Petrography and geochemistry of basic pegmatites of the Paraná Igneous Province, southwest of the Paraná State
DOI:
https://doi.org/10.11606/issn.2316-9095.v20-161586Keywords:
Magmatic segregation, Basaltic flows, Regional correlationAbstract
In the southwest of the Paraná State, there is a great concentration of basic pegmatites hosted in lava flows of the Paraná Igneous Province. Despite several recent detailed studies, there is a need to understand the characteristics and formation processes of these pegmatites, with a regional correlation study. Petrographic and geochemical data from previous works were compiled in a database. Along with crystal sizes 5 to 20 times larger than the basalt host, pegmatites have a mineral association very similar to the basalts, with plagioclase, augite, and opaque minerals as the main mineral phases. In the pegmatites, these minerals occur in the form of phenocrysts and microphenocrysts together with microlites derived from the devitrification of the matrix. The pegmatites have skeletal crystals, fan-like plumose augite, symplectite intergrowth, and a vitreous mesostasis, evidencing a rapid cooling. On geochemical grounds, the pegmatites are more evolved rocks, formed by fractionation labradorite, augite, Fe-Ti oxides, and apatite. With the help of principal component analysis and multielement diagrams, it was possible to define six groups of geochemically similar and spatially close pegmatites. All the pegmatites studied are hosted in Type 1 flows (low SiO2, Zr, TiO2, and P2O5), especially in Type 1 Central-North flows. Lava flows of this type are commonly pahoehoe, essential for the formation of pegmatites, while flows of other types tend to have a higher occurrence of rubbly pahoehoe or a’a’ flows, which could explain the lack of occurrences discovered in spills of these types.
Downloads
References
Anderson Jr., A. T., Swihart, G. H., Artioli, G., Geiger, C. A. (1984). Segregation vesicles, gas filter-pressing, and igneous differentiation. Journal of Geology, 92(1), 55-72. https://doi.org/10.1086/628834
Arioli, E. E. (2008). Arquitetura faciológica da seqüência vulcânica e o significado exploratório das anomalias geoquímicas de elementos do grupo da platina (EGP) e metais associados no sistema magmático Serra Geral, estado do Paraná, Brasil. Tese (Doutorado). Curitiba: Setor de Ciências da Terra – UFPR. Disponível em: <http://hdl.handle.net/1884/27955>. Acesso em: 8 out. 2020.
Arioli, E. E., Licht, O. A. B. (2008). Mapeamento Geológico da Formação Serra Geral: Relatório Final da Folha de Guarapuava. Relatório Técnico. Curitiba: Mineropar.
Bondre, N. R., Duraiswami, R. A., Dole, G. (2004). Morphology and emplacement of flows from the Deccan Volcanic Province, India. Bulletin of Volcanology, 66, 29-45. https://doi.org/10.1007/s00445-003-0294-x
Boynton, W. V. (1984). Cosmochemistry of the rare earth elements: meteorite studies. In: P. Henderson (Ed.). Rare earth element geochemistry (p. 63-114). Amsterdã: Elsevier. (Developments in Geochemistry, 2). https://doi.org/10.1016/B978-0-444-42148-7.50008-3
Caroff, M., Maury, R. C., Cotten, J., Clément, J.-P. (2000). Segregation structures in vapor-differentiated basaltic flows. Bulletin of Volcanology, 62, 171-187. https://doi.org/10.1007/s004450000077
Cawthorn, R. G., Latypov, R., Klemd, R., Vuthuza, A. (2018). Origin of discordant ultramafic pegmatites in the Bushveld Complex from externally-derived magmas. South African Journal of Geology, 121(3), 287-310. https://doi.org/10.25131/sajg.121.0027
Costa, J. (2015). Estratigrafia e geoquímica da sequência de lavas da Província Magmática do Paraná na região da Usina de Itaipu (PR). Tese (Doutorado). Curitiba: Setor de Ciências da Terra - UFPR. Disponível em: <http://hdl.handle.net/1884/42082>. Acesso em: 8 out. 2020.
Deer, W. A., Howie, R. A., Zussman, J. (1978). Rock-Forming Minerals. Volume 2A: Single-Chain Silicates. Londres: Geological Society.
Deer, W. A., Howie, R. A., Zussman, J. (2013). An introduction to the Rock-Forming Minerals. Londres: The Mineralogical Society. https://doi.org/10.1180/DHZ
Dostal, J., Greenough, J. D. (1992). Geochemistry and petrogenesis of the early Mesozoic North Mountain basalts of Nova Scotia, Canada. In: J. H. Puffer, P. C. Ragland (Eds.). Eastern North American Mesozoic Magmatism (p. 149-160). Boulder: Geological Society of America. (Special Paper, 268). https://doi.org/10.1130/SPE268-p149
Droop, G. T. R. (1987). A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineralogical Magazine, 51(361), 431-435. https://doi.org/10.1180/minmag.1987.051.361.10
Ferreira, C. H. N. (2011). Geologia do derrame Salto do Lontra e gênese dos pegmatitos básicos associados, Província Magmática do Paraná, sudoeste do estado do Paraná. Dissertação (Mestrado). Curitiba: Setor de Ciências da Terra – UFPR. Disponível em: <http://hdl.handle.net/1884/28823>. Acesso em: 7 out. 2020.
Ferreira, C. H. N., Mesquita, M. J. M., Gomes, M. E. B., Hillebrandt, P., Vasconcellos, E. M. G. (2014). Arquitetura interna e petrografia do derrame Salto do Lontra, sudoeste do estado do Paraná. Boletim Paranaense de Geociências, 71(1), 46-59. http://doi.org/10.5380/geo.v71i0.30998
Fowler, A. C., Rust, A. C., Vynnycky, M. (2015). The formation of vesicular cylinders in pahoehoe lava flows. Geophysical and Astrophysical Fluid Dynamics, 109(1), 39-61. https://doi.org/10.1080/03091929.2014.955799
Goff, F. (1996). Vesicle cylinders in vapor differentiated basalt flows. Journal of Volcanology and Geothermal Research, 71(2-4), 167-185. https://doi.org/10.1016/0377-0273(95)00073-9
Gomes, A. S., Licht, O. A. B., Vasconcellos, E. M. G., Soares, J. S. (2018). Chemostratigraphy and evolution of the Paraná Igneous Province volcanism in the central portion of the state of Paraná, Souther Brazil. Journal of Volcanology and Geothermal Research, 355, 253-269. http://doi.org/10.1016/j.jvolgeores.2017.09.002
Greaney, A., Rudnick, R. L., Helz, R. T., Gaschnig, R. M., Piccoli, P. M., Ash, R. D. (2017). The behavior of chalcophile elements during magmatic differentiation as observed in Kilauea Iki lava lake, Hawaii. Geochimica et Cosmochimica Acta, 210, 71-96. https://doi.org/10.1016/j.gca.2017.04.033
Greenough, J. D., Dostal, J. (1992). Cooling history and differentiation of a thick North Mountain basalt flow. Bulletin of Volcanology, 55, 63-73. https://doi.org/10.1007/BF00301120
Hartley, M. E., Thordarson, T. (2009). Melt segregations in a Columbia River Basalt lava flow: A possible mechanism for the formation of highly evolved mafic magmas. Lithos, 112(3-4), 434-446. https://doi.org/10.1016/j.lithos.2009.04.003
Helz, R. T. (1980). Crystallization history of Kilauea Iki lava lake as seen in drill core recovered in 1967-1979. Bulletin Volcanologique, 43, 675-701. https://doi.org/10.1007/BF02600365
Helz, R. T., Kirschenbaum, H., Marinenko, J. W. (1989). Diapiric transfer of melt in Kilauea Iki lava lake, Hawaii: A quick, efficient process of igneous differentiation. Geological Society of America Bulletin, 101(4), 578-594. https://doi.org/10.1130/0016-7606(1989)101%3C0578:DTOMIK%3E2.3.CO;2
Helz, R. T., Thornber, C. R. (1987). Geothermometiy of Kilauea Iki lava lake. Bulletin of Volcanology, 49, 651-668. https://doi.org/10.1007/BF01080357
Innocent, C., Parron, C., Hamelin, B. (1997). Rb/Sr chronology and crystal chemistry of celadonites from the Paraná continental tholeiites, Brazil. Geochimica et Cosmochimica Acta, 61(17), 3753-3761. https://doi.org/10.1016/S0016-7037(97)00183-X
Irvine, T. N., Baragar, W. R. A. (1971). A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5), 523-548. https://doi.org/10.1139/e71-055
Janoušek, V., Farrow, C. M., Erban, V. (2006). Interpretation of Whole-rock geochemical Data in Igneous Geochemistry: Introducing Geochemical Data Toolkit (GCDkit). Journal of Petrology, 47(6), 1255-1259. https://doi.org/10.1093/petrology/egl013
Janoušek, V., Moyen, J. F., Erban, V., Hora, J. (2019). GCDkit goes platform independent! Goldschmidt2019. Barcelona: European Association of Geochemistry, Geochemical Society.
Jensen, L. S. (1976). A new cation plot for classifying subalkaline volcanic rocks. Toronto: Ontario Division of Mines. Miscellaneous Paper, 66, 22 p. Disponível em: <http://www.geologyontario.mndmf.gov.on.ca/mndmfiles/pub/data/imaging/MP066/MP066.pdf>. Acesso em: 7 out. 2020.
Kennedy, W. Q. (1933). Trends of differentiation in basaltic magmas. American Journal of Science, 25(147), 239-256. https://doi.org/10.2475/ajs.s5-25.147.239
Kirkpatrick, R. J. (1977). Nucleation and growth of plagioclase, Makaopuhi and Alae lava lakes, Kilauea Volcano, Hawaii. Geological Society of America Bulletin, 88(1), 78-84. https://doi.org/10.1130/0016-7606(1977)88%3C78:NAGOPM%3E2.0.CO;2
Kirkpatrick, R. J. (1983). Theory of nucleation in silicate melts. American Mineralogist, 68(1-2), 66-77.
Kontak, D. J., De Young, M. Y. D. W., Dostal, J. (2002). Late-Stage Crystallization History of the Jurassic North Mountain Basalt, Nova Scotia, Canada. I. Textural and Chemical Evidence for Pervasive Development of Silicate-Liquid Immiscibility. The Canadian Mineralogist, 40(5), 1287-1311. https://doi.org/10.2113/gscanmin.40.5.1287
Larsen, R. B., Brooks, C. K. (1994). Origin and evolution of gabbroic pegmatites in the Skaergaard Intrusion, East Greenland. Journal of Petrology, 35(6), 1651-1679. https://doi.org/10.1093/petrology/35.6.1651
Le Bas, M. J., Le Maitre, R. W., Streckeisen, A., Zanettin, B. (1986). A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal Petrology, 27(3), 745-750. https://doi.org/10.1093/petrology/27.3.745
Licht, O. A. B. (2018). A revised chemo-chronostratigraphic 4-D model for the extrusive rocks of the Paraná Igneous Province. Journal of Volcanology and Geothermal Research, 355, 32-54. http://doi.org/10.1016/j.jvolgeores.2016.12.003
Licht, O. A. B., Arioli, E. E., Silveira, L. (2000). Prospecção mineral no Terceiro Planalto. Relatório Interno. Curitiba: Mineropar.
Lofgren, G. E. (1980). Experimental studies on the dynamic crystallization of silicate melts. In: R. B. Hargraves (Ed.). Physics of magmatic processes (p. 487-551). Nova Jersey: Princeton University Press.
Lofgren, G. E. (1983). Effect of heterogeneous nucleation on basaltic texture: a dynamic crystallization study. Journal of Petrology, 24(3), 229-255. https://doi.org/10.1093/petrology/24.3.229
Mantovani, M. S. M., Marques, L. S., de Sousa, M. A., Civetta, L., Atalla, L., Innocenti, F. (1985). Trace elements and strontium isotope constraints on the origin and evolution of Paraná continental flood basalts of Santa Catarina state (southern Brazil). Journal of Petrology, 26(1), 187-209. http://doi.org/10.1093/petrology/26.1.187
Mitchell, A. A., Naicker, S. B., Marsh, J. S., Dunlevey, J. N. (1997). The petrology and significance of a stratiform mafic segregation pegmatite in a Karoo-aged dolerite sheet. South African Journal of Geology, 100(3), 251-260.
Morimoto, N. (1988). Nomenclature of Pyroxenes. Mineralogy and Petrology, 39, 55-76. https://doi.org/10.1007/BF01226262
Peate, D. W. (1989). Stratigraphy and petrogenesis of the Paraná Continental Flood Basalts, Southern Brazil. PhD Thesis. Londres: Open University. https://doi.org/10.21954/ou.ro.0000dfc2
Peate, D. W., Hawkesworth, C. J. (1996). Lithospheric to asthenosferic transition in low-Ti flood basalts from southern Paraná, Brazil. Chemical Geology, 127(1-3), 1-24. https://doi.org/10.1016/0009-2541(95)00086-0
Peate, D. W., Hawkesworth, C. J., Mantovani, M. S. M. (1992). Chemical stratigraphy of the Paraná lavas (South America): classification of magma types and their spatial distribution. Bulletin of Volcanology, 55, 119-139. https://doi.org/10.1007/BF00301125
Phillpotts, A. R., Carroll, M., Hill., J. M. (1996). Crystalmush Compaction and the Origin of Pegmatitic Segregation Sheets in a Thick Flood-Basalt Flow in the Mesozoic Hartford Basin, Connecticut. Journal of Petrology, 37(4), 811-836. https://doi.org/10.1093/petrology/37.4.811
Proussevitch, A. A., Sahagian, D. L. (1998). Dynamics and energetics of bubble growth in magmas: analytical formulation and numerical modeling. Journal of Geophysical Research, 103(B8), 18223-18251. https://doi.org/10.1029/98JB00906
Puffer, J. H., Horter, D. L. (1993). Origin of pegmatitic segregation veins within flood basalts. Geological Society of America Bulletin, 105(6), 738-748. https://doi.org/10.1130/0016-7606(1993)105<0738:OOPSVW>2.3.CO;2
Robinson, P., McEnroe, S. A., Miyajima, N., Fabian, K., Church, N. (2016). Remanent magnetization, magnetic coupling, and interface ionic configurations of intergrown rhombohedral and cubic Fe-Ti oxides: A short survey. American Mineralogist, 101(3), 518-530. https://doi.org/10.2138/am-2016-5519
Scarfe, C. M. (1973). Viscosity of Basic Magmas at Varying Pressure. Nature Physical Science, 241, 101-102. https://doi.org/10.1038/physci241101a0
Self, S., Thordarson, T., Keszthelyi, L. (1997). Emplacement of Continental Flood Basalt Lava Flows. In: J. J. Mahoney, M. F. Coffin (Eds.). Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism (p. 381-410). Washington: American Geophysical Union. (Geophysical Monograph, 100).
Sigmarsson, O., Thordarson, T., Jakobsson, S. P. (2009). Segregations in Surtsey lavas (Iceland) reveal extreme magma differentiation during late stage flow emplacement. In: T. Thordarson, S. Self, G. Larsen, S. K. Rowland, A. Hoskuldsson (Eds.). Studies in Volcanology: The legacy of George Walker (p. 85-104). Londres: Geological Society (Special Publication of IAVCEI, 2). https://doi.org/10.1144/IAVCEl002.5
Silva, K. F. B. (2011). Caracterização petrográfica e geoquímica de pegmatitos básicos, encaixados em derrames basálticos do Grupo Serra Geral, no Estado do Paraná. Trabalho de Conclusão de Curso. Campinas: Instituto de Geociências – Unicamp.
Sisson, T. W., Bacon, C. R. (1999). Gas-driven filter pressing in magmas. Geology, 27(7), 613-616. https://doi.org/10.1130/0091-7613(1999)027%3C0613:GDFPIM%3E2.3.CO;2
Smith, J. V., Brown, W. L. (1988). Feldspar Minerals. Berlim: Springer-Verlag. v. 1. https://doi.org/10.1007/978-3-642-72594-4
Soares, J. S. (2016). Relações temporais, petrológicas e geoquímicas entre pegmatitos básicos e basaltos encaixantes da Província Magmática do Paraná no sudoeste do Paraná. Dissertação (Mestrado). Curitiba: Setor de Ciências da Terra – UFPR. Disponível em: <http://hdl.handle.net/1884/43623>. Acesso em: 7 out. 2020.
Sparks, R. S. J., Pinkerton, H. (1978). Effect of degassing on rheology of basaltic lava. Nature, 276, 385-386. https://doi.org/10.1038/276385a0
Svensen, H., Corfu, F., Polteau, S., Hammer, Ø., Planke, S. (2012). Rapid magma emplacement in the Karoo Large Igneous Province. Earth and Planetary Science Letters, 325-326, 1-9. https://doi.org/10.1016/j.epsl.2012.01.015
Titon, B. G. (2016). Modelagem geoquímica de Pegmatitos Básicos na Região de Itaipu, Foz do Iguaçu – PR. Trabalho de Conclusão de Curso. Curitiba: Setor de Ciências da Terra – UFPR.
Toramaru, A. (1991). Model of nucleation and growth of crystals in cooling magmas. Contributions to Mineralogy and Petrology, 108, 106-117. https://doi.org/10.1007/BF00307330
Vasconcellos, E. M. G., Licht, O. B., Braga, L. S. L., Bittencourt, A. V. L. (2001). Gabros da Bacia do Paraná: Aspectos petrográficos e geoquímicos. VIII Congresso Brasileiro de Geoquímica; I Simpósio de Geoquímica dos Países do Mercosul, 195, p. 7. Curitiba: SBGq.
Vernon, R. H. (2004). A Practical guide to rock microstructure. Cambridge: University Press.
Walker, F. (1953). The pegmatitic differentiates of basic sheets. American Journal of Science, 251(1), 41-60. https://doi.org/10.2475/ajs.251.1.41
Wildner, W., Brito, R. S. C., Licht, O. A. B., Arioli, E. E. (2006). Geologia e Recursos Minerais do Sudoeste do Paraná. Brasília: CPRM, Convênio CPRM/Mineropar.
Wood, D. A., Tarney, J., Varet, J., Saunders, A. D., Bougault, H., Joron, J. L., Treuil, M., Cann, J. R. (1979). Geochemistry of basalts drilled in the North Atlantic by IPOD Leg. 49: implications for mantle heterogeneity. Earth Planetary Science Letters, 42(1), 77-97. https://doi.org/10.1016/0012-821X(79)90192-4
Published
Issue
Section
License
Copyright (c) 2020 Arthur Vicentini de Oliveira, Eleonora Maria Gouvêa Vasconcellos, Otavio Augusto Boni Licht, Anderson Matias dos Santos

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish in this journal shall comply with the following terms:
- Authors keep their copyright and grant to Geologia USP: Série Científica the right of first publication, with the paper under the Creative Commons BY-NC-SA license (summary of the license: https://creativecommons.org/licenses/by-nc-sa/4.0 | full text of the license: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode) that allows the non-commercial sharing of the paper and granting the proper copyrights of the first publication in this journal.
- Authors are authorized to take additional contracts separately, for non-exclusive distribution of the version of the paper published in this journal (publish in institutional repository or as a book chapter), granting the proper copyrights of first publication in this journal.
- Authors are allowed and encouraged to publish and distribute their paper online (in institutional repositories or their personal page) at any point before or during the editorial process, since this can generate productive changes as well as increase the impact and citation of the published paper (See The effect of Open Access and downloads on citation impact).