogenesis of surface with planar lines of curvature and application to architecture design. Automation in Construction. V. 95, p. 129-141, 2018. https://doi.org/10.1016/j.autcon.2018.08.007

OCHSENDORF, J.; BLOCK, P. Exploring Shell Forms. In: ADRIAENSSENS, S.; BLOCK, P.; VEENENDAAL, D.; WILLIAMS, C. (org.). Shell structures for architecture: Form Finding and Optimization. 1a Ed. 2014. New York: Routledge. p. 7-12. 2014.

PELLIS, D.; POTTMANN, H. Geometry and Statics of Optimal Freeform Gridshells. In: 14. Fachtagung Baustatik – Baupraxis. Março 2020. Proceedings […]. Stuttgart. p.1-9. 2020. http://dx.doi.org/10.18419/opus-10762

PELOUX, L. Modeling of bending-torsion couplings in active-bending structures. Application to the design of elastic gridshells. Tese (Doutorado) – Paris-EST, Paris. 2017.

POPESCU, M.; RIPPMANN, M.; LIEW, A.; REITER, L.; FLATT, R. J.; MELE, T. V.; BLOCK, P. Structural design, digital fabrication and construction of the cable-net and knitted formwork of the Knit Candela concrete shell. Structures. V. 31. p. 1287-1299. 2021. https://doi.org/10.1016/j.istruc.2020.02.013

POTTMANN, H.; ASPERL, A.; HOFER, M.; KILIAN, A. Architectural Geometry. 1. Ed., Pennsylvania: Bentley Institute Press, 2007. 750 p.

POTTMANN, H.; LIU, Y.; WALLNER, J.; BOBENKO, A.; WANG, W. Geometry of multi-layer freeform structures for architecture. ACM Transactions. V. 26, p. ,2007. https://doi.org/10.1145/1276377.1276458

PREISINGER, C.; HEIMRATH, M. Karamba: A Toolkit for Parametric Structural Design. Structural Engineering International, v. 2, p. 217-221, 2014. DOI: https://doi.org/10.2749/101686614X13830790993483

RIPPMANN, M. Funicular Shell Design: Geometric approaches to form finding and fabrication of discrete funicular structures. 2016. Tese (Doutorado) – ETH Zurich. Zurich, 2016. https://doi.org/10.3929/ethz-a-010656780

SASAKI, M. Structural design of free-curved RC shells: an overview of built works. In: ADRIAENSSENS, S.; BLOCK, P.; VEENENDAAL, D.; WILLIAMS, C. (org.). Shell structures for architecture: Form Finding and Optimization. 1a Ed. 2014. New York: Routledge. p. 259-270. 2014.

SCHMIEDHOFER, H. Interactive geometric design of architectural freeform hulls with embedded fabrication information. In: ACADIA 2010 Association for computer aided design in architecture. 21-24th October,2010. Proceedings […]. New York. p.348-356. 2010.

SCHIPPER, R.; JANSSEN, B. Manufacturing double-curved elements in precast concrete using a flexible mould-first experimental results. In: fib Symposium PRAGUE 2011. 8-10th June, 2011. Proceedings […]. Prague. V.2. p. 883-886. 2011.

TELLIER, X.; DOUTHE, C.; HAUSWIRTH, L.; BAVEREL, O. Surface with planar curvature lines: Discretization, generation and application to the rationalization of curved architectural envelopes. Automation in Construction. V. 106, P.1-15, 2019. https://doi.org/10.1016/j.autcon.2019.102880

VEENENDAAL, D.; BLOCK, P. Design process for prototype concrete shells using a hybrid cable-net and fabric formwork. Engineering Structures. V. 75. p. 39-50. 2014. http://dx.doi.org/10.1016/j.engstruct.2014.05.036

VEENENDAAL, D. Design and form finding of flexibly formed concrete shell structures. 2017. Tese (Doutorado) – ETH Zurich. Zurich, 2017. https://doi.org/10.3929/ethz-a-010831669

WANG, T. H.; KRISHNAMURTI, R.; SHIMADA, K. Restructuring surface tesselation with irregular boundary conditions. Frontiers of Architectural Research. V. 3. P. 337-347, 2014. https://doi.org/10.1016/j.foar.2014.06.001

WILLIAMS, C. The Multihalle and the British Museum: a comparison of two gridshells. In: ADRIAENSSENS, S.; BLOCK, P.; VEENENDAAL, D.; WILLIAMS, C. (org.). Shell structures for architecture: Form Finding and Optimization. 1a Ed. 2014. New York: Routledge. p. 239-244. 2014.

ZADRAVEC, M.; SCHIFTNER, A.; WALLNER, J. Designing quad-dominant meshes with planar faces. Computer Graphics Forum. v. 29 (N.5), p.1671-1679, 2010. https://doi.org/10.1111/j.1467-8659.2010.01776.x

Published

2023-11-30

How to Cite

MOURA, Ana Beatriz de Medeiros; SILVA, Felipe Tavares da. Funicular form-finding for planar quad gridshells. Gestão & Tecnologia de Projetos (Design Management and Technology), São Carlos, v. 18, n. 2, p. 123–143, 2023. DOI: 10.11606/gtp.v18i2.196944. Disponível em: https://revistas.usp.br/gestaodeprojetos/article/view/196944.. Acesso em: 26 jun. 2024.