Mineralochemistry of the rocks of the Sienitic Itabuna Batolith, Southern of Bahia State

Authors

DOI:

https://doi.org/10.11606/issn.2316-9095.v22-190648

Keywords:

Mineral chemistry, SiO2 subsaturated rocks, Intensive parameters

Abstract

The Itabuna Syenitic Batholith (450 km2, 476 Ma) is intrusive in granulitic rocks of the São Francisco Craton and is part of the Southern Bahia Alkaline Province. This neoproterozoic batholith consists of syenites, monzonites, foid syenites, diorites, and gabbros. Representative rocks from this batholith were studied with optical petrography and Scanning Electron Microscopy (SEM) and spot chemical analyses were obtained with EDS and WDS. The rocks have fine to coarse gran size. The minerals present are: alkali feldspars, plagioclase, nepheline, amphibole, clinopyroxene, biotite, apatite, sodalite, cancrinite, ilmenite, magnetite, pyrite, chalcopyrite, zirconolite, olivine, allanite, baddeleyite, zircon, calcite, monazite, titanite, barite, bastnasite, and thorite. The matrix is composed mainly of alkali feldspars (albite and microcline), plagioclase, and nepheline. Perthitic and antiperthitic intergrown, albite, microcline, and plagioclase with compositions from albite to labradorite were identified. Brown mica corresponds to crystals of siderophyllite, lepidomelane, and Fe-biotite. Clinopyroxene has compositions of diopside, hedenbergite, and augite. Amphiboles is of Ca, Fe-Mg-Mn-Li, and Na-Ca varieties. Chemical data indicate that biotite, amphibole, allanite, and zirconolite are primary crystals. Clinopyroxene crystals register maximum temperatures of 939°C in the foid syenite, 959°C in the syenites, and 916°C in the monzonites with maximum pressures of 5.2 Kbar in the monzonite crystals, and predominantely high  xygen fugacity. Biotite crystals register maximum temperatures and pressures of 789°C and 2.2 kbar, respectively. Ilmenite-magnetite exsolution occurred at temperatures below 600°C. The compilation and interpretation of the data allow us to infer fractional crystallization as the main process responsible for the evolution of the rocks from the Itabuna Sienitic Batholith, similarly, to what was already proposed for other bodies of the province.

Downloads

Download data is not yet available.

References

Agreeva, O. A., Abart, R., Habler, G., Borutzky, B. Y., Trubkin, N. V. (2012). Oriented feldspar-feldspathoid intergrowths in rocks of the Khibiny massif: genetic implications. Mineralogy and Petrology, 106(1), 1-17. https://doi.org/10.1007/s00710-012-0216-8

Andersen, D. J., Lindsley, D. H. (1985). New (and final!) models for the Ti-magnetite/ilmenite geothermometer and oxygen barometer. EOS, 66(18), 416.

Anderson, J. L. (1980). Mineral equilibria and crystallization conditions in the late Precambrian Wolf River rapakivi massif, Wisconsin. American Journal of Science, 280(4), 289-332. https://doi.org/10.2475/ajs.280.4.289

Aoki, K. I., Shiba, I. (1973). Pyroxenes from Lherzolite Inclusions of Itinome-Gata, Japan. Lithos, 6(1), 41-51. https://doi.org/10.1016/0024-4937(73)90078-9

Azadbakht, Z., Lentz, D., Mcfarlane, C., Whalen, J. (2020). Using Magmatic Biotite Chemistry to Differentiate Barren and Mineralized Silurian-Devonian Granitoids of New Brunswick, Canada. Contributions to Mineralogy and Petrology, 175, 69. https://doi.org/10.1007/s00410-020-01703-2

Barbosa, J. S., Mascarenhas, J. F., Correa Gomes, L. C., Dominguez, L. M., Santos de Souza, J. (2012). Geologia da Bahia: pesquisa e atualização. Salvador: CBPM, 559 p. Publicações especiais.

Barbosa de Deus, P., Rangel, P. A., Silveira, W. P., Viana, I. A., Alecrim, J. D., Villas Boas, A., Teixeira, L. R., Panponet, L. T. C., Araújo, J. B., Rodrigues, J. B., Cardoso, P. C. S., Vasconcelos, H. R., Garrido, I. A. A., Ribeiro, W., Bezerra, A. T., Rego, J. E., Silva, N. S., Siqueira, L. P., Bezerra, J. C. L. (1976). Projeto ochas Alcalinas de Itarantim, Fase-I. Brasil: CBPM.

Bellatreccia, F., Della Ventura, D. G., Caprilli, E., Williams, C. T., Parodi, G. C. (1999). Crystal-chemistry of zirconolite and calzirite from Jacupiranga, São Paulo (Brazil). Mineralogical Magazine, 63(5), 649-660. https://doi.org/10.1180/002646199548817

Berger, A., Gnos, E., Janots, E., Fernandez, A., Giese, J. (2008). Formation and composition of rhabdophane, bastnäsite and hydrated thorium minerals during alteration: Implications for geochronology and low-temperature processes. Chemical Geology, 254(3-4), 238-248. https://doi.org/10.1016/j.chemgeo.2008.03.006

Conceição, H. (1990). Pétrologie du massif syénitique d’Itiúba: contribution à l’étude minéralogique des roches alcalines dans l’État de Bahia (Brésil). Tese (Doutorado). Centre d’Orsay: University of Paris-Sul.

Conceição, H., Rosa, M. L. S., Moura, C. A. V., Macambira, M. J. B., Galarza, M. A., Rios, D. C., Marinho, M. M., Menezes R. C. L, Cunha, M. P. (2009). Petrology of the Neoproterozoic Itarantim nepheline syenite batholith, São Francisco Craton, Bahia, Brazil. The Canadian Mineralogist, 47(6), 1527-1550. https://doi.org/10.3749/canmin.47.6.1527

Corrêa Gomes, L. C. (2000). Evolução Dinâmica da Zona de Cisalhamento Neoproterozoica de Itabuna-Itajú do Colônia e do Magmatismo Fissural Alcalino Associado (SSE do Estado da Bahia, Brasil). Tese (Doutorado). Campinas: Instituto de Geociências – UNICAMP. https://doi.org/10.47749/T/UNICAMP.2000.182767

De Hoog, J. C. M., Van Bergen, M. J. (1997). Notes on the chemical composition of zirconolite with thorutite inclusions from Walaweduwa, Sri Lanka. Mineralogical Magazine, 61(408), 721-725. https://doi.org/10.1180/minmag.1997.061.408.13

Deer, W. A., Howie, R. A., Zussman, J. (2013). An introduction to the Rock-Forming Minerals. Londres: The Mineralogical Society.

Gieré, R., Sorensen, S. S. (2004). Allanite and other REErich epidote-group minerals. Reviews in Mineralogy and Geochemistry, 56(1), 431-493. https://doi.org/10.2138/gsrmg.56.1.431

Hamilton, D. L., Mackenzie, W. S. (1965). Phase equilibrium studies in the system NaAlSiO4 (nepheline)–KAlSiO4 (kalsilite)–SiO2–H2O. Mineralogist Magazine, 34(268), 214-231. https://doi.org/10.1180/minmag.1965.034.268.17

Hansen, E. C., Harlov, D. E. (2007). Whole-rock, phosphate, and silicate compositional trends across an amphibolite-to granulite-facies transition, Tamil Nadu, India. Journal of Petrology, 48(9), 1641-1680. https://doi.org/10.1093/petrology/egm031

Harlov, D. E. (2015). Apatite: A fingerprint for metasomatic processes. Elements, 11(3), 171-176. https://doi.org/10.2113/gselements.11.3.171

Harlov, D. E., Wirth, R., Förster, H. J. (2005). An experimental study of dissolution–reprecipitation in fluorapatite: fluid infiltration and the formation of monazite. Contributions to Mineralogy and Petrology, 150(3), 268-286. https://doi.org/10.1007/s00410-005-0017-8

Henry, D. J., Guidotti, C. V., Thomson, J. A. (2005). The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms. American Mineralogist, 90(2-3), 316-328. https://doi.org/10.2138/am.2005.1498

Leake, B. E. (1971). On aluminous and edenitic hornblendes. Mineralogical Magazine, 38(296), 389-407. https://doi.org/10.1180/minmag.1971.038.296.01

Leake, B. E., Wooley, A. R., Arps, C. E. S., Birch, W. D., Gilbert, M. C., Grice, J. D., Hawthorne, F. C., Kato, A., Kisch, H. J., Krivovichev, V. G., Linthout, K., Laird, J., Mandarino, J. A., Maresch, W. V., Nickel, E. H., Rock, N. M. S., Schumacher, J. C., Smith, D. C., Stephenson, N. C. N., Ungaretti, L., Whittaker, E. J. W., Youzhi, G. (1997). Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. American Mineralogist, 82(9-10), 1019-1037.

Lima, M. I. C., Fonsêca, E. G., Oliveira, E. P., Ghignone, J. I., Rocha, R. M., Carmo, U. F., Silva, J. M. R., Siga Junior, O. (1981). Folha SD. 24 Salvador; geologia, geomorfologia, pedologia, vegetação e uso potencial da terra. Projeto RADAMBRASIL.

McBirney, A. (2006). Igneous Petrology. 3ª ed. Burlington: Jones & Bartlett Learning. Mesquita, C. J. S., Dall’Agnol, R., Almeida, J. D. A. C. D. (2018). Mineral chemistry and crystallization parameters of the A-type Paleoproterozoic Bannach granite, Carajás province, Pará, Brazil. Brazilian Journal of Geology, 48(3), 575-601. https://doi.org/10.1590/2317-4889201820170082

Mitchell, R. H., Platt, R. G. (1979). Nepheline – plagioclase intergrowth of metasomatic origin from the Coldwell complex, Ontario. Canadian Mineralogist, 17, 537-540. Disponível em: https://rruff.info/uploads/CM17_537.pdf. Acesso em: 8 mar. 2022.

Moshefi, P., Hosseinzadeh, M. R., Moayyed, M., Lentz, D. (2018). Comparative study of mineral chemistry of four biotite types as geochemical indicators of mineralized and barren intrusions in the Sungun Porphyry Cu - Mo Deposit, Northwestern Iran. Ore Geology Reviews, 97, 1-20. https://doi.org/10.1016/j.oregeorev.2018.05.003

Morimoto, N. (1988). Nomenclature of pyroxenes. Mineralogy and Petrology, 39(1), 55-76. https://doi.org/10.1007/BF01226262

Nachit, H., Ibhi, A., Abia, E. H., Ohoud, M. B. (2005). Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites. Comptes Rendus Geoscience, 337(16), 1415-1420. https://doi.org/10.1016/j.crte.2005.09.002

Newbury, D. E. (2009). Mistakes encountered during automatic peak identification of minor and trace constituents in electron excited energy dispersive X-ray microanalysis. Scanning, 31(3), 91-101. https://doi.org/10.1002/sca.20151

Nimis, P. (1999). Clinopyroxene geobarometry of magmatic rocks. Part 2. Structural geobarometers for basic to acid, tholeiitic and mildly alkaline magmatic systems. Contributions to Mineralogy and Petrology, 135, 62-74. https://doi.org/10.1007/s004100050498

Oliveira, E. P., Lima, M. I. C., Marques, N. M. G. (1980). Maciço Sienítico de Itabuna, Bahia. XXXI Congresso Brasileiro de Geologia, 2149-2162. Florianópolis: SBG.

Oliveira, R. C. L. M. (2010). Idade, petrografia e geoquímica do magmatismo anorogênico criogeniano e toniano no sul do estado da Bahia. Tese (Doutorado). Salvador: Curso de Pós-graduação em Geociências – UFBA. Disponível em: https://repositorio.ufba.br/handle/ri/21486. Acesso em: 8 mar. 2022.

Peixoto, A. A. (2005). Aspectos geológicos, petrológicos e geoquímicos do plutonismo miasquítico Brasiliano da região Sul do Estado da Bahia: Batólito Sienítico Itabuna. Tese (Doutorado). Salvador: Programa de Pós-graduação em Geologia – UFBA. Disponível em: https://repositorio.ufba.br/handle/ri/22034. Acesso em: 8 mar. 2022.

Platt, R. G., Wall, F., Williams, C. T., Woolley, A. R. (1987). Zirconolite, chevkinite and other rare earth minerals from nepheline syenites and peralkaline granites and syenites of the Chilwa Alkaline Province, Malawi. Mineralogical Magazine, 51(360), 253-263. https://doi.org/10.1180/minmag.1987.051.360.07

Rajesh, V. J., Yokoyama, K., Santosh, M., Arai, S., Oh, C. W., Kim, S. W. (2006). Zirconolite and Baddeleyite in an Ultramafic Suite from Southern India: Early Ordovician Carbonatite-Type melts associated with extensional collapse of the Gondwana Crust. The Journal of Geology, 114(2), 171-188. https://doi.org/10.1086/499571

Rønsbo, J. G. (1989). Coupled substitutions involving REEs and Na and Si in apatites in alkaline rocks from the Ilimaussaq intrusion, South Greenland, and the petrological implications. American Mineralogist, 74(7-8), 896-901. Disponível em: http://pubs.geoscienceworld.org/msa/ammin/article-pdf/74/7-8/896/4222002/am74_896.pdf. Acesso em: 8 mar. 2022.

Rosa, M. L. S., Conceição, H., Macambira, M. J. B., Marinho, M. M., Menezes, R. C. L., Cunha, M. P. D., Rios, D. C. (2005a). Magmatismo neoproterozoico no sul do Estado da Bahia, maciço sienítico Serra das Araras: Geologia, petrografia, idade e geoquímica. Revista Brasileira de Geociências, 35(1), 111-121. https://doi.org/10.25249/0375-7536.2005351111121

Rosa, M. L. S., Conceição, H., Macambira, M. J. B., Menezes, R. C. L., Cunha, M. P., Rios, D. C., Marinho, M. M. (2005b). Magmatismo alcalino intraplaca neoproterozoico no sul do estado da Bahia: o batólito nefelina-sienítico itarantim. Revista Brasileira de Geociências, 35(4), 47-58. https://doi.org/10.25249/0375-7536.200535S44758

Rosa, M. L. S., Conceição, H., Menezes, R. C. L., Macambira, M. J. B., Galarza, M. A., Cunha, M. P., Menezes, R. C. L., Marinho, M. M., Cruz Filho, B. E., Rios, D. C. (2007). Neoproterozoic anorogenic magmatism in the southern Bahia alkaline Province of NE Brazil. Lithos, 97(1-2), 88-97. https://doi.org/10.1016/j.lithos.2006.12.011

Rosa, M. L. S, Conceição, H., Moura, C. A. V., Macambira, M. J. B., Marinho, M. M., Leal, R. C. M., Cunha, M. P., Rios, D. C. (2005c). Assinatura mantélica de isótopos de carbono e oxigênio em cristais de calcita de rochas foid-sieníticas da Província Alcalina do Sul do Estado da Bahia. Revista Brasileira de Geociências, 35(4),71-76.

Santos, J. J. A. (2016). Intrusão sienítica do Complexo Alcalino Floresta Azul, Bahia: mineralogia e geoquímica. Dissertação (Mestrado). São Cristóvão: Programa de Pós-Graduação em Geociências e Análise de Bacias – UFS. Disponível em: https://ri.ufs.br/handle/riufs/5396. Acesso em: 8 mar. 2022.

Santos, J. J. A. (2020). Petrogênese do Complexo Alcalino Floresta Azul, Sul do Estado da Bahia. Tese (Doutorado). Salvador: Programa de Pós-graduação em Geologia – UFBA. Disponível em: https://repositorio.ufba.br/handle/ri/33261. Acesso em: 8 mar. 2022.

Santos, J. J. A., Conceição, H., Leandro, M. V. S., Rosa, M. L. S. (2018). Formation of monazite-(Ce, La) by fluidapatite interaction: the Floresta Azul Alkaline Complex, Bahia, Brazil. Brazilian Journal of Geology, 48(4), 721-733. https://doi.org/10.1590/2317-4889201820180069

Santos, J. J. A., Conceição, H., Rosa, M. L. S. (2021). Autometassomatic and hydrotermal processes in the crystallization and recrystallization of calcite, Floresta Azul Alkaline Complex, NE Brazil. Journal of South American Earth Sciences, 111, 103450. https://doi.org/10.1016/j.jsames.2021.103450

Schweitzer, E. L., Papike, J. J., Bence, A. E. (1979). Statistical analysis of clinopyroxenes from deep-sea basalts. American Mineralogist, 64(5-6), 501-513. Disponível em: http://pubs.geoscienceworld.org/msa/ammin/articlepdf/64/5-6/501/4212457/am64_501.pdf. Acesso em: 8 mar. 2022.

Silva Filho, M. A., Moraes Filho, O., Gil, C. A. A., Santos, R. A. (1974). Projeto Sul da Bahia, Folha SD. 24-YD. Relatório Final, Convênio DNPM/CPRM.

Smith, J. V. (1974). Intergrowths of feldspars with other minerals. In: J. V. Smith (Ed.), Feldspar Minerals, 553-647. Heidelberg: Springer. Disponível em: https://link.springer.com/content/pdf/10.1007%2F978-3-642-65743-6_8.pdf. Acesso em: 8 mar. 2022.

Smith, J. V., Brown, W. L. (1988). Crystal Structures. In: J. V. Smith, W. L. Brown (Eds.), Feldspar Minerals 1 Physical, Chemical and Microstructural Properties, 21-32. Nova York: Springer-Verlag.

Souto, P. G. (1972). Geologia e Petrografia da Área de Potiraguá, Bahia, Brasil. Tese (Doutorado). São Paulo: Instituto de Geociências – USP. https://doi.org/10.11606/T.44.2016.tde-09062016-161107

Stephenson, D. (1974). Mn and Ca enriched olivines from nepheline syenites of the South Qoroq Centre, south Greenland. Lithos, 7(1), 35-41. https://doi.org/10.1016/0024-4937(74)90036-X

Streckeisen, A. L. (1976). To each plutonic rocks its proper name. Earth Science Reviews, 12(1), 1-33. https://doi.org/10.1016/0012-8252(76)90052-0

Teixeira, W., Kamo, S. L., Arcanjo, J. B. A. (1997). U-Pb zircon and baddeleyite age and tectonic interpretation of the Itabuna alkaline suite, São Francisco Cráton, Brazil. Journal of South American Earth Sciences, 10(1), 91-98. https://doi.org/10.1016/S0895-9811(97)00008-4

Tischendorf, G., Förster, H. J, Gottesmann, B. (1999). The correlation between lithium and magnesium in trioctahedral micas: Improved equations for Li2O estimation from MgO data. Mineralogical Magazine, 63(1), 57-74. https://doi.org/10.1180/002646199548312

Tulloch, A. J., Challis, G. A. (2000). Emplacement depths of Paleozoic-Mesozoic plutons from western New Zealand estimated by hornblende-AI geobarometry. New Zealand Journal of Geology and Geophysics, 43(4), 555-567. https://doi.org/10.1080/00288306.2000.9514908

Uchida, E., Endo, S., Makino, M. (2007). Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits. Resource Geology, 57(1), 47-56. https://doi.org/10.1111/j.1751-3928.2006.00004.x

Williams, C. T., Gieré, R. (1996). Zirconolite: a review of localities worldwide, and a compilation of its chemical compositions. Bulletin of the Natural History Museum of London, 52(1), 1-24. Disponível em: https://repository.upenn.edu/ees_papers/95. Acesso em: 8 mar. 2022.

Published

2022-06-03

Issue

Section

Articles

How to Cite

Leandro, M. V. S., Conceição, H. ., Rosa, M. de L. da S. ., Marques, G. T. ., & Lamarão, C. N. . (2022). Mineralochemistry of the rocks of the Sienitic Itabuna Batolith, Southern of Bahia State. Geologia USP. Série Científica, 22(2), 3-27. https://doi.org/10.11606/issn.2316-9095.v22-190648

Funding data