Large-Scale Language Models and Communication: Powers, Limits, and Informational Disputes in the AI Age
DOI:
https://doi.org/10.11606/issn.2965-7474.v1i6p%25pKeywords:
Language models, artificial intelligence, digital communication, informational justice, algorithmic ethicsAbstract
This article discusses how Large-Scale Language Models (LLMs) have been... This text discusses the impact of LLMs (Language Models) on the field of contemporary communication by reconfiguring symbolic production, informational flows, and the socio-technical dynamics of discourse. From a critical perspective, it analyzes the algorithmic nature of these systems, their practical applications, the ethical and political dilemmas involved, as well as the structural limitations and risks to communicational diversity. Considering authors such as Alves, Bruno, Crawford, and Coeckelbergh, it argues that LLMs not only automate linguistic processes but also contest the field of meaning, affecting plurality, authorship, and public trust. The text proposes guidelines for an ethical and democratic governance of artificial intelligence, based on informational justice and public commitment.
Downloads
References
ALAMU, O. Femi; AWORINDE, O. Halleluyah; ISHARUFE, Walter. Estudo Comparativo do Sistema de Divinação Ifá e Ciência da Computação. In: SILVA, Tarcízio. Comunidades, algoritmos e ativismos digitais: olhares afrodiaspóricos. São Paulo: LiteraRUA, 2020, p. 218-229.
ALVES, Lynn. Inteligência artificial e comunicação. São Paulo: Blucher, 2020.
BRUNO, Fernanda. Máquinas de ver, modos de ser: vigilância, tecnologia e subjetividade. Porto Alegre: Sulina, 2020.
BRYNJOLFSSON, Erik; MCAFEE, Andrew. The second machine age: work, progress, and prosperity in a time of brilliant technologies. Nova Iorque: W. W. Norton & Company, 2014.
BUOLAMWINI, Joy; GEBRU, Timnit. Gender shades: intersectional accuracy disparities in commercial gender classification. Proceedings of the 1st Conference on Fairness, Accountability and Transparency, v. 81, p. 77-91, 2018.
COECKELBERGH, Mark. Ética na inteligência artificial. São Paulo: Ubu Editora, 2023.
CRAWFORD, Kate. Atlas of AI: power, politics, and the planetary costs of artificial intelligence. New Haven: Yale University Press, 2021.
GARCIA, Ana C. B. Ética e inteligência artificial. Computação Brasil, n. 43, p. 14-22, 2020.
GESCHKE, Daniel.; LORENZ, Jan; HOLTZ, Peter. The triple‐filter bubble: using agent‐based modelling to test a meta‐theoretical framework for the emergence of filter bubbles and echo chambers. British Journal of Social Psychology, v. 58, n. 1, p. 129-149, 2019.
GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep learning. Cambridge: MIT Press, 2016.
HAN, Byung C. No enxame: perspectivas do digital. Petrópolis: Vozes, 2018.
KITCHIN, Rob. Thinking critically about and researching algorithms. Information, Communication & Society, v. 20, n. 1, p. 14-29, 2017.
NOBLE, Safiya U. Algoritmos da opressão: como o Google lucra com o racismo.
Santo André: Rua do Sabão, 2021
TERRA, Carolina F; RAPOSO, João F. Relações públicas e comunicação orientadas aos dados: realidade ou necessidade contemporânea? Interfaces da Comunicação, v. 1, n. 1, p. 1-14, 2023.
TEN OEVER, Niels. “This is not how we imagined it”: technological affordances, economic drivers, and the internet architecture imaginary. New Media & Society, v. 23, n. 2, p. 344-362, 2021.
WAHLSTRÖM, Mattias; TÖRNBERG, Anton; EKBRAND, Hans. Dynamics of violent and dehumanizing rhetoric in far-right social media. New Media & Society, v. 23, n. 11, p. 3290-3311, 2021.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Interface Communication Review

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.