n vitro effect of TiF4/NaF solution on the development of radiation-induced dentin caries
DOI:
https://doi.org/10.1590/1678-7757-2024-0024Keywords:
Dental caries, Fluorides, Biofilms, RadiotherapyAbstract
Objective: To evaluate the protective effect of an experimental solution containing TiF4/NaF on the development of radiation-induced dentin caries lesions. Methodology: bovine root samples were irradiated (70Gy) and distributed as following (n=12/group): Commercial Saliva (BioXtra), NaF (500 ppm F-), TiF4 (500 ppm F), TiF4/NaF (TiF4: 300 ppm F-, NaF: 190 ppm F-), and Phosphate buffer solution (PBS, negative control). Biofilm was produced using biofilm from irradiated patients and McBain saliva (0.2% of sucrose, at 37oC and 5% CO2) for five days. The treatments were applied 1x/day. Colony-forming units (CFU) were counted and demineralization was quantified by transversal microradiography. The ANOVA/Tukey test was applied for all parameters. Results: All treatments reduced CFU for total microorganisms. TiF4 reduced Lactobacillus sp. (7.04±0.26 log10 CFU/mL) and mutans streptococci (7.18±0.28) CFU the most, when compared to PBS (7.58±0.21 and 7.75±0.17) and followed by NaF (7.12±0.31 and 7.34±0.22) and TiF4/NaF (7.16±0.35 and 7.29± 0.29). TiF4 and Commercial saliva showed the lowest integrated mineral loss (ΔZ-vol%.mm) (1977±150 and 2062±243, respectively) when compared to PBS (4540±335), followed by NaF (2403±235) and TiF4/NaF (2340±200). Commercial saliva was the only to significantly reduce mineral loss (LD-µm) (111±25) compared to PBS (153±24).Mean mineral loss (R-vol%) decreased by 35.2% for TiF4 (18.2±3.3) when compared to PBS (28.1±2.9) Conclusion: TiF4/NaF has a comparable anti-cariogenic effect to TiF4 and Commercial saliva under the model in this study.
Downloads
References
Gouvêa Vasconcellos AF, Palmier NR, Ribeiro AC, Normando AG, Morais-Faria K, Gomes-Silva W, et al. Impact of clustering oral symptoms in the pathogenesis of radiation caries: a systematic review. Caries Res. 2020;54(2):113-26. doi:10.1159/000504878
Siala W, Mnejja W, Khabir A, Ben Mahfoudh K, Boudawara T, Ghorbel A, et al. Toxicité neurologique tardive après traitement des carcinomes nasopharyngés [Late neurotoxicity after nasopharyngeal carcinoma treatment]. Cancer Radiother. 2009;13(8):709-14. doi:10.1016/j.canrad.2009.05.006
Hamilton SN, Arshad O, Kwok J, Tran E, Fuchsia Howard A, Serrano I, et al. Documentation and incidence of late effects and screening recommendations for adolescent and young adult head and neck cancer survivors treated with radiotherapy. Support Care Cancer. 2019;27(7):2609-16. doi:10.1007/s00520-018-4559-5
Souza BM, Fernandes C Neto, Salomão PM, Vasconcelos LR, Andrade FB, Magalhães AC. Analysis of the antimicrobial and anti-caries effects of TiF4 varnish under microcosm biofilm formed on enamel. J Appl Oral Sci. 2018;26:e20170304. doi:10.1590/1678-7757-2017-0304
Sroussi HY, Epstein JB, Bensadoun RJ, Saunders DP, Lalla RV, Migliorati CA, et al. Common oral complications of head and neck cancer radiation therapy: mucositis, infections, saliva change, fibrosis, sensory dysfunctions, dental caries, periodontal disease, and osteoradionecrosis. Cancer Med. 2017;6(12):2918-31. doi:10.1002/cam4.1221
Kielbassa AM, Schilli K. Betreuung des tumortherapeutisch bestrahlten Patienten aus Slicht der Zahnerhaltung [Care of the patient who has undergone tumor therapy from the perspective of tooth preservation]. Zahnarztl Mitt 1997;87:2636-2647.
Al-Nawas B, Grötz KA. Prospective study of the long-term change of the oral flora after radiation therapy. Support Care Cancer. 2006;14(3):291-6. doi:10.1007/s00520-005-0895-3
Deng J, Jackson L, Epstein JB, Migliorati CA, Murohy BA. Dental demineralization and caries in patients with head and neck cancer. Oral Oncol. 2015;51:824-31. doi:10.1016/j.oraloncology.2015.06.009
Frydrych AM, Slack-Smith LM, Parsons R. Compliance of post-radiation therapy head and neck cancer patients with caries preventive protocols. Aust Dent J. 2017;62(2):192-9. doi:10.1111/adj.12491
Meyer-Lueckel H, Schulte-Monting J, Kielbassa AM. The effect of commercially available saliva substitutes on predemineralized bovine dentin in vitro. Oral Dis. 2002;8:192-8. doi:10.1034/j.1601-0825.2002.01762.x
Vinke J, Kaper HJ, Vissink A, Sharma PK. Dry mouth: saliva substitutes which adsorb and modify existing salivary condition films improve oral lubrication. Clin Oral Investig. 2020;24 (11):4019-30. doi:10.1007/s00784-020-03272-x
Pollick H. The role of fluoride in the prevention of tooth decay. Pediatr Clin North Am. 2018;65(5):923-40. doi:10.1016/j.pcl.2018.05.014
Souza BM, Silva MS, Braga AS, Bueno PS, Silva Santos PS, Buzalaf MA, et al. Protective effect of titanium tetrafluoride and silver diamine fluoride on radiation-induced dentin caries in vitro. Sci Rep. 2021;11(1):6083. doi:10.1038/s41598-021-85748-8
Vertuan M, Silva JF, Braga AS, Souza BM, Magalhães AC. Effect of TiF4/NaF and chitosan solutions on biofilm formation and prevention of dentin demineralization. Arch Oral Biol. 2021;132:105275. doi:10.1016/j.archoralbio.2021.105275
Signori C, van de Sande FH, Maske TT, Oliveira EF, Cenci MS. Influence of the Inoculum Source on the Cariogenicity of in vitro microcosm biofilms. Caries Res. 2016;50(2):97-103. doi:10.1159/000443537
Santos DM, Pires J, Salomão PM, Buzalaf MA, Magalhães AC. Protective effect of 4% titanium tetrafluoride varnish on dentin demineralization under a microscosm biofilm model. Caries Res. 2019;53(5):576-83. doi:10.1159/000499317
McBain AJ. Chapter 4: In vitro biofilm models: an overview. Adv Appl Microbiol. 2009;69:99-132. doi:10.1016/S0065-2164(09)69004-3
Al-Joburi W, Clark C, Fisher R. A comparison of the effectiveness of two systems for the prevention of radiation caries. Clin Prev Dent.
Giertsen E, Scheie AA. In vivo effects of fluoride, chlorhexidine and zinc ions on acid formation by dental plaque and salivary mutans streptococcus counts in patients with irradiation-induced xerostomia. Eur J Cancer B Oral Oncol. 1993;29B(4):307-12. doi:10.1016/0964-1955(93)90054-I
Souza BM, Santi LR, Souza Silva M, Buzalaf MA, Magalhães AC. Effect of an experimental mouth rinse containing NaF and TiF4 on tooth erosion and abrasion in situ. J Dent. 2018;73:45-9. doi:10.1016/j.jdent.2018.04.001
Silva ND, Paiva PR, Magalhães TV, Braga AS, Santos PS, Henrique-Silva F, et al. Effect of experimental and commercial artificial saliva formulations on the activity and viability of microcosm biofilm and on enamel demineralization for irradiated patients with head and neck cancer (HNC). Biofouling. 2022;38(7):674-86. doi:10.1080/08927014.2022.2111258
Gudipaneni RK, Kumar RV, Jesudass G, Peddengatagari S, Duddu Y; Short term comparative evaluation of antimicrobial efficacy of toothpaste containing lactoferrin, lysozyme, lactoperoxidase in children with severe early childhood caries: a clinical study. J Clin Diagn Res. 2014;8(4):ZC18-20. doi:10.7860/JCDR/2014/8161.4232
Comar LP, Souza BM, Al-Ahj LP, Martins J, Grizzo LT, Piasentim IS, et al. Mechanism of action of TiF4 on dental enamel surface: SEM/EDX, KOH-soluble F, and X-ray diffraction analysis. Caries Res. 2017;51(6):554-67. doi:10.1159/000479038
Wiegand A, Magalhães AC, Attin T. Is titanium tetrafluoride (TiF4) effective to prevent carious and erosive lesions? A review of the literature. Oral Health Prev Dent. 2010;8(2):159-64. doi:10.5167/uzh-38496
ten Cate JM. Contemporary perspective on the use of fluoride products in caries prevention. Br Dent J. 2013;214(4):161-7. doi:10.1038/sj.bdj.2013.162
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Journal of Applied Oral Science
This work is licensed under a Creative Commons Attribution 4.0 International License.
Todo o conteúdo do periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons do tipo atribuição CC-BY.