Sapphirine and garnet bearing granulites geothermobarometry from the Paciência beach, Salvador, Bahia – Salvador-Esplanada-Boquim Belt

Authors

DOI:

https://doi.org/10.11606/issn.2316-9095.v20-171026

Keywords:

Salvador-Esplanada-Boquim Belt, Granulites, Sapphirine, Ultra-high temperature, Thermobarometry

Abstract

The outcrop of the Paciência beach, Salvador, Bahia, is located in the geotectonic setting of the São Francisco Craton, in the extreme south of the Salvador-Esplanada-Boquim Belt (SEBB). In this work, a study was carried out on sapphirine and garnet bearing granulite, present in the outcrop. The first one consists of garnet and orthopyroxene porphyroblasts surrounded by a matrix of plagioclase ± K-feldspar ± quartz, and retrometamorphic biotite. The sapphirine bearing granulite presents very residual constitution, formed mainly by simplectites between sapphirine + orthopyroxene ± spinel ± cordierite, and smaller amounts in the matrix of plagioclase, quartz, potassium feldspar, and retrometamorphic biotite in profusion involving the other phases. In the garnet bearing granulite, garnet is a solid solution dominated by the almandine-pyrope, with a composition between alm55prp43 in the core, and alm60prp39 at the rims. Al in orthopyroxene ranges between 0.43–0.30 apfu in porphyroblasts. In the sapphirine bearing granulite, Al in orthopyroxene ranges 0.27–0.40 apfu. Metamorphic peak P-T conditions ~1.04 GPa and ~1,015°C were obtained for garnet bearing granulite, and XMg in orthopyroxene in sapphirine bearing granulite indicated T close to 1,030°C via pseudosection. These conditions are compatible with ultrahigh temperature metamorphism, and it is the first report of this type of metamorphism in the SEBB. The immediately post-peak metamorphism would have elapsed in almost isothermal decompression path, consistent with identified reaction microstructures, up to the limit close to 0.75 GPa and 930°C in the pseudosection, still at high temperature. The diffusion between Fe-Mg and back-reactions would act intensely during the following cooling stages in the sapphirine bearing granulite, resulting in temperatures calculated via Opx-Spr thermometer lower than those of

Downloads

Download data is not yet available.

References

Abrahão Filho, E. A. (2009). Mapeamento Multi-escalar de Estruturas da Área de Influência da Porção Sul da Falha de Salvador, Bahia. Trabalho Final (Graduação). Salvador: Instituto de Geociências, UFBA.

Alkmim, F. F., Brito Neves, B. B., Alves, J. A. C. (1993). Arcabouço tectônico do Cráton do São Francisco – uma revisão. In: J. M. L. Dominguez, A. Misi (Eds.), O Cráton do São Francisco, p. 45-62. Salvador: SBG-NBA/SE, SGM, CNPq.

Almeida Júnior, M. V. C. (2014). Petrografia, Litogeoquímica e Geocronologia das rochas gnáissicas-migmatíticas do extremo norte do Cinturão-Salvador-Esplanada-Boquim. Dissertação (Mestrado). Salvador: Instituto de Geociências, UFBA. Disponível em: <http://repositorio.ufba.br/ri/handle/ri/21551>. Acesso em: 22 set. 2020.

Barbosa, J. S. F., Correa-Gomes L.C., Dominguez, J. M. L., Cruz S. A S., Souza, J. S. (2005). Petrografia e Litogeoquímica das Rochas da Parte Oeste do alto de Salvador, Bahia. Revista Brasileira de Geociências, 35(4 Supl.), 9-22. https://doi.org/10.25249/0375-7536.200535S40922

Barbosa, J. S. F., Dominguez, J. M. L. (1996). Texto Explicativo para o Mapa Geológico ao Milionésimo da Bahia. Salvador: SICM/SGM.

Barbosa, J. S. F., Marinho, M. M., Menezes-Leal, A. B., Oliveira, E. M., Souza-Oliveira, J. S., Argollo, R. M., Lana, C. Barbosa, R. G., Santos, L. T. L. (2018). As raízes granulíticas do cinturão Salvador-Esplanada-Boquim, Cráton do São Francisco, Bahia-Sergipe, Brasil. Geologia USP. Série Científica, 18(2), 103-128. https://doi.org/10.11606/issn.2316-9095.v18-134238

Barbosa, J. S. F., Menezes-Leal, A. B., Fuck, A. R., Souza de Oliveira, J. S., Gonçalves, P., Leite, C. M. M. (2017). Ultrahightemperature metamorphism of 2.0 Ga-Old sapphirine‑bearing granulite from the Itabuna-Salvador-Curaçá Block, Bahia, Brazil. Geologia USP. Série Científica, 17(1), 89-108. https://doi.org/10.11606/issn.2316-9095.v17-287

Barbosa, J. S. F., Sabaté, P. (2002). Geological features and the Paleoproterozoic collision of four Archaean Crustal segments of the São Francisco Craton, Bahia, Brazil: a synthesis. Anais da Academia Brasileira de Ciências, 74(2), 343-359. https://doi.org/10.1590/S0001-37652002000200009

Barbosa, J. S. F., Sabaté, P. (2003). Colagem Paleoproterozoica de placas arqueanas do Cráton do São Francisco na Bahia. Revista Brasileira de Geociências, 33(1 Supl.), 7-14. https://doi.org/10.25249/0375-7536.200333S10714

Barbosa, J. S. F., Sabaté, P. (2004). Archean and Paleoproterozoic crust of the São Francisco Cráton, Bahia, Brazil: geodynamic features. Precambrian Research, 133(1-2), 1-27. https://doi.org/10.1016/j.precamres.2004.03.001

Borges, G. C., Leal-Rodrigues, D., Souza-Oliveira, J. S. (2018). Caracterização Estrutural dos Litotipos da Porção Oeste do Afloramento da Praia da Paciência, Salvador - Ba: Cinturão Salvador-Esplanada-Boquim. Congresso de Pesquisa, Ensino e Extensão, 896. Salvador: UFBA.

Clemens, J. D., Vielzeuf, D. (1987). Constraints on melting and magma production in the crust. Earth and Planetary Science Letters, 86(2-4), 287-306. https://doi.org/10.1016/0012-821X(87)90227-5

Clemens, J. D., Wall, V. J. (1981). Origin and crystallization of some peraluminous (S-type) granitic magmas. The Canadian Mineralogist, 19(1), 111-131.

Connolly, J. A. D. (2005). Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth and Planetary Science Letters, 236(1-2), 524-541. https://doi.org/10.1016/j.epsl.2005.04.033

Dalton de Souza, J., Kosin, M., Melo, R. C., Santos, R. A., Teixeira, L. R., Sampaio, A. R., Guimarães, J. T., Vieira Bento, R., Borges, V. P., Martins, A. A. M., Arcanjo, J. B., Loureiro, H. S. C., Angelim, L. A. A. (2003). Mapa Geológico do Estado da Bahia. Escala 1:1.000.000. Salvador: Programa Carta Geológica do Brasil ao Milionésimo e Levantamentos Geológicos Básicos do Brasil / CBPM-CPRM.

Dasgupta, S., Sengupta, P., Ehl, J., Raith, M., Bardhan, S. (1995). Reaction textures in a suite of spinel granulites from the Eastern Ghats Belt, India: Evidence for polymetamorphism, a partial petrogenetic grid in the system KFMASH and the roles of ZnO and Fe2O3. Journal of Petrology, 36(2), 435-461. https://doi.org/10.1093/petrology/36.2.435

Deer, W. A., Howie, R. A., Zussman, J. (1992). Minerais Constituintes das Rochas: Uma Introdução. Lisboa: Fundação Calouste Gulbenkian.

De Waard, D. (1965). The occurrence of garnet in the granulite facies terrene of the Adirondack Highlands. Journal of Petrology, 6(1), 165-191. https://doi.org/10.1093/petrology/6.1.165

England, P. C. (1993). Convective removal of thermal boundary layer of thickened continental lithosphere: a brief summary of causes and consequences with special reference to the Cenozoic tectonics of the Tibetean Plateau and surrounding regions. Tectonophisics, 223(1-2), 67-73. https://doi.org/10.1016/0040-1951(93)90158-G

Frost, B. R., Chacko, T. (1989). The granulite uncertainty principle: limitations on thermobarometry in granulites. Journal of Geology, 97(4), 435-450. https://doi.org/10.1086/629321

Fujimori, S. (1985). Sapphirine from Salvador, Bahia, Brazil: evidence for formation by ex-solution. Revista Brasileira de Geociências, 15(1), 18-24.

Fujimori, S., Allard, G. O. (1966). Ocorrência de safirina em Salvador, Bahia. Boletim da Sociedade Brasileira de Geologia, 15(2), 67-81.

Harley, S. L. (1989). The origins of granulites: a metamorphic temperature metamorphism: perspective. Geological Magazine, 126(3), 215-247. https://doi.org/10.1017/S0016756800022330

Harley, S. L. (1998). On the occurrence and characterization ultrahigh-temperature crustal metamorphism. In: P. J. Treloar, P. J. O’Brien (Eds), What Drives Metamorphism and Metamorphic Reactions?, v. 138(1), p. 81-107. Londres: Geological Society Special Publications. https://doi.org/10.1144/GSL.SP.1996.138.01.06

Harley, S. L. (2016). A matter of time: The importance of the duration of UHT metamorphism. Journal of Mineralogical and Petrological Sciences, 111(2), 50-72. https://doi.org/10.2465/jmps.160128

Kawasaki, T., Sato, K. (2002). Experimental study of Fe–Mg exchange reaction between orthopyroxene and sapphirine and its calibration as a geothermometer. Gondwana Research, 5(4), 741-747. https://doi.org/10.1016/S1342-937X(05)70909-6

Kelsey, D. E., Hand, M. (2015). On ultrahigh temperature crustal metamorphism: phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings. Geoscience Frontiers, 6(3), 311-356. https://doi.org/10.1016/j.gsf.2014.09.006

Kelsey, D. E., White, R. W., Holland, T. J. B., Powell, R. (2004). Calculated phase equilibria in K2O-FeO-MgO-Al2O3-SiO2-H2O for sapphirine-quartz-bearing mineral assemblages. Journal of Metamorphic Geology, 22(6), 559-578. https://doi.org/10.1111/j.1525-1314.2004.00533.x

Kohn, M. J., Spear, F. (2000). Retrograde net transfer reaction insurance for pressure-temperature estimates. Geology, 28(12), 1127-1130. https://doi.org/10.1130/0091-7613(2000)28<1127:RNTRIF>2.0.CO;2

Kriegsman, L. M. (2001). Partial melting, partial melt extraction and partial back reaction in anatectic migmatites. Lithos, 56(1), 75-96. https://doi.org/10.1016/S0024-4937(00)00060-8

Kriegsman, L. M., Hensen, B. J. (1998). Back reaction between restite and melt: implications for geothermobarometry and pressure–temperature paths. Geology, 26(12), 1111-1114. https://doi.org/10.1130/0091-7613(1998)026<1111:BRBRAM>2.3.CO;2

Leal-Rodrigues, D. (2017). Caracterização Petrográfica das rochas metamórficas de alto grau portadoras de safirina e suas encaixantes no afloramento da Praia da Paciência, Salvador, BA. Trabalho Final (Graduação em Geologia). Salvador: Instituto de Geociências, UFBA.

Le Breton, N., Thompson, A. B. (1988). Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anataxis. Contributions to Mineralogy and Petrology, 99, 226-237. https://doi.org/10.1007/BF00371463

Leite, C. M. M. (2002). A Evolução Geodinâmica da Orogênese Paleoproterozóica nas regiões de Capim Grosso-Jacobina e Pintadas-Mundo Novo (Bahia-Brasil): Metamorfismo, Anatexia e Tectônica. Tese (Doutorado). Salvador: Instituto de Geociências, UFBA.

Leite, C. M. M., Barbosa, J. S. F., Goncalves, P., Nicollet, C., Sabaté, P. (2009). Petrological evolution of silica-undersaturated sapphirine-bearing granulite in the Paleoproterozoic Salvador-Curaçá Belt, Bahia, Brazil. Gondwana Research, 15(1), 49-70. https://doi.org/10.1016/j.gr.2008.06.005

Moraes, R., Brown, M., Fuck, R. A., Camargo, M. A., Lima, T. M. (2002). Characterization and P-T evolution of melt-bearing ultrahigh-temperature granulite: an exemple from Anapolis-Ituaçu Complex of the Brasília fold belt, Brazil. Journal of Petrology, 43(9), 1673-1705. https://doi.org/10.1093/petrology/43.9.1673

Nascimento, D. C. (2019). Integração de dados petrográficos e estruturais de litotipos cristalinos de Salvador, Bahia. Trabalho Final (Graduação). Salvador: Instituto de Geociências, UFBA.

Oliveira, E. M. (2014). Petrografia, litogeoquímica e geocronologia das rochas granulíticas da parte norte do Cinturão Salvador-Esplanada-Boquim, Bahia-Sergipe. Tese (Doutorado). Salvador: Instituto de Geociências, UFBA.

Pattison, D. R. M., Chacko, T., Farquhar, J., McFarlane, C. R. M. (2003). Temperatures of granulite-facies metamorphism: constraints from experimental phase equilibria and thermobarometry corrected for retrograde exchange. Journal of Petrology, 44(5), 867-900. https://doi.org/10.1093/petrology/44.5.867

Pinho, I. A. (2005). Geologia dos metatonalitos/metatrondhjemitos e dos granulitos básicos das regiões de Camamu-Ubaitaba-Itabuna, Bahia. Tese (Doutorado). Salvador: Instituto de Geociências, UFBA.

Sawyer, E. W. (2008). Atlas of Migmatites. Ottawa: The Canadian Mineralogist Special Publication.

Selverstone, J., Chamberlain, C. P. (1990). Apparent isobaric cooling paths from granulites: Two counter examples from British Columbia and New Hampshire. Geology, 18(4), 307-310. https://doi.org/10.1130/0091-7613(1990)018<0307:AICPFG>2.3.CO;2

Silva, L. C., Armstrong, R., Delgado, I. M., Pimentel, M., Arcanjo, J. B., Melo, R. C., Teixeira, L. R., Jost, H., Cardoso Filho, J. M., Pereira, L. H. M. (2002). Reavaliação da evolução geológica em terrenos pré-cambrianos brasileiros com base em novos dados U-Pb SHRIMP, Parte I: limite centro-oriental do Cráton do São Francisco na Bahia. Revista Brasileira de Geociências, 32(4), 501-512.

Silva, L. C., McNaughton, N. J., Melo, R. C., Fletcher, I. R., (1997). U-Pb SHRIMP ages in the Itabuna-Caraíba TTG high-grade Complex: the first window beyond the Paleoproterozoic overprint of the eastern Jequié Craton, NE Brazil. International Symposium of Granites and Associated Mineralisations, 1, 282-283. Salvador: SBG.

Silveira Filho, N. C., Burgos, C. M., Menezes, R. C. L., Conceição, H., Macedo, E. P. (2014). Nova ocorrência de safirina na cidade de Salvador – Bahia, em talude de corte da Avenida Luís Viana Filho (Paralela). XLVII Congresso Brasileiro de Geologia, 1058. Salvador: SBG.

Souza, J. S. (2013). Geologia, Metamorfismo e geocronologia de Litotipos de Salvador-Bahia. Tese (Doutorado). Salvador: Instituto de Geociências, UFBA.

Souza, J. S., Barbosa, J. S. F., Correa-Gomes, L. C. (2010). Litogeoquímica dos granulitos ortoderivados da cidade de Salvador, Bahia. Revista Brasileira de Geociências, 40(3), 339-354. https://doi.org/10.25249/0375-7536.2010403339354

Souza-Oliveira, J. S., Nascimento, D. C., Leal-Rodrigues, D., Barbosa, J. S. F. (2020). Os litotipos cristalinos da cidade de Salvador, Bahia: estágio atual do conhecimento. In: P. F. Pires, F.C. Barbosa, C.E.O. Gontijo (Eds.), Geociências, Sociedade e Sustentabilidade, p. 125-170. Piracanjuba: Conhecimento Livre.

Souza-Oliveira, J. S., Peucat, J. J., Barbosa, J. S. F., Correa-Gomes, L. C., Cruz, S. C. P., Menezes-Leal, A. B., Paquette, J. L. (2014). Lithogeochemistry and geochronology of the subalkaline felsic plutonism that marks the end of the Paleoproterozoic orogeny in the Salvador–Esplanada belt, São Francisco Craton (Salvador, state of Bahia, Brazil). Brazilian Journal of Geology, 44(2), 221-234. https://doi.org/10.5327/Z2317-4889201400020004

Spear, F. S., Florence, F. P. (1992). Thermobarometry in granulites: Pitfalls and new approaches. Journal of Precambrian Research, 55(1-4), 209-241. https://doi.org/10.1016/0301-9268(92)90025-J

Spear, F. S., Kohn M. J., Cheney, J. T. (1999). P-T paths from anatectic pelites. Contributions to Mineralogy and Petrology, 134, 17-32. https://doi.org/10.1007/s004100050466

Stormer Jr., J. C. (1973). The composition of sapphirine from Salvador, Bahia and conditions of its formation. Revista Brasileira de Geociências, 3(3),192-200.

Van der Pluijm, B. A., Marshak, S. (2004). Earth structure: an introduction to structural geology and tectonics. Nova York/Londres: W. W. Norton & Company.

Vernon, R. H. (2004). A Practical Guide to Rock Microstructure. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511807206

Vielzeuf, D., Schmidt, M. (2001). Melting relations in hydrous systems revisited: Application to metapelites, metagreywackes and metabasalts. Contributions to Mineralogy and Petrology, 141(3), 251-267. https://doi.org/10.1007/s004100100237

White, R. W., Powell, R. (2002). Melt loss and the preservation of granulite facies mineral assemblages. Journal of Metamorphic Geology, 20(7), 621-632. https://doi.org/10.1046/j.1525-1314.2002.00206_20_7.x

White, R. W., Powell, R., Clarke, G. L. (2002). The interpretation of reaction textures in Fe rich metapelitic granulites of the Musgrave Block, central Australia: constraints from mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. Journal of Metamorphic Geology, 20(1), 41-55. https://doi.org/10.1046/j.0263-4929.2001.00349.x

Whitney, D. L., Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1), 185-187. https://doi.org/10.2138/am.2010.3371

Winter, J. D. (2001). An Introduction to Igneous and Metamorphic Petrology. Nova Jersey: Prentice Hall.

Yardley, B. W. D. (1989). An Introduction of Metamorphic Petrology. Singapura: Logman Earth Science Series.

Published

2020-12-17

Issue

Section

Articles

How to Cite

Rodrigues, D. L., Oliveira, J. S. de S. de, & Moraes, R. de. (2020). Sapphirine and garnet bearing granulites geothermobarometry from the Paciência beach, Salvador, Bahia – Salvador-Esplanada-Boquim Belt. Geologia USP. Série Científica, 20(4), 53-78. https://doi.org/10.11606/issn.2316-9095.v20-171026