Petrology, Mineral Chemistry, and δ34S of the Cu-Ni Mineralizations of the Canindé Gabbroic Complex, Sergipano Orogenic System, NE of Brazil

Authors

DOI:

https://doi.org/10.11606/issn.2316-9095.v21-183688

Keywords:

S isotopes, Canindé Domain, Cu-Ni Deposit

Abstract

The Canindé Gabbroic Complex is a mafic-ultramafic body with about 240 km2 intrusive in the rocks of the Canindé geological Domain, of the Sergipano Orogenic System. Its intrusion is 690 ± 16 Ma in age and occurred during a Brasiliano continental distension event. The Canindé Gabbroic Complex is constituted by a diversity of rocks ranging from anorthosites and troctolites to olivine and hornblende gabbros. Whole rock geochemical analyses by X-ray fluorescence (XRF) indicate that the rocks are basic to ultrabasic, ranging from gabbro to gabbro-peridotite, with negative trends of MnO and FeO, and positive trends of K2O and Na2O in relation to the SiO2 content, which relate to fractionated crystallization processes. Cu-Ni mineralization is disseminated in the rock, mainly as sulfides chalcopyrite and pentlandite. Scanning electron microscopy (SEM) studies determined that the primary sulfides have their edges altered to spionkopite (Cu39S28) and violarite (FeNi2S), as the result of an oxidation process by exposure to a high fO2 environment, during a post-magmatic hydrothermal event. The isotopic composition of sulfur, analyzed for the first time in the primary sulfides of the Canindé Gabbroic Complex, is between + 1.3 ‰ < δ34S < + 2.7 ‰, which indicates that the source of the S is hydrothermal, pointing to an origin of these by crustal contamination processes. Our results indicate these Cu-Ni mineralizations as having magmatic sources for metal cations but deriving the S from crustal contamination. This type of magmatic deposit, derived from crustal contamination and later affected by hydrothermal processes, is represented by worldwide renown deposits such as Duluth (USA) and Jinchuan (China).

Downloads

Download data is not yet available.

References

Biondi, J. C. (2003). Processos metalogenéticos e os depósitos minerais brasileiros. São Paulo: Oficina de Textos, 528 p.

Canedo, G. F. (2016). Os depósitos Serrote da Laje e Caboclo (Cu-Au), Nordeste do Brasil: sulfetos magmáticos hospedados em rochas ricas em magnetita e ilmenita associadas a intrusões máficas-ultramáficas. Dissertação (Mestrado). Brasília: Instituto de Geociências – UnB, 75 p. Disponível em: https://repositorio.unb.br/bitstream/10482/22354/1/2016_GuilhermeFerreiraCanedo.pdf. Acesso em: 21 jun. 2021.

Damasceno, F. B., Martins, B. L. L., Barreto, D. S., Mota, L. K. C., Marques de Sá, C. D. (2020). Sulfetos do Complexo Gabróico Canindé, Sistema Orogênico Sergipano. Revista Geociências, 39(3), 675-683. https://doi.org/10.5016/geociencias.v39i03.14528

Davison, I., Santos, R. A. (1989). Tectonic evolution of the Sergipano Fold Belt, NE Brazil, during the Brasiliano orogeny. Precambrian Research, 45(4), 319-342. https://doi.org/10.1016/0301-9268(89)90068-5

Fernandes, D. M., Lisboa, V. A. C., Rosa, M. L. S., Conceição, H. (2020). Petrologia e idade do Stock Fazenda Lagoas, Domínio Macururé, Sistema Orogênico Sergipano, NE-Brasil. Geologia USP. Série Científica, 20(1), 39-60 https://doi.org/10.11606/issn.2316-9095.v20-160040

Figueiredo, B. R. (1992). Metamorphism of the polymetallic Serrote da Laje deposit, northeastern Brazil. In: 8th IAGOD Symposium. Proceedings…, p. 491-504.

Goble, R. J. (1980). Copper sulfides from Alberta: Yarrowite Cu9S8 and Spionkopite Cu39S28. The Canadian Mineralogist, 18, 511-518. Disponível em: https://rruff-2.geo.arizona.edu/uploads/CM18_511.pdf. Acesso em: 21 jun. 2021.

Lisboa, V. A. C., Conceição, H., Rosa, M. L. S., Fernandes, D. M. (2019). The onset of post-collisional magmatism in the Macururé Domain, Sergipano Orogenic System: The Glória Norte Stock. Journal of South American Geosciences, 89, 173-188. https://doi.org/10.1016/j.jsames.2018.11.005

Marques de Sá, C. D., Martins, B. L. L., Barreto, D. S., Paim, M., Conceição, H. (2018). First finding of native Nickel in cumulates of the Canindé Domain, Brazil. Revista Principia, 43, 166-174. https://doi.org/10.18265/1517-03062015v1n43p166-174

Martins, B. L. L. (2017). Petrografia, geoquímica e mapeamento dos cumulatos de Fe-Ti do Domínio Canindé. Monografia de Graduação em Geologia. São Cristóvão: Universidade Federal de Sergipe, 74 p.

Middlemost, E. A. K. (1994). Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3-4), 215-224. https://doi.org/10.1016/0012-8252(94)90029-9

Naldrett, A. J. (2010). Secular variation of magmatic sulfide deposits and their source magmas. Economic Geology, 105(3), 669-688. https://doi.org/10.2113/gsecongeo.105.3.669

Nascimento, R. S. (2005). Domínio Canindé, Faixa Sergipana, Nordeste do Brasil: um estudo geoquímico e isotópico de uma sequência de Rifte Continental Neoproterozóica. Tese (Doutorado). Campinas: Programa de Pós-graduação em Geociências - UNICAMP, 140 p. Disponível em: http://repositorio.unicamp.br/jspui/handle/REPOSIP/287299. Acesso em: 21 jun. 2021.

Oliveira, E. P., Tarney, J. (1990). Petrogenesis of the Canindé de São Francisco Complex: A major Late Proterozoic gabbroic body in the Sergipe Foldbelt, northeastern Brazil. Journal of South American Earth Sciences, 3(2-3), 125-140. https://doi.org/10.1016/0895-9811(90)90025-V

Oliveira, E. P., Windley, B. F., Araújo, M. N. C. (2010). The Neoproterozoic Sergipano orogenic belt, NE Brazil: A complete plate tectonic cycle in western Gondwana. Precambrian Research, 181(1-4), 64-84. https://doi.org/10.1016/j.precamres.2010.05.014

Oliveira, E. P., Windley, B. F., McNaughton, N. J., Bueno, J. F., Nascimento, R. S., Carvalho, M. J., Araújo, M. N. C. (2017). The Sergipano Belt. In: M. Heilbron, U. G. Cordani, F. F. Alkmim (Eds.). São Francisco Craton, Eastern Brazil, tectonic genealogy of a miniature continent. Cham: Springer International, p. 241-254. https://doi.org/10.1007/978-3-319-01715-0

Pereira, F. S., Rosa, M. L. S., Conceição, H. (2019). Condições de colocação do magmatismo máfico do Domínio Macururé, Sistema Orogênico Sergipano: Maciço Capela. Geologia USP. Série Científica, 19(3), 3-29. https://doi.org/10.11606/issn.2316-9095.v19-151464

Ramdohr, P. (1969). The ore minerals and their intergrowths. Oxford: Pergamon Press. https://doi.org/10.1016/C2013-0-10027-X

Ridley, J. (2013). Ore deposit geology. Colorado: Cambridge University Press, 398 p.

Ripley, E. M. (1981). Sulfur isotopic studies of the Dunka Road Cu-Ni deposit, Duluth Complex, Minnesota. Economic Geology, 76(3), 610-620. https://doi.org/10.2113/gsecongeo.76.3.610

Ripley, E. M., Sarkar, A., Li, C. (2005). Mineralogic and stable isotope studies of hydrothermal alteration at the Jinchuan Ni-Cu Deposit, China. Economic Geology, 100(7), 1349-1361. https://doi.org/10.2113/gsecongeo.100.7.1349

Robb, L. (2005). Introduction to ore-forming processes. Malden: Blackwell Science, 376 p.

Santos, I. S., Conceição, H., Rosa, M. L. S., Marinho, M. M. (2019). Magmatismos shoshonítico e cálcio-alcalino de alto potássio pós-orogênico (615 Ma) na porção leste do Domínio Macururé, Sistema Orogênico Sergipano: Stocks Propriá, Amparo do São Francisco e Fazenda Alvorada. Geologia USP. Série Científica, 19(1), 99-116. https://doi.org/10.11606/issn.2316-9095.v19-141362

Santos, R. A., Souza, J. (1988). Carta metalogenética/previsional. Folha SC.24-X-C-VI Piranhas. Escala 1:100.000. Programa Levantamentos Geológicos Básicos do Brasil, 154 p.

Seal, R. R. (2006). Sulfur isotope geochemistry of sulfide minerals. Reviews in Mineralogy and Geochemistry, 61(1), 633-677. https://doi.org/10.2138/rmg.2006.61.12

Seixas, S. R., Moraes, L. C. (1996). Projeto Canindé. Exame Atualizado de Projeto-EXAP. Salvador, 21 p.

Silva Filho, M. A., Bonfim, L. F. C., Santos, R. A. (1979). Projeto Complexo Canindé do São Francisco: relatório final. Salvador: CPRM, 98 p.

Soares, H. S., Sousa, C. S., Rosa, M. L. S., Conceição, H. (2019). Petrologia dos Stocks Santa Maria, Monte Pedral, Bom Jardim, Boa Esperança e Niterói, Suíte Intrusiva Serra do Catu, Estado de Sergipe, NE Brasil. Geologia USP. Série Científica, 19(4), 63-84. https://doi.org/10.11606/issn.2316-9095.v19-156598

Streckeisen, A. (1976). To each plutonic rock its proper name. Earth Science Reviews, 12(1), 1-33. https://doi.org/10.1016/0012-8252(76)90052-0

Teixeira, L. (2014). Mapa geológico e de recursos minerais do Estado de Sergipe. 1 mapa: 113 x 102. Escala 1:250.000. Disponível em: http://rigeo.cprm.gov.br/jspui/handle/doc/21619. Acesso em: 21 jun. 2021.

Tenailleau, C., Pring, A., Etschmann, B., Brugger, J., Grguric, B., Putnis, A. (2006). Transformation of pentlandite to violarite under mild hydrothermal conditions. American Mineralogist, 91, 706-709. https://doi.org/10.2138/am.2006.2131

Tesch, N. A. (1980). Projeto Canindé. Relatório de Pesquisa. Salvador: CPRM, 132 p.

Van Schmus, W. R., Brito Neves, B. B., Hackspacher, P., Babinski, M. (1995). U/Pb and Srn/Nd geochronologic studies of the eastern Borborema province, NE Brazil: Initial conclusions. Journal of South American Earth Sciences, 8(3‑4), 267-288. https://doi.org/10.1016/0895-9811(95)00013-6

Published

2021-10-22

Issue

Section

Articles

How to Cite

Damasceno, F. B. ., Martins, B. L. L. ., & Marques de Sá, C. D. . (2021). Petrology, Mineral Chemistry, and δ34S of the Cu-Ni Mineralizations of the Canindé Gabbroic Complex, Sergipano Orogenic System, NE of Brazil. Geologia USP. Série Científica, 21(3), 169-180. https://doi.org/10.11606/issn.2316-9095.v21-183688