Genesis of the beachrocks from Trindade Island, Brazil

Authors

DOI:

https://doi.org/10.11606/issn.2316-9095.v25-207865

Keywords:

Sandstones, Diagenesis, Paleo-sea level, Chlorite

Abstract

Beachrocks are sedimentary rocks, formed in the intertidal region from the precipitation of calcium carbonate cements, in the form of magnesium calcite and/or aragonite. Due to their genesis on beach faces, beachrocks are used as tools for coastal research. In Trindade Island (20º30'S and 29º20'W), beachrock occur on the southeast, on Tartarugas and Andrada beaches, in three-dimensional plates with plane-parallel lamination and wavy marks, with a gentle dip of ~13° towards the sea. The studied beachrocks are medium to coarse-grained sandstones, with 60 to 70% of the framework composed of bioclasts and terrigenous grains poorly sorted. The cements make up 30 to 40% of the sample, covering grains, in textures of micritic envelopes of magnesium calcite, isopach fringes of acicular aragonite and pseudo-pellets of magnesium calcite. In addition to cements, chlorite crystals and rosettes were observed in association with altered terrigenous grains. The formation of beachrocks occurred in the intertidal zones, in an active marine-phreatic environment, where marine water has a direct influence on cementation due to spreading and wave swash. In the beachrocks studied, the following diagenetic phases were identified: 1) mixture of magnesium calcite in the form of micritic envelopes by organomineralization; 2) precipitation of acicular aragonite fringes by CO2 degassing and/or evaporation; 3) dissolution of terrigenous grains and generation of a favourable microenvironment for microbiological activity; 4) precipitation and formation of magnesium calcite pseudo-pellets; and 5) precipitation of chlorite. Although the occurrence of syngenetic chlorite is not common in sediments and sedimentary rocks, its identification in the beach sandstones of Trindade Island is a very interesting record. The occurrence of biofilm on the rocks and associated with the cements suggests that the formation of beachrocks occurred as a product of physical-chemical processes, as well as by microbiological activity.

Downloads

Download data is not yet available.

References

Almeida, F. F. M. (1961). Geologia e petrologia da Ilha da Trindade. Monografia XVIII. Departamento Nacional da Produção Mineral, Rio de Janeiro. Disponível em: https://biblioteca.ibge.gov.br/visualizacao/livros/liv83805.pdf. Acesso em: 7 dez. 2024.

Almeida, F. F. M. (2002). Ilha de Trindade - Registro de vulcanismo cenozoico no Atlântico Sul. In: Schobbenhaus, C., Campos, D. A., Queiroz, E. T., Winge, M., Berbert-Born, M. L. C. (Edits.) Sítios Geológicos e Paleontológicos do Brasil, 1, 369-377. Brasilia: DNPM/CPRM - Comissão Brasileira de Sítios Geológicos e Paleobiológicos (SIGEP). Disponível em: http://sigep.eco.br/sitio092/sitio092.htm. Acesso em 8 jan. 2025.

Almeida, F. F. M. (2006). Ilhas oceânicas brasileiras e suas relações com a tectônica atlântica. Terra e Didatica, 2(1), 3-18. https://doi.org/10.20396/td.v2i1.8637462.

Al-Ramadan, K. (2013). Diagenesis of Holocene beachrocks: a comparative study between the Arabian Gulf and the Gulf of Aqaba, Saudi Arabia. Arabian Journal of Geosciences, 7(11), 4933-4942. https://doi.org/10.1007/s12517-013-1127-7.

Amieux, P., Bernier, P., Dalongeville, R., Medwecki, V. (1989). Cathodoluminescence of carbonate-cemented Holocene beachrock from the Togo coastline (West Africa): an approach to early diagenesis. Sedimentary Geology, 65(3-4), 261-272. https://doi.org/10.1016/0037-0738(89)90028-6.

Angulo, R. J., Souza, M. C. (2014). Revisão conceitual de indicadores costeiros de paleoníveis marinhos quaternários no Brasil. Quaternary and Environmental Geosciences, 5(2), 1-32. https://doi.org/10.5380/abequa.v5i2.36533.

Angulo, R. J., Souza, M. C., Barboza, E. G., Rosa, M. L. C. C., Fernandes, L. A., Guedes, C. C. F., Oliveira, L. H. S., Manzolli, R. P., Disaró, S. T., Ferreira, A. G., Martin, C. M. (2018). Quaternary sealevel changes and coastal Evolution of the Island of Trindade, Brazil. Journal of South American Earth Sciences, 84, 208-222. https://doi.org/10.1016/j.jsames.2018.04.00.

Arrieta, N., Goienaga, N., Martínez-Arkarazo, I., Murelaga, X., Baceta J. I., Sarmiento, A., Madariaga, J. M. (2011). Beachrock formation in temperate coastlines: Examples in sand-gravel beaches adjacent to the Nerbioi-Ibaizabal Estuary (Bilbao, Bay of Biscay, North of Spain). Spectrochimica Acta Part A, 80(1), 55-65. https://doi.org/10.1016/j.saa.2011.01.031.

Bathurst, R. G. C. (1966). Boring algae, micrite envelopes and lithification of molluscan biosparites. Geological Journal, 5(1), 15-32. https://doi.org/10.1002/gj.3350050104.

Braithwaite, C. J. R., Taylor, J. D., Glover, E. A. (2000). Marine Carbonate Cements, Biofilms, Biomineralization, and Skeletogeneis: Some Bivalves Do It All. Journal of Sedimentary Research, 70(5), 1129-1138. https://doi.org/10.1306/091699701129.

Cabral Neto, I. (2011). Beachrocks do Rio Grande do Norte: Correlação entre os depósitos costeiros e os de zona costa-afora com base na faciologia, petrografia e diagênese. Dissertação (Mestrado). Natal: Universidade Federal do Rio Grande do Norte, Departamento de Geologia. Disponível em: https://rigeo.sgb.gov.br/handle/doc/412. Acesso em: 17 dez. 2024.

Cabral Neto, I., Córdoba, V. C., Vital, H. (2010). Petrografia de beachrock em zona costa afora adjacente ao litoral norte do Rio Grande do Norte, Brasil. Quaternary and Environmental Geosciences, 2 (2), 12-18. https://doi.org/10.5380/abequa.v2i1-2.14116.

Cabral Neto, I., Córdoba, V. C., Vital, H. (2013). Morfologia, microfaciologia e diagênese de beachrocks costa-afora adjacentes à Costa Norte do Rio Grande do Norte, Brasil. Geociências, 32(3), 471-490. Disponível em: https://www.revistageociencias.com.br/geociencias-arquivos/32/volume32_3.html. Acesso em 8 jan. 2025.

Calliari, L. J., Pereira, P. S., Short, A. D., Sobral F. C., Machado, A. A., Pinheiro Y. G., Fitzpatrick, C. (2016). Sandy beaches of Brazilian oceanic islands. In: A. D. Short, A. H. F. Klein (Eds.), Brazilian beach systems (v.17, 543-571). Boca Raton: Springer. https://doi.org/10.1007/978-3-319-30394-9_19.

Castro, J. W. A. (2010). Ilhas oceânicas da Trindade e Fernando de Noronha, Brasil: Uma visão da Geologia Ambiental. Revista de Gestão Costeira Integrada, 10(3), 303-319. https://doi.org/10.5894/rgci170.

Castro, J. W. A., Antonello, L. L. (2006). Geologia das ilhas oceânicas brasileiras. In: R. J. V. Alves, J. W. A. Castro (Eds.), Ilhas oceânicas brasileiras: da pesquisa ao manejo (29-57). Rio de Janeiro: Ministério do Meio Ambiente. ISBN 978-85-7738-076-3.

Castro, J., Suguio, K., Seoane, J. C. S. (2014). Sea-level fluctuations and coastal evolution in the state of Rio de Janeiro, southeastern Brazil. Anais da Academia Brasileira de Ciências, 86(2), 671-683. https://doi.org/10.1590/0001-3765201420140007.

Cooper, J. A. G. (1991). Beachrock formation in low latitudes: implications for coastal evolutionary models. Marine Geology, 98(1), 145-154. https://doi.org/10.1016/0025-3227(91)90042-3.

Danjo, T., Kawasaki, S. (2013). A Study of the Formation Mechanism of Beachrock in Okinawa, Japan: Toward Making Artificial Rock. International Journal of GEOMATE, 5(9), 634-639. Disponível em: https://geomatejournal.com/geomate/article/view/2026. Acesso em 8 jan. 2025.

Danjo, T., Kawasaki, S. (2014). Characteristics of Beachrocks: A Review. Geotechnical and Geological Engineering, 32, 215-246. https://doi.org/10.1007/s10706-013-9712-9.

Daryono, L. R., Nakashima, K., Kawasaki, S., Suzuki, K., Suyanto, I., Rahmadi, A. (2020). Investigation of Natural Beachrock and Physical–Mechanical Comparison with Artificial Beachrock Induced by MICP as a Protective Measure against Beach Erosion at Yogyakarta, Indonesia. Geosciences, 10(4), 143 https://doi.org/10.3390/geosciences10040143.

Dupraz, C., Visscher, P. T., Baumgartner, L. K., Reid, R. P. (2004). Microbe–mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology, 51, 745-765. https://doi.org/10.1111/j.1365-3091.2004.00649.x.

Dupraz, C., Reid, R. P., Braissant, O., Decho A. W., Norman, R. S., Visscher, P. T. (2009). Processes of carbonate precipitation in modern microbial mats. Earth-Sciencearine carbon cycle. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511793202

Flügel, E. (2010). Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. Berlin: Springer-Verlag. https://doi.org/10.1007/978-3-642-03796-2.

Folk, R. L. (1974). The natural history of crystalline calcium carbonate; effect of magnesium content and salinity. Journal of Sedimentary Petrology, 44, 40-53. https://doi.org/10.1306/74d72973-2b21-11d7-8648000102c1865d.

Friedman, G. M. (1971) Staining. In: R. E. Carver (Ed.), Procedures in Sedimentary Petrology (511-530). New York: Wiley-Interscience. ISBN 047113855X, 9780471138556.

Ginsburg, R. N. (1953). Beachrock In South Florida. Journal of Sedimentary Research, 23(2), 85-92. https://doi.org/10.1306/D4269558-2B26-11D7-8648000102C1865D.

Gischler, E. (2007). Beachrock and intertidal precipitates. In: D. J. Nash, S. J. McLaren (Eds.), Geochemical sediments and landscapes (365-390). Malden: Blackwell Publishing Ltd. https://doi.org/10.1002/9780470712917.ch11.

Guimarães, T., Mariano, G., Barreto, A., Sá, A. A. (2016). Beachrocks of Southern Coastal Zone of the State of Pernambuco (Northeastern Brazil): Geological Resistance with History. Geoheritage. 9, 111-119. https://doi.org/10.1007/s12371-016-0181-4.

Hanor, J. S. (1978). Precipitation of beachrock cements: Mixing of marine and meteoric waters vs CO2 degassing. Journal of Sedimentary Petrology, 48(2), 489-501. https://doi.org/10.1306/212F74B4-2B24-11D7-8648000102C1865D.

Hopley, D. (1986). Beachrock as a sea-level indicator. In: O. van de Plassche (Ed.), Sea-level Research: A manual for the collection and evaluation of data (157-173). Norwich: Geo Books. Disponível em: https://link.springer.com/chapter/10.1007/978-94-009-4215-8_6. Acesso em 8 jan. 2025.

Kneale, D., Viles, H. A. (2000). Beach cement: Incipient CaCO3-cemented beachrock development in the upper intertidal zone, North Uist, Scotland. Sedimentary Geology, 132(3-4), 165-170. https://doi.org/10.1016/S0037-0738(00)00029-4.

Krumbein, W. E. (1979). Phototrophic and chemoorganotrophic activity of bacteria and algae as related to beachrock formation and degradation (gulf of Aqaba, Sinai). Geomicrobiology Journal, 1(2), 139-203. https://doi.org/10.1080/01490457909377729.

Kumar, K. S., Chandrasekar, N., Seralathan, P., Sahayam, D. (2012). Diagenesis of Holocene reef and associated beachrock of certain coral islands, Gulf of Mannar, India: Implication on climate and sea level. Journal of Earth System Science, 121(3), 733-745. https://doi.org/10.1007/s12040-012-0183-9.

Kunkel, C. M., Hallberg, R. H., Oppenheimer, M. (2006). Coral reefs reduce tsunami impact in model simulations. Geophysical Research Letters, 33(23). https://doi.org/10.1029/2006GL027892.

Longman, M. W. (1980). Carbonate diagenetic textures from nearsurface diagenetic environments. AAPG Bulletin, 64(4), 461-487. https://doi.org/10.1306/2F918A63-16CE--11D7-8645000102C1865D.

Lowenstam, H. A. (1955). Aragonite needles secreted by algae and some sedimentary implications. Journal of Sedimentary Research, 25(4), 270-272. https://doi.org/10.1306/74D7047A-2B21-11D7-8648000102C1865D.

McCutcheon, J., Nothdurft, L. D., Webb, G. E., Paterson, D., Southam, G. (2016). Beachrock formation via microbial dissolution and re-precipitation of carbonate minerals. Marine Geology, 382, 122-135. https://doi.org/10.1016/j.margeo.2016.10.010.

Mohr, L. V., Castro, J. W. A., Costa, P. M. S., Alves, R. V. (2009). Ilhas Oceânicas brasileiras: da pesquisa ao manejo (vol. II). Brasília: MMA/Secretaria de Biodiversidade e Florestas. ISBN 978-85-7738-076-3.

Moore, C. H. (1973). Intertidal Carbonate Cementation Grand Cayman, West Indies. Journal of Sedimentary Petrology, 43(3), 591-602. https://doi.org/10.1306/74D-72810-2B21-11D7-8648000102C1865D.

Neumeier, U. (1999). Experimental modelling of beachrock cementation under microbial influence. Sedimentary Geology, 126, 35-46. https://doi.org/10.1016/S0037-0738(99)00030-5.

Pedroso, D., Panisset, J. S., Abdo, L. B. B. (2017). Climatologia da Ilha da Trindade. In: Abrantes, S. C. (Org.). PROTRINDADE Programa de Pesquisas Científicas na Ilha da Trindade 10 Anos de Pesquisas (v.1, 43-64). Brasília: Secretaria da Comissão Interministerial para os recursos do mar – SECIRM. ISBN 978-85-62033-03-2.

Pires, G. L. C., Bongiolo, E. M. (2016). The nephelinitic–phonolitic volcanism of the Trindade Island (South Atlantic Ocean): Review of the stratigraphy, and inferences on the volcanic styles and sources of nephelinites. Journal of South American Earth Sciences, 72, 49-62. https://doi.org/10.1016/j.jsames.2016.07.008.

Rey, D., Rubio, B., Bernabeu, A. M., Vilas, F. (2004). Formation, exposure, and evolution of a high-latitude beachrock in the intertidal zone of the Corrubedo complex (Ria de Arousa, Galicia, NW Spain). Sedimentary Geology, 169, 93-105. https://doi.org/10.1016/j.sedgeo.2004.05.001.

Scholle, P. A., Ulmer-Scholle, D. S. (2003). A color guide to the petrography of carbonate rocks: grains, textures, porosity, diagenesis. Oklahoma: The American Association of Petroleum Geologists (AAPG). https://doi.org/10.1306/M77973.

Šegvića, B., Zanoni G., Moscariello, A. (2020). On the origins of eogenetic chlorite in verdine facies sedimentary rocks from the Gabon Basin in West Africa. Marine and Petroleum Geology,112 (104064). https://doi.org/10.1016/j.marpetgeo.2019.104064.

Silva, A. L. C., Silva, M. A. M., Souza, R. S., Pinto, M. L. V. (2014). The role of beachrocks on the evolution of the Holocene barrier systems in Rio de Janeiro, southeastern Brazil. Journal of Coastal Research, 70, 170-175. https://doi.org/10.2112/SI70-029.1.

Strasser, A., Davaud, E., Jedoui, Y. (1989). Carbonate cements in Holocene beachrock: example from Bahiret el Biban, southeastern Tunisia. Sedimentary Geology, 62, 89-100. https://doi.org/10.1016/0037-0738(89)90103-6.

Teng J., Shen J. (2008). Microbial carbonates in Holocene beachrocks, Shui-weiling, Luhuitou Peninsula, Hainan Island. Science in China Series D: Earth Sciences, 51(1), 30-40. https://doi.org/10.1007/s11430-007-0132-7.

Vieira, M. M., De Ros, L. F. (2006). Cementation patterns and genetic implications of Holocene beachrocks from northeastern Brazil. Sedimentary Geology, 192, 207-230. https://doi.org/ 10.1016/j.sedgeo.2006.04.011.

Vieira, M. M., Sial, A. N., De Ros, L. F., Morad, S. M. (2017). Origin of holocene beachrock cements in northeastern Brazil: Evidence from carbon and oxygen isotope. Journal of South American Earth Sciences, 79, 401-408. https://doi.org/10.1016/j.jsames.2017.09.002.

Vousdoukas, M. I., Velegrakis, A. F., Plomaritis, T. A. (2007). Beachrock occurrence, characteristics, formation mechanisms and impacts. Earth-Science Reviews, 85, 23-46. https://doi.org/10.1016/j.earscirev.2007.07.002.

Weaver, B. L. (1990). Geochemistry of highly-undersaturated ocean island basalt suites from the South Atlantic Ocean: Fernando de Noronha and Trindade islands. Contrib Mineral Petrol, 105, 502-515. https://doi.org/10.1007/BF00302491.

Webb, G. E., Jell, J. S., Baker, J. C. (1999). Cryptic intertidal microbialites in beachrock, Heron Island, Great Barrier Reef: Implications for the origin of microcrystalline beachrock cement. Sedimentary Geology, 126, 317-334. https://doi.org/10.1016/S0037-0738(99)00047-0.

Worden, R. H., Griffiths, J., Wooldridge, L. J., Utley, J. E. P., Lawana, A.Y., Muhammed, D.D., Simon, N., Armitage P.J. (2020). Chlorite in sandstones. Earth-Science Reviews, 204 (103105). https://doi.org/10.1016/j.earscirev.2020.103105.

Published

2025-02-10

Issue

Section

Articles

How to Cite

Santos, E. K. P., Fernandes, L. A., & Angulo, R. J. (2025). Genesis of the beachrocks from Trindade Island, Brazil. Geologia USP. Série Científica, 25(1), 3-20. https://doi.org/10.11606/issn.2316-9095.v25-207865

Funding data