Geology, geochemistry and tectonomagmatic affinities of the granitoid complex from Bannach, Rio Maria Domain, Carajás Metallogenetic Province, Northern Brazil

Authors

DOI:

https://doi.org/10.11606/issn.2316-9095.v21-173364

Keywords:

Archean, Geochemistry, Granitoids, Carajás

Abstract

Bannach northern area is formed by trondhjemites, leucogranodiorites, biotite granodiorites, amphibole bearing tonalites (± quartz diorites), biotite tonalites (enclaves) and fine grained granitoids. The high silica rocks, with > 70% SiO2, are represented by trondhjemites, leucogranodiorites and fine grained granitoids presenting high levels of Al2O3, CaO and Na2O in detriment of Fe2O3, MgO, Ni and Cr. They also present high La/Yb and Gd/Er ratios, absence of negative Eu anomalies and strongly fractionated rare earth elements (REE) patterns. The low-silica granitoids, represented by biotite  ranodiorite, amphibole bearing and tonalite enclaves present high content of Fe2O3, MgO, Ni and Y. The biotite granodiorites present high levels of Ba- Sr-K and moderate to high La/Yb ratios, while the others have low La/Yb ratios. The origin of the trondhjemites is attributed to the partial fusion of garnet amphibolites in a subduction environment and the leucogranodiorites have their compositional control associated with different degrees of melting of basalt enriched from the base of the crust. The ambiguous geochemical character of the biotite granodiorites (high content of Rb, Ba, Sr and Y and high La/Y and Sr/Y ratios), approximates them to Closepet-type granites. On the other hand, the less evolved character of the amphibole bearing tonalites, as well as the low La/Yb and Sr/Y ratios indicate that these have mantle affinity, and are probably formed at low depths. It is assumed that the origin of these rocks is related to a metassomatized mantle by slab fluids in a subduction environment. 

Downloads

Download data is not yet available.

References

Almeida, F. F. M., Hasui, Y., Brito Neves, B. B., Fuck, R. A. (1981). Brazilian structural provinces: an introduction. Earth-Science Reviews, 17, 1-29. https://doi.org/10.1016/0012-8252(81)90003-9

Almeida, J. A. C., Dall’agnol, R., Dias, S. B., Althoff, F. J. (2010). Origin of the Archean Leucogranodiorite-granite suites: evidence from the Rio Maria. Lithos, 120(3-4), 235‑257. https://doi.org/10.1016/j.lithos.2010.07.026

Almeida, J. A. C., Dall’Agnol, R., Leite, A. A. S. (2013). Geochemistry and zircon geochronology of the Archean granite suites of the Rio Maria granite–greenstone terrane, Carajás Province, Brazil. Journal of South American Earth Sciences, 42, 103-126. https://doi.org/10.1016/j.jsames.2012.10.008

Almeida, J. A. C., Dall’agnol, R., Oliveira, M. A., Macambira, M. B., Pimentel, M. M., Rämö, O. T., Guimarães, F. V., Leite, A. A. S. (2011). Zircon geochronology and origin of the TTG suites of the Rio Maria granite-greenstone terrane: Implications for the growth of the Archean crust of the Carajás province, Brazil. Precambrian Research, 187(1-2), 201-221. https://doi.org/10.1016/j.precamres.2011.03.004

Almeida, J. A. C., Dall’agnol, R., Rocha, M. C. (2017). Tonalite–trondhjemite and leucogranodiorite–granite suites from the Rio Maria domain, Carajas Province, Brazil: implications for discrimination and origin of the Archean Na-granitoids. The Canadian Mineralogist, 55(3), 437-456. https://doi.org/10.3749/canmin.1600068

Arzi, A. A. (1978). Critical phenomena in the rheology of partially melted rocks. Tectonophysics, 44(1-4), 173-184. https://doi.org/10.1016/0040-1951(78)90069-0

Barker, F., Arth, J. G. (1976). Generation of trondhjemitetonalite liquids and Archean bimodal trondhjemitebasalt suites. Geology, 4(10), 596-600. https://doi.org/10.1130/0091-7613(1976)4<596:GOTLAA>2.0.CO;2

Champion, D. C., Smithies, R. H. (2001). Archaean granites of the Yilgarn and Pilbara cratons, Western Australia. In: K. F. Cassidy, J. M. Dunphy, M. J. Van Kranendonk (eds.). Proceedings of the 4th International Archaean Symposium (p. 134-136). AGSO-Geoscience Australia, Perth, Record.

Champion, D. C., Smithies, R. H. (2007). Chapter 3.4 Geochemistry of Paleoarchean Granites of the East Pilbara Terrane, Pilbara Craton, Western Australia: Implications for Early Archean Crustal Growth. Developments in Precambrian Geology, 15, 369-410. https://doi.org/10.1016/S0166-2635(07)15043-X

Condie, K. C. (1993). Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chemical Geology, 104(1-4), 1-37. https://doi.org/10.1016/0009-2541(93)90140-E

Dall’agnol, R., Teixeira, N. P., Rämö, O. T., Moura, C. A. V., Macambira, M. J. B., Oliveira, D. C. (2005). Petrogenesis of the Paleoproterozoic rapakivi A-type granites of the Archean Carajás metallogenic province, Brazil. Lithos, 80(1‑4), 101‑129. https://doi.org/10.1016/j.lithos.2004.03.058

Dall’Agnol, R., Oliveira, D. C., Lamarão, C. N. (2013). Magmatismo granitoide arqueano e evolução geológica do Subdomínio de Transição da Província Carajás, sudeste do Cráton Amazônico, Brasil. Boletim do Museu Paraense Emílio Goeldi de Ciências Naturais, 8(3), 251-256.

Davis, W. J., Fryers, B. J., King, J. E. (1994). Geochemistry and evolution of late Archean plutonism and its significance to the tectonic development of the Slave Craton. Precambrian Research, 67(3-4), 207-241. https://doi.org/10.1016/0301-9268(94)90011-6

Debon, F., Le Fort, P. (1983). A chemical-mineralogical classification of common plutonic rocks and associations. Transactions of The Royal Society of Edinburgh: Earth Sciences, 73(3), 135-149. https://doi.org/10.1017/S0263593300010117

Evensen, N. M., Hamilton, P. T., O’Nions, R. K. (1978). Rare-earth abundances in chondritic meteorites. Geochemical et Cosmochemical Acta, 42(8), 1199-1212. https://doi.org/10.1016/0016-7037(78)90114-X

Feio, G. R. L., Dall’agnol, R. (2012). Geochemistry and petrogenesis of the Mesoarchean granites from the Canaã dos Carajás area, Carajás Province, Brazil: Implications for the origin of Archean granites. Lithos, 154, 33-52. https://doi.org/10.1016/j.lithos.2012.06.022

Feio, G. R. L., Dall’agnol, R., Dantas, E. L., Macambira, M. J. B., Gomes, A. C. B., Sardinha, A. S., Oliveira, D. C., Santos, R. D., Santos, P. A. (2012). Geochemistry, geochronology, and origin of the Neoarchean Planalto Granite suite, Carajás, Amazonian craton: A-type or hydrated charnockitic granites? Lithos, 151, 57-73. https://doi.org/10.1016/j.lithos.2012.02.020

Feio, G. R. L., Dall’agnol, R., Dantas, E. L., Macambira, M. J. B., Santos, J. O. S., Althoff, F. J., Soares, J. E. B. (2013). Archean granitoid magmatism in the Canaã dos Carajás area: Implications for crustal evolution of the Carajás province, Amazonian craton, Brazil. Precambrian Research, 227, 157-185. https://doi.org/10.1016/j.precamres.2012.04.007

Foley, S. F., Tiepolo, M., Vannucci, R. (2002). Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, 417, 837-840. https://doi.org/10.1038/nature00799

Fowler, M. B., Henney, P. J., Darbyshire, D. P. F., Greenwood, P. B. (2001). Petrogenesis of high Ba–Sr granites: the Rogart pluton, Sutherland. Journal of the Geological Society of London, 158(3), 521-534. https://doi.org/10.1144/jgs.158.3.521

Fowler, M. B., Kocks, H., Darbyshire, D. P. F., Greenwood, P. B. (2008). Petrogenesis of high Ba–Sr plutons from the Northern Highlands Terrane of the British Caledonian Province. Lithos, 105(1-2), 129-148. https://doi.org/10.1016/j.lithos.2008.03.003

Frost, B. R., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J., Frost, C. D. (2001). A geochemical classification for granitic rocks. Journal of Petrology, 42(11), 2033-2048. https://doi.org/10.1093/petrology/42.11.2033

Frost, C. D., Frost, B. R., Kirkwood, R., Chamberlain, K. R. (2006). The tonalite–trondhjemite–granodiorite (TTG) to granodiorite–granite (GG) transition in the late Archean plutonic rocks of the central Wyoming Province. Canadian Journal of Earth Sciences, 43(10), 1419-1444. https://doi.org/10.1139/e06-082

Gabriel, E. O., Oliveira, D. C. (2014). Geologia, petrografia e geoquímica dos granitoides arqueanos de alto magnésio da região de Água Azul do Norte, porção sul do Domínio Carajás, Pará. Boletim do Museu Paraense Emílio Goeldi de Ciências Naturais, 9(3), 533-564.

Gill, J. B. (1981). Orogenic andesites and plate tectonics. Nova York: Springer.

Guimarães, F. V., Dall’agnol, R., Almeida, J. A. C., Oliveira, M. A. (2010). Caracterização geológica, petrográfica e geoquímica do Trondhjemito Mogno e Tonalito Mariazinha, Terreno Granito-Greenstone Mesoarqueano de Rio Maria, SE do Pará. Revista Brasileira de Geociências, 40(2), 196-211. https://doi.org/10.25249/0375-7536.2010402196211

Halla, J., van Hunen, J., Heilimo, E., Hölttä, P. (2009). Geochemical and numerical constraints on Neoarchean plate tectonics. Precambrian Research, 174(1-2), 155-162. https://doi.org/10.1016/j.precamres.2009.07.008

Hanson, G. N. (1989). An approach to trace element modeling using a simple igneous system as an example. Reviews in Mineralogy, 21(1), 79-97. https://doi.org/10.1515/9781501509032-007

Heilimo, E., Halla, J., Hölttä, P. (2010). Discrimination and origin of the sanukitoid series: geochemical constraints from the Neoarchean western Karelian Province (Finland). Lithos, 115(1-4), 27-39. https://doi.org/10.1016/j.lithos.2009.11.001

Huhn, S. R. B., Santos, A. B. S., Amaral, A. F., Ledsham, E. J., Gouveia, J. L., Martins, L. B. P., Montalvão, R. M. G., Costa, V. G. (1988). O terreno Granito-Greenstone da região de Rio Maria – Sul do Pará. XXXV Congresso Brasileiro de Geologia. Anais, 3, 1438-1453. Belém: SBG.

Irvine, T. N., Baragar, W. R. A. (1971). A guide to the chemical classification of the common volcanic rocks. Canadian Journal of the Earth Science, 8(5), 523-547. https://doi.org/10.1139/e71-055

Janoušek, V., Farrow, C. M., Erban, V. (2006). Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). Journal of Petrology, 47(6), 1255-1259. https://doi.org/10.1093/petrology/egl013

Jayananda, M., Chardon, D., Peucat, J. J., Capdevila, R. (2006). 2.61 Ga potassic granites and crustal reworking in the western Dharwar craton, southern India: tectonic, geochronologic and geochemical constraints. Precambrian Research, 150(1-2), 1-26. https://doi.org/10.1016/j.precamres.2006.05.004

Jayananda, M., Martin, H., Peucat, J. J., Mahabaleswar, B. (1995). Late Archaean crust-mantle interactions: geochemistry of LREE-enriched mantle derived magmas. Example of the Closepet batholith, southern India. Contributions to Mineralogy and Petrology, 119(2-3), 314-329. https://doi.org/10.1007/BF00307290

Lameyre, J., Bowden, P. (1982). Plutonic rock type series: discrimination of various granitoid series and related rocks. Journal of Volcanology and Geothermal Research, 14(1-2), 169-186. https://doi.org/10.1016/0377-0273(82)90047-6

Laurent, O., Martin, H., Moyen, J. F., Doucelance, R. (2014). The diversity and evolution of late-Archean granitoids: Evidence for the onset of “modern-style” plate tectonics between 3.0 and 2.5 Ga. Lithos, 205, 208-235. https://doi.org/10.1016/j.lithos.2014.06.012

Le Maitre, R. W. (2002). Igneous rocks: a classification and glossary of terms. 2. ed. Londres: Cambridge University Press. Leite, A. A. S. (2001). Geoquímica, petrogênese e evolução estrutural dos granitoides arqueanos da região de Xinguara, SE do Cráton Amazônico. Tese (Doutorado). Belém: Programa de Pós-Graduação em Geologia e Geoquímica, Universidade Federal do Pará, 330 p.

Leite, A. A. S., Dall’agnol, R., Macambira, M. J. B., Althoff, F. J. (2004). Geologia e geocronologia dos granitóides arqueanos da região de Xinguara (PA) e suas implicações na evolução do terreno granito-greenstone de Rio Maria. Revista Brasileira de Geociências, 34(4), 447-458. https://doi.org/10.25249/0375-7536.2004344447458

Leite-Santos, P. J., Oliveira, D. C. (2016). Geologia, petrografia e geoquímica das associações leucograníticas arqueanas da área de Nova Canadá, Província Carajás. Geologia USP. Série Científica, 16(2), 37-66. https://doi.org/10.11606//issn.2316-9095.v16i2p37-66

Macambira, M. J. B., Costa, J. B. S., Althoff, F. J., Lafon, J.-M., Melo, J. C. V., Santos, A. (2000). New geochronological data for the Rio Maria TTG terrane; implications for the time constraints of the Carajás Province, Brazil. 31st International Geology Congress. Rio de Janeiro (CD-ROM).

Macambira, M. J. B., Lafon, J. M. (1995). Geocronologia da Província Mineral de Carajás: síntese dos dados e novos desafios. Boletim Museu Paraense Emílio Goeldi de Ciências Naturais, 7, 263-288.

Martin, H., Moyen, J. F., Guitreau, M., Blichert-Toft, J., Le Pennec, J. L. (2014). Why Archaean TTG cannot be generated by MORB melting in subduction zones. Lithos, 198-199, 1-13. https://doi.org/10.1016/j.lithos.2014.02.017

Martin, H., Smithies, R. H., Rapp, R., Moyen, J.-F., Champion, D. (2005). An overview of adakite, tonalite-trondhjemitegranodiorite (TTG) and sanukitoid: relationships and some implications for crustal evolution. Lithos, 79(1-2), 1-24. https://doi.org/10.1016/j.lithos.2004.04.048

McCulloch, M. T., Gamble, J. A. (1991). Geochemical and geodynamical constraints on subduction zone magmatism. Earth and Planetary Science Letters, 102(3-4), 358-374. https://doi.org/10.1016/0012-821X(91)90029-H

Medeiros, H., Dall’agnol, R. (1988). Petrologia da porção leste do Batólito Granodiorítico Rio Maria, sudeste do Pará. XXXV Congresso Brasileiro de Geologia. Anais, 3, 1488-1499. Belém: SBG.

Moyen, J. F. (2009). High Sr/Y and La/Y ratios: the meaning of the “adakitic signature”. Lithos, 112(3-4), 556-574. https://doi.org/10.1016/j.lithos.2009.04.001

Moyen, J. F., Martin, H. (2012). Forty years of TTG research. Lithos, 148, 312-336. https://doi.org/10.1016/j.lithos.2012.06.010

Moyen, J. F., Martin, H., Jayananda, M., Auvray, B. (2003). Late Archaean granites: a typology based on the Dharwar Craton (India). Precambrian Research, 127(1-3), 103-123. https://doi.org/10.1016/S0301-9268(03)00183-9

Moyen, J. F., Stevens, G., Kisters, A. F. M., Belcher, R. W. (2007). TTG plutons of the Barberton granitoid-greenstone terrain, South Africa. Developments in Precambrian Geology, 15, 606-668. https://doi.org/10.1016/S0166-2635(07)15056-8

Nagel, T. J., Hoffmann, J. E., Münker, C. (2012). Melting of Eoarchaean TTGs from thickened mafic arc crust. Geology, 40(4), 375-378.

Nockolds, S. R., Allen, R. (1953). The geochemistry of some igneous rock series, Part I. Geochemical et Cosmochimica Acta, 4(3), 105-142. https://doi.org/10.1016/0016-7037(53)90055-6

Oliveira, D. C., Gabriel, E. O., Santos, P. J. L., Silva, C. R. P., Rodrigues, D. S., Santos, R. D., Galarza, M. A., Marangoanha, B., Santos, M. S., Souza, D. B. (2014). Geologia da região de Água Azul do Norte (PA) - Implicações para a compartimentação tectônica do Domínio Carajás. XLVII Congresso Brasileiro de Geologia. Anais. Salvador: SBG. CD-ROM.

Oliveira, M. A., Dall’agnol, R., Almeida, J. A. C. (2011). Petrology of the Mesoarchean Rio Maria suite and the discrimination of sanukitoide series. Lithos, 127(1-2), 192-209. https://doi.org/10.1016/j.lithos.2011.08.017

Oliveira, M. A., Dall’agnol, R., Althoff, F. J., Leite, A. A. S. (2009). Mesoarchean sanukitoid rocks of the Rio Maria granite-greenstone terrane, Amazonian craton, Brazil. Journal of South American Earth Sciences, 27(2-3), 146-160. https://doi.org/10.1016/j.jsames.2008.07.003

Oliveira, M. A., Dall’agnol, R., Scaillet, B. (2010). Petrological constraints on crystallization conditions of Meso Archean Sanukitoid Rocks, southeastern Amazonian craton, Brazil. Journal of Petrology, 51(10), 2121-2148. https://doi.org/10.1093/petrology/egq051

Opiyo-Akech, N., Tarney, J., Hoshino, M. (1999). Petrology and geochemistry of granites from the Archaean terrain north of Lake Victoria, western Kenya. Journal of African Earth Sciences, 29(2), 283-300. https://doi.org/10.1016/S0899-5362(99)00098-6

Patiño-Douce, A. E., Beard, J. S. (1995). Dehydrationmelting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. Journal of Petrology, 36(3), 707-738. https://doi.org/10.1093/petrology/36.3.707

Pearce, J. A. (1983). Role of the sub-continental lithosphere in magma genesis at active continental margins. In: C. J. Hawkesworth, M. J. Norry (eds.). Continental basalts and mantle xenoliths. Nantwich: Shiva, p 230-249.

Pearce, J. A., Norry, M. J. (1979). Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology, 69(1), 33-47. https://doi.org/10.1007/BF00375192

Peccerillo, A., Taylor, S. R. (1976). Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58(1), 63-81. https://doi.org/10.1007/BF00384745

Pimentel, M. M., Machado, N. (1994). Geocronologia U-Pb dos Terrenos Granito-Greenstone de Rio Maria, Pará. XXXVIII Congresso Brasileiro de Geologia. Boletim de Resumos Expandidos. Camboriú: SBG.

Polat, A. (2012). Growth of Archean continental crust in oceanic island arcs. Geology, 40(4), 383-384. https://doi.org/10.1130/focus042012.1

Rapp, R. P., Shimizu, N., Norman, M. D. (2003). Growth of early continental crust by partial melting of eclogite. Nature, 425, 605-609. https://doi.org/10.1038/nature02031

Rapp, R. P., Watson, E. B. (1995). Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. Journal of Petrology, 36(4), 891-931. https://doi.org/10.1093/petrology/36.4.891

Rapp, R. P., Watson, E. B., Miller, C. F. (1991). Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Research, 51(1-4), 1-25. https://doi.org/10.1016/0301-9268(91)90092-O

Rodrigues, D. S., Oliveira, D. C., Macambira, M. J. B. (2014). Geologia, geoquímica e geocronologia do Granito Mesoarqueano Boa Sorte, município de Água Azul do Norte, Pará – Província Carajás. Boletim do Museu Paraense Emílio Goeldi de Ciências Naturais, 9(3), 597-633.

Rolando, A. P., Macambira, M. J. B. (2003). Archean crust formation in Inajá range area, SSE of Amazonian Craton, Brazil, basead on zircon ages and Nd isotopes. 4th South American Symposium on Isotope Geology. Expanded Abstracts. Salvador. CD-ROM.

Santos, A., Pena Filho, J. I. C. (2000). Programa Levantamentos Geológicos Básicos do Brasil. Xinguara, Folha SB.22-Z-C. Estado do Pará. Escala 1:250.000. Brasília: CPRM. CD-ROM.

Santos, J. O. S. (2003). Geotectônica do Escudo das Guianas e Brasil- Central. In: L. A. Bizzi, C. Schobbenhaus, R. M. Vidotti, J. H. Gonçalves (eds.). Geologia, tectônica e recursos minerais do Brasil: texto, mapas e SIG. Brasília: CPRMServiço Geológico do Brasil, p. 169-226.

Santos, M. J. P., Lamarão, C. N., Lima, P. H. A., Galarza, M. A., Mesquita, J. C. L. (2013a). Granitoides arqueanos da região de Água Azul do Norte, Província Carajás, sudeste do estado do Pará: petrografia, geoquímica e geocronologia. Boletim do Museu Paraense Emílio Goeldi de Ciências Naturais, 8(3), 325-354.

Santos, M. J. P., Silva, C. R. P., Santos, R. D., Santos, P. J. L. (2013b). Geologia do Subdomínio de Transição do Domínio Carajás – Implicações para a evolução arqueana da Província Carajás – Pará. XIII Simpósio de Geologia da Amazônia. Belém: SBG – Regional Norte. CD-ROM.

Santos, M. N. S., Oliveira, D. C. (2016). Rio Maria Granodiorite and associated rocks of Ourilândia do Norte – Carajás province: Petrography, geochemistry and implications for sanukitoid petrogenesis. Journal of South American Earth Sciences, 72, 279-231. https://doi.org/10.1016/j.jsames.2016.09.002

Santos, P. A., Teixeira, M. F. B., Dall’agnoll, R., Guimarães, A. V. (2013). Geologia, petrografia e geoquímica da associação Tonalito-Trondhjemito-Granodiorito (TTG) do extremo leste do Subdomínio de Transição, Província Carajás, Pará. Boletim do Museu Paraense Emílio Goeldi de Ciências Naturais, 8(3), 257-290.

Shand, S. J. (1950). Eruptive rocks: their genesis, composition, classification and their relation to ore deposit. 4. ed. Londres: John Wiley, 488 p.

Shirey, S. B., Hanson, G. N. (1984). Mantle-derived Archaean monozodiorites and trachyandesites. Nature, 310(5974), 222-224. https://doi.org/10.1038/310222a0

Silva, A. C., Dall’agnol, R., Guimarães, F. V., Oliveira, D. C. (2014). Geologia, petrografia e geoquímica de associações tonalíticas e trondhjemíticas arqueanas de Vila Jussara, Província Carajás, Pará. Boletim do Museu Paraense Emílio Goeldi de Ciências Naturais, 9(1), 13-45.

Silva, C. R. P., Oliveira, D. C. (2013). Geologia, petrografia e geoquímica das associações TTG e leucogranodioritos do extremo norte do Domínio Rio Maria, Província Carajás. Boletim do Museu Paraense Emílio Goeldi de Ciências Naturais, 8(3), 383-415.

Silva, F. F., Oliveira, D. C., Antonio, P. Y. J., D’Agrella Filho, M. S., Lamarão, C. N. (2016). Bimodal magmatism of the Tucumã area: U-Pb geochronology, classification and processes. Journal of South American Earth Science, 72, 95-114. https://doi.org/10.1016/j.jsames.2016.07.016

Silva, L. R., Oliveira, D. C., Santos, M. N. S. (2018). Diversity, origin and tectonic significance of the Mesoarchean granitoids of Ourilândia do Norte, Carajás province (Brazil). Journal of South American Earth Sciences, 82, 33-61. https://doi.org/10.1016/j.jsames.2017.12.004

Skjerlie, K. P., Johnston, A. D. (1996). Vapour-absent melting from 10 to 20 kbar of crustal rocks that contain multiple hydrous phases: implications for anatexis in the deep to very deep continental crust and active continental margins. Journal of Petrology, 37(3), 661-691. https://doi.org/10.1093/petrology/37.3.661

Sylvester, P. J. (1994). Chapter 7 Archean granite plutons. Developments in Precambrian Geology, 11, 261-314. https://doi.org/10.1016/S0166-2635(08)70225-1

Tamura, Y., Ishizuka, O., Stern, R. J., Shukuno, H., Kawabata, H., Embley, R. W., Hirahara, Y., Chang, Q., Kimura, J.-I., Tatsumi, Y., Nunokawa, A., Bloomer, S. H. (2011). Two primary basalt magma types from Northwest Rota-1 volcano, Mariana arc and its mantle diapir or mantle wedge plume. Journal of Petrology, 52(6), 1143-1183. https://doi.org/10.1093/petrology/egr022

Tarney, J., Jones, C. E. (1994). Trace element geochemistry of orogenic igneous rocks and crustal growth models. Journal of the Geological Society of London, 151(5), 855-868. https://doi.org/10.1144/gsjgs.151.5.0855

Tassinari, C. C. G., Macambira, M. J. B. (2004). A evolução tectônica do Cráton Amazônico. In: V. Mantesso-Neto, A. Bartorelli, C. D. R. Carneiro, B. B. Brito Neves (eds.). Geologia do Continente Sul-Americano: Evolução da Obra de Fernando Flávio Marques de Almeida. São Paulo: Beca, p. 471-485.

Taylor, S. R., McLennan, S. M. (1985). The continental crust: Its evolution and composition. Londres: Blackwell.

Teixeira, M. F. B. (2013). Geologia, petrografia e geoquímica dos granitóides arqueanos de Sapucaia – Província Carajás-PA. Dissertação (Mestrado). Belém: Programa de Pós-graduação em Geologia e Geoquímica, Instituto de Geociências, Universidade Federal do Pará, 184 p.

Turner, S., Foden, J., George, R., Evans, P., Varne, R., Elburg, M., Jenner, G. (2003). Rates and processes of potassic magma evolution beneath Sangeang Api volcano, East Sunda arc, Indonesia. Journal of Petrology, 44(3), 491-515. https://doi.org/10.1093/petrology/44.3.491

Vasquez, L. V., Rosa-Costa, L. R., Silva, C. G., Ricci, P. F., Barbosa, J. O., Klein, E. L., Lopes, E. S., Macambira, E. B., Chaves, C. L., Carvalho, J. M., Oliveira, J. G., Anjos, G. C., Silva, H. R. (2008). Geologia e recursos minerais do estado do Pará: Sistema de Informações Geográficas - SIG texto explicativo dos mapas geológico e tectônico e de recursos minerais do estado do Pará. Escala 1:1.000.000. Belém: CPRM.

Vernon, R. H., Collins, W. J. (1988). Igneous microstructures in migmatites. Geology, 16(12), 1126-1129. https://doi.org/10.1130/0091-7613(1988)016<1126:IMIM>2.3.CO;2

Walker, J. A., Patino, L. C., Carr, M. J., Feigenson, M. D. (2001). Slab control over HFSE depletions in central Nicaragua. Earth and Planetary Science Letters, 192(4), 533-543. https://doi.org/10.1016/S0012-821X(01)00476-9

Wang, Q., Wyman, D. A., Xu, J.-F., Zhao, Z.-H., Jian, P., Xiong, X.-L., Bao, Z.-W., Li, C.-F., Bai, Z.-H. (2006). Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): implications for geodynamics and Cu–Au mineralization. Lithos, 89(3-4), 424-446. https://doi.org/10.1016/j.lithos.2005.12.010

Watkins, J., Clemens, J., Treloar, P. (2007). Archaean TTGs as sources of younger granitic magmas: melting of sodic metatonalites at 0.6–1.2 GPa. Contributions to Mineralogy and Petrology, 154, 91-110. https://doi.org/10.1007/s00410-007-0181-0

Wilson, B. M. (1989). Igneous petrogenesis: a global tectonic approach. Estados Unidos: Harper Collins Academic, 466 p. https://doi.org/10.1007/978-1-4020-6788-4

Winther, T. K. (1996). An experimentally based model for the origin of tonalitic and trondhjemitic melts. Chemical Geology, 127(1-3), 43-59. https://doi.org/10.1016/0009-2541(95)00087-9

Ye, H. M., Li, X. H., Li, Z. X., Zhang, C. L. (2008). Age and origin of high Ba–Sr appinite–granites at the northwestern margin of the Tibet Plateau: implications for early Paleozoic tectonic evolution of theWestern Kunlun orogenic belt. Gondwana Research, 13(1), 126-138. https://doi.org/10.1016/j.gr.2007.08.005

Published

2021-07-29

Issue

Section

Articles

How to Cite

Machado, J. R. M., Oliveira, D. C. de, & Almeida, J. de A. C. de. (2021). Geology, geochemistry and tectonomagmatic affinities of the granitoid complex from Bannach, Rio Maria Domain, Carajás Metallogenetic Province, Northern Brazil. Geologia USP. Série Científica, 21(2), 59-90. https://doi.org/10.11606/issn.2316-9095.v21-173364

Funding data