Proposition of a Method for Estimation of Geomorphological Ratios for Watersheds: Reduction of Uncertainties by the Method of Dispersion of Morphometric Parameters
DOI:
https://doi.org/10.11606/issn.2316-9095.v25-207054Keywords:
Geomorphological ratios, Instantanés unit hydrograph, Uncertainty, Nonlinear regression, WatershedAbstract
The hydrological modeling of small and medium-sized watersheds often depends on the estimation of geomorphological ratios, which are fundamental for parameterizations of models such as the Geomorphological Instantaneous Unit Hydrograph (HUIG). However, traditional estimation methods are based on aggregate means, disregarding the natural dispersion of morphometric data, which can induce significant uncertainties. This study proposes a new method to estimate geomorphological ratios, incorporating data dispersion to regression adjustment, which provides greater physical and statistical representativeness. Fourteen river basins with different physiographic characteristics were analyzed, comparing three estimation methods: simple arithmetic mean (Method 1), regression on means aggregated by order (Method 2) and regression on dispersed data (Method 3). The results demonstrate that Method 3 reduces the uncertainty in the estimates of RL and RA, maintaining statistical robustness, especially in basins with high morphometric variability. It is concluded that the proposed method is more suitable to represent the complexity of the basins and can significantly improve the performance of hydrological models that use geomorphological ratios as input.
Downloads
References
Al-Ghamdi, K. A., Elzahrany, R. A., Mirza, M. N., Dawod, G. M. (2012). Impacts of urban growth on flood hazards in Makkah City, Saudi Arabia. International Journal of Water Resources and Environmental Engineering, 4(2), 23-34. Disponível em: https://academicjournals.org/article/article1379509325_Al-Ghamdi%20et%20al.pdf. Acesso em: 20 fev. 2024.
Al-Saud, M. (2010). Assessment of flood hazard of Jeddah area 2009, Saudi Arabia. Journal of Water Resource and Protection, 2, 839-847. https://doi.org/10.4236/jwarp.2010.29099
Bajracharya, P., Jain, S. (2020). Estimation of watershed width function: a statistical approach using LiDAR data. Stochastic Environmental Research and Risk Assessment, 34, 1997-2011. https://doi.org/10.1007/s00477-020-01846-5
Bates, D. M., Watts, D. G. (2007). Nonlinear Regression Analysis and Its Applications. New York: Wiley. https://doi.org/10.1002/9780470316757
Bierkens, M. F. P., Bell, V. A., Burek, P., Chaney, N., Condon, L., David, C., Roo, A. D., Doell, P., Drost, N., Famigli-Etti, J. S., Flörke, M., Gochis, D. J., Houser, P., Hut, R., Keune, J., Kollet, S., Maxwell, R., Reager, J. T., Samaniego, L., Wood, E. F.. (2014). Hyper-resolution global hydrolog-ical modelling: What is next? Hydrological Processes, 29, 310-320. Disponível em: https://www.researchgate.net/publication/303205772_Hyper-resolution_global_hydrolog-ical_modelling_What_is_next. Acesso em: 20 fev. 2024.
Biron, P. M., Choné, G., Buffin-Bélanger, T., Demers, S., Olsen, T. (2013). Improvement of Streams Hydro-geomorphological Assessment Using LiDAR DEMs. Earth Surf Process Landf, 38(15), 1808-1821. https://doi.org/10.1002/esp.3425
Bisht, S., Chaudhry, S., Sharma, S., Soni, S. (2018). Assessment of flash flood hazard zonation through geospatial technique in high altitude Himalayan watershed, Himachal Pradesh India. Remote Sensing Applications: Society and Environment, 12, 35-47. https://doi.org/10.1016/j.rsase.2018.09.001
Chavan, V. T., Gadge, P. S. (2013). Morphometric Analysis of Junana Mini Watershed Nandgoan (Kh.), Dist. Amravati, Maharashtra Using GIS. International Journal of Science, Environment and Technology, 2(5), 1072-1079. Disponível em: https://www.researchgate.net/publication/230757411_Morphometric_Analysis_at_Miniwatershed_Level_using_GIS. Acesso em: 20 fev. 2024.
Chopra, R., Dhiman, R. D., Sharma, P. K. (2005). Morphometric Analysis Of Sub-Watersheds In Gurdaspur District, Punjab Using Remote Sensing And Gis Techniques. Journal of the Indian Society of Remote Sensing, 33(4), 531-539. https://doi.org/10.1007/BF02990738
Dar, R. A., Chandra, R., Romshoo, S. A. (2013). Morphotectonic and lithostratigraphic analysis of intermontane Karewa basin of Kashmir Himalayas, India. Journal of Mountain Science, 10(1), 731-741. https://doi.org/10.1007/s11629-013-2494-y
Dawod, G. M., Mirza, M. N., Khalid, A., Al-Ghamdi, K. A. (2011). GIS-based spatial mapping of flash flood hazard in Makkah City, Saudi Arabia. Journal of Geographic Information System, 3, 217-223. https://doi.org/10.4236/jgis.2011.33019
Degetto, M., Gregoretti, C., Bernard, M. (2015). Comparative analysis of the differences between using LiDAR and contour-based DEMs for hydrological modeling of runoff generating debris flows in the Dolomites. Frontiers in Earth Science, 3(21). https://doi.org/10.3389/feart.2015.00021
Eze, E. B., Joel, E. (2010). Morphometric parameters of the Calabar River Basin: implication for hydrologic processes. Journal of Geography and Geology, 2(1), 19-26. https://doi.org/10.5539/jgg.v2n1p18
Fontana, G. T., Pumi, G. (2015) Regressão Linear Robusta: O Método de TELBS e uma Aplicação a Dados de e-Commerce. Trabalho de Conclusão de Curso. Porto Alegre: Universidade Federal do Rio Grande do Sul, Instituto de Matemática, Departamento de Estatística. Disponível em: https://lume.ufrgs.br/bitstream/handle/10183/133722/000986118.pdf?sequence. Acessado em: 09 abr. 2024.
Gaucherel, C., Frelat, R., Salomon, L., Rouy, B., Pandey, N., Cudennec, C. (2017). Regional Watershed Characterization and Classification With River Network Analyses. Earth Surface Processes and Landforms, 42(13), 2068-2081. https://doi.org/10.1002/esp.4172
Geena, G. B., Ballukraya, P. N. (2011). Morphometric analysis of Korattalaiyar River Basin, Tamil Nadu, India: a GIS approach. International journal of Geomatics and Geosciences, 2(2), 383-391. Disponível em: https://www.semanticscholar.org/paper/Morphometric-analysis-of-Korattalaiyar-River-basin%2C/3250cb1ac135075af70800c9d6b857de576cff57. Acessado em: 20 fev. 2024.
Grohmann, C. H., Riccomini, C., Alves, F. M. (2007). Srtm-Based Morphotectonic Analysis Of The Poços De Caldas Alkaline Massif, Southeastern Brazil. Computers & Geosciences, 33, 10-19. https://doi.org/10.1016/j.cageo.2006.05.002
Hajam, R. A., Hamid, A., Dar, N. A., Bhat, S. U. (2013). Morphometric Analysis Of Vishav Drainage Basin Using Geo-Spatial Technology (GST). International Research Journal of Geology and Mining, 3(3), 136-146. Disponível em: https://www.interesjournals.org/abstract/morphometric-analysis-of-vishav-drainage-basin-using-geospatial-technology-gst-16671.html. Acessado em: 20 fev. 2024.
Hamdan, A., Khozyem, H. (2018). Morphometric, Statistical, and Hazard Analyses Using ASTER Data and GIS Technique of WADI El-Mathula Watershed, Qena, Egypt. Arabian Journal of Geosciences, 11(722). https://doi.org/10.1007/s12517-018-4068-3
Horton, R. E. (1945). Erosional Development Of Streams And Their Drainage Basins: Hydrophysical Approach To Quantitative Morphology. Bulletin of the Geological Society of America, 56, 275-370. https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2
Ifabiyi, I. P. A. (2004). A Reduced Rank Model Of Drainage Basin Response To Runoff In Upper Kaduna Catchment Of Northern Nigeria. Geo-Studies Forum, 2(1), 109-117.
INPE – Instituto Nacional de Pesquisas Espaciais (2008). Projeto TOPODATA, Banco de Dados Geomorfométricos do Brasil. Disponível em: http://www.dsr.inpe.br/topodata/. Acessado em 13 ag. 2025.
Jain, V., Sinha, R. (2003). Derivation of Unit Hydrograph From GIUH Analysis For A Himalayan River. Water Resources Management, 17, 355-375. https://doi.org/10.1023/A:1025884903120
Jung, K., Niemann, J. D., Huang, X. (2011). Under what conditions do parallel river networks occur? Geomorphology, 132(3-4), 260-271. https://doi.org/10.1016/j.geomorph.2011.05.014
Jung, K., Ouarda, T. B. M. J. (2015). Analysis and Classification of Channel Network Types For Intermittent Streams In The United Arab Emirates And Oman. Journal of Civil & Environmental Engineering, 5(5). https://doi.org/10.4172/2165-784X.1000183
Kaliraj, S., Chandrasekar, N. (2015). Morphometric Analysis of the River Thamirabarani sub-basin in Kanyakumari District, South West Coast of Tamil Nadu, India, using remote sensing and GIS. Environmental Earth Sciences, 73, 7375-7401. https://doi.org/10.1007/s12665-014-3914-1
Kouli, M., Vallianatos, F., Soupios, P., Alexakis, D. (2007). GIS-based morphometric analysis of two major watersheds, Western Crete, Greece. Journal of Environmental Hydrology, 15(1), 1-17.
Kumar, R., Kumar, S., Lohni, A. K., Neema, R. K., Singh, A. D. (2000). Evaluation of Geomorphological Characteristics of a Catchment Using GIS. GIS India, 9(3), 13-17. Disponível em: https://www.researchgate.net/publication/267271380_Evaluation_of_geomorphological_characteristics_of_a_catchment_using_GIS. Acesso em: 20 fev. 2024.
Liu, X., Zhang, Z. (2011). Drainage Network Extraction Using LiDAR Derived DEM in Volcanic Plains. Area, 43(1), 42-52. https://doi.org/10.1111/j.1475-4762.2010.00955.x
Magesh, N. S., Chandrasekar, N. (2012). GIS Model-based Morphometric Evaluation of Tamiraparani Subbasin, Tirunelveli District, Tamil Nadu, India. Arabian Journal of Geosciences, 7, 131-141. https://doi.org/10.1007/s12517-012-0742-z
Magesh, N. S., Chandrasekar, N., Kaliraj, S. (2012). A GIS Based Automated Extraction Tool for the Analysis of Basin Morphometry. Bonfring International Journal of Industrial Engineering and Management Science. 2. 32-35. Disponível em: https://www.academia.edu/6522632/A_GIS_based_Automated_Extraction_Tool_for_the_Analysis_of_Basin_Morphometry. Acessado em: 20 fev. 2024.
Mesa, L. M. (2006). Morphometric Analysis of a Subtropical Andean basin (Tucuman, Argentina). Environmental Geology, 50, 235-1242. https://doi.org/10.1007/s00254-006-0297-y
Montgomery, D. C., Runger, G. C. (2010). Applied Statistics and Probability for Engineers (5th ed.). New York: Wiley. Disponível em: https://selvyblog.wordpress.com/wp-content/uploads/2015/10/buku-stat-montgomery-5.pdf. Acessado em: 03 out. 2025.
Motulsky, H., Christopoulos, A. (2004). Fitting Models to Biological Data Using Linear and Nonlinear Regression: A Practical Guide to Curve Fitting. Oxford: Oxford University Press. https://doi.org/10.1093/oso/9780195171792.001.0001
Moussa, R. (2003). On Morphometric Properties of Basins, Scale Effects and Hydrological Response. Hydrological Processes, 17, 33-58. https://doi.org/10.1002/hyp.1114
Narendra, K., Nageswara, R. K. (2006). Morphometry of the Meghadrigedda Watershed, Visakhapatnam District, Andhra Pradesh using GIS and Resourcesat data. Journal of the Indian Society of Remote Sensing, 34, 101-110. https://doi.org/10.1007/BF02991815
Nautiyal, M. D. (1994). Morphometric Analysis of a Drainage Basin, District Dehradun, Uttar Pradesh. Journal of the Indian Society of Remote Sensing, 22(4), 251-261. https://doi.org/10.1007/BF03026526
Negri, R., Fill, H. (2023) Caracterização física de 14 bacias hidrográficas brasileiras: proposição do indicador da declividade média dos rios e do coeficiente de suscetibilidade de enchentes. Engenharia Sanitaria e Ambiental, 28. https://doi.org/10.1590/S1413-415220220194
Obi Reddy, G. P., Maji, A. K., Gajbhiye, K. S. (2002). GIS for Morphometric Analysis of Drainage Basins. GIS Índia, 11, 9-14. Disponível em: https://krishi.icar.gov.in/jspui/bitstream/123456789/36214/1/GIS%20for%20Morphometric%20Analysis%20of%20River%20basins.pdf. Acessado em: 20 fev. 2024.
Okoko, E. E., Olujinmi, J. A. B. (2003). The Role of Geomorphic Features in Urban Flooding: the Case of Ala River in Akure, Nigeria. International Journal of Environmental Issues, 1(1), 192-201.
Pareta, K., Pareta, U. (2012). Quantitative Geomorphological Analysis of a Watershed of a Ravi River Basin, H.P. India. International Journal of Remote Sensing and GIS, 1(1), 41-56. Disponível em: https://prod-qt-images.s3.amazonaws.com/indiawaterportal/import/sites/default/files/iwp2/quantitative_geomorphological_analysis_of_a_watershed_of_ravi_river_basin_himachal_pradesh_india_international_journal_of_remote_sensing_and_gis_2012.pdf. Acessado em: 20 fev. 2024.
Rawat, K. S., Mishra, A. K. (2016). Evaluation of Relief Aspects Morphometric Parameters Derived from Different Sources of DEMs and Its Effects Over Time of Concentration of Runoff (tc). Earth Science Informatics, 9, 409-424. https://doi.org/10.1007/s12145-016-0261-7
Rawat, K. S., Mishra, A. K., Tripathi, V. K. (2012). Hydro-morphometrical Analyses of Sub-himalyan Region in Relation to Small Hydro-electric Power. Arabian Journal of Geosciences, 6(8), 2889-2899. https://doi.org/10.1007/s12517-012-0586-6
Rigon, R., Bancheri, M., Formetta, G., e Lavenne, A. (2016). The Geomorphological Unit Hydrograph from a Historical-critical Perspective. Earth Surface Processes and Landforms, 41(1), 27-37. https://doi.org/10.1002/esp.3855
Rodriguez-Iturbe, I., Valdés, J. B. (1979). The Geomorphologic Structure Of Hydrologic Response. Water Resources Research, 15(6), 1409-1420. https://doi.org/10.1029/WR015i006p01409
Romshoo, S. A., Bhat, S. A., Rashid, I. (2012). Geoinformatics for Assessing the Morphometric Control on Hydrological Response at Watershed Scale in the Upper Indus Basin. Journal of Earth System Science, 12(3), 659-686. https://doi.org/10.1007/s12040-012-0192-8
Sahoo, R., Jain, V. (2018). Sensitivity of Drainage Morphometry Based Hydrological Response (GIUH) of a River Basin to the Spatial Resolution of DEM Data. Computers & Geosciences, 111, 78-86. https://doi.org/10.1016/j.cageo.2017.10.001
Santos, G. O., Hernandez, F. B. T. (2013). Uso do Solo e Monitoramento dos Recursos Hídricos no Córrego do Ipê, Ilha Solteira, SP. Revista Brasileira de Engenharia Agrícola e Ambiental, 17(1), 60-68. https://doi.org/10.1590/S1415-43662013000100009
Santos, G. O., Silva, A. A., Braz, A. R. C., Carneiro, F. M. (2018). Morphometric characterization of hydrographic bodies inserted in the Municipality of Rio Verde, Goiás, as a tool for urban and agricultural planning. Geografia Ensino & Pesquisa, 22(17), 01-13. https://doi.org/10.5902/2236499426572
Sarangi, A., Madramootoo, C. A., Enright, P. (2003). Desenvolvimento de Interface de Usuário em ArcGIS para Estimativa de Geomorfologia de Bacias Hidrográficas. CSAE/SCGR 2003 Meeting, Paper, 3, 120-130.
Schumm, S. A. (1956). Evolution of Drainage Systems and Slopes in Badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin, 67(5), 597-646. https://doi.org/10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2
Seber, G. A. F., Wild, C. J. (2003). Nonlinear Regression. Hoboken: Wiley-Interscience. https://doi.org/10.1002/0471725315
Shen, Y., Liu, D., Yin, J., Xiong, L., Liu, P. (2020). Integrating Hybrid Runoff Generation Mechanism Into Variable Infiltration Capacity Model to Facilitate Hydrological Simulations. Stochastic Environmental Research and Risk Assessment, 34, 2139-2157. https://doi.org/10.1007/s00477-020-01878-x
Sivakumar, B., Singh, V. P., Berndtsson, R., Khan, S. K. (2013). Catchment Classification Framework in Hydrology: Challenges and Directions. Journal of Hydrologic Engineering, 20(1). https://doi.org/10.1061/(ASCE)HE.1943-5584.0000837
Smart, J.S. (1978), The analysis of drainage network composition, Earth Surface Processes, 3, 129-171. Disponível em: https://pdodds.w3.uvm.edu/files/papers/others/1978/smart1978a.pdf. Acessado em: 09 abr. 2024.
Soni, S. K., Tripathi, S., Maurya, A. K. (2013). GIS Based Morphometric Characterization of Mini-watershed—Rachhar Nala of Anuppur District Madhya Pradesh. International Journal of Advanced Technology and Engineering Research, 3(3), 32-38. Disponível em: https://www.researchgate.net/publication/303880422_GIS_BASED_MORPHOMETRIC_CHARACTERIZATION_OF_MINI_WATERSHED_-RACHHAR_NALA_OF_ANUPPUR_DISTRICT_MADHYA_PRADESH. Acessado em: 20 fev. 2024.
Soni, S. (2017). Assessment of Morphometric Characteristics of Chakrar Watershed in Madhya Pradesh, India Using Geospatial Technique. Applied Water Science. https://doi.org/10.1007/s13201-016-0395-2
Steffen, J. L., Andrade, A. C. De Souza, Alves Sobrinho, T., Oliveira, P. T. S., Rodrigues, D. B. B. (2009) Hidrograma unitário instantâneo geomorfológicoaplicado a bacias desprovidas de dados hidrológicos. Geociências, 28 (3) 247-254. Disponível em: https://www.periodicos.rc.biblioteca.unesp.br/index.php/geociencias/article/view/3510/3199. Acessado em: 09 abr. 2024.
Strahler, A. N. (1957). Quantitative Analysis of Watershed Geomorphology. EOS, Transactions American Geophysical Union, 38, 913-920. https://doi.org/10.1029/TR038i006p00913
Strahler, A. N. (1964). Quantitative geomorphology of drainage basins and channel networks. In: Chow VT (ed) Handbook of applied hydrology. New York: McGraw Hill Book Company, Section, 4-11.
Tripathi, S., Soni, S. K., Maurya, A. K. (2013). Morphometric Characterization & Prioritization of Sub-watersheds of Seoni River in Madhya Pradesh, Through Remote Sensing & GIS Technique. Int. J. Remote Sens. Geosci., 2(3), 46-54. Disponível em: https://api.semanticscholar.org/CorpusID:130869449. Acessado em: 20 fev. 2024.
Vandana, M. (2013). Morphometric analysis and watershed prioritization: a case study of Kabani River Basin, Wayanad District, Kerala, India. Indian Journal of Geo-Marine Sciences, 42(2), 211-222. Disponível em: https://www.researchgate.net/publication/332186957_Morphometric_analysis_and_watershed_prioritisation_A_case_study_of_Kabani_river_basin_Wayanad_District_Kerala_India. Acessado em: 20 fev. 2024.
Vestena, L. R., Kobiyama, M.. (2010). A geometria fractal da rede de drenagem da bacia hidrográfica do Caeté, Alfredo Wagner-SC. Revista Árvore, 34(4), 661-668. https://doi.org/10.1590/S0100-67622010000400010
Vijith, H., Satheesh, R. (2006). GIS Based Morphometric Analysis of Two Major Upland Sub Watersheds of Meenachil River in Kerala. Journal of the Indian Society of Remote Sensing, 34, 181-185. https://doi.org/10.1007/BF02991823
Vittala, S. S., Govindaiah, S., Honne Gowda, H. (2004). Morphometric Analysis of Sub-watersheds in the Pavagada Area of Tumkur District, South India Using Remote Sensing and GIS Techniques. Journal of the Indian Society of Remote Sensing, 32(4), 351-362. https://doi.org/10.1007/BF03030860
Wu, Q., Lane, C. R. (2017). Delineating Wetland Catchments and Modeling Hydrologic Connectivity Using LiDAR Data and Aerial Imagery. Hydrology and Earth System Sciences, 21(7), 3579-3595. https://doi.org/10.5194/hess-21-3579-2017
Yang, P., Ames, D. P., Fonseca, A., Anderson, D., Shrestha, R., Glenn, N. F., Cao, Y. (2014). What is the Effect of LiDAR-derived DEM Resolution on Large-scale Watershed Model Results? Environmental Modelling & Software, 58, 48-57. https://doi.org/10.1016/j.envsoft.2014.04.005
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Robison Negri, Heinz Dieter Oskar August Fill

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish in this journal shall comply with the following terms:
- Authors keep their copyright and grant to Geologia USP: Série Científica the right of first publication, with the paper under the Creative Commons BY-NC-SA license (summary of the license: https://creativecommons.org/licenses/by-nc-sa/4.0 | full text of the license: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode) that allows the non-commercial sharing of the paper and granting the proper copyrights of the first publication in this journal.
- Authors are authorized to take additional contracts separately, for non-exclusive distribution of the version of the paper published in this journal (publish in institutional repository or as a book chapter), granting the proper copyrights of first publication in this journal.
- Authors are allowed and encouraged to publish and distribute their paper online (in institutional repositories or their personal page) at any point before or during the editorial process, since this can generate productive changes as well as increase the impact and citation of the published paper (See The effect of Open Access and downloads on citation impact).

